

Artificial Intelligence
Programming with Python®

Artificial Intelligence
Programming with

Python®

From Zero to Hero

Perry Xiao

Copyright © 2022 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

ISBN: 978-1-119-82086-4
ISBN: 978-1-119-82094-9 (ebk)
ISBN: 978-1-119-82096-3 (ebk)

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted
under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission
of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clear-
ance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web
at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008,
or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-
ranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all
warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be
created or extended by sales or promotional materials. The advice and strategies contained herein may not
be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is required, the services
of a competent professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or Website is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses
the information the organization or Website may provide or recommendations it may make. Further, readers
should be aware the Internet Websites listed in this work may have changed or disappeared between when
this work was written and when it is read.

For general information on our other products and services or for technical support, please contact our Cus-
tomer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993
or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic formats. For more information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Control Number: 2022931189

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its affiliates, in the United States and other countries, and may not be used without written permis-
sion. Python is a registered trademark of Python Software Foundation. All other trademarks are the property
of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned
in this book.

Cover image: © ktsdesign/Adobe Stock Photos
Cover design: Wiley

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

This book is dedicated to my family. To my wife, May, my son, Zieger, and
my daughter, Jessica, who make my life complete—without them, life

would be meaningless. To my parents and my brother, who have shared their
life and love with me that ultimately made me who I am today. To my friends

and colleagues, who supported me throughout my career.

I would also like to dedicate this book to Grace Qing Wang, who sadly
passed away during the course of writing this book. Grace Qing Wang was a
young, energetic professional woman who was passionate about innovation

and artificial intelligence in education. She was also a collaborator and a
good friend. Through Grace I have made many professional connections

that were very beneficial to my career.

vii

About the Author

Dr. Perry Xiao is a professor and course director at the School of Engineering,
London South Bank University in London, United Kingdom. He got his BEng
degree in opto-electronics, MSc degree in solid-state physics, and PhD degree
in photophysics. He is a charted engineering (CEng), a Fellow (FIET) from
the Institution of Engineering and Technology (IET), and a Senior Fellow
(SFHEA) from the Higher Education Academy (HEA). He has been teaching
electronics, software, computer networks, and telecommunication subjects
at both the undergraduate level and the postgraduate level for nearly two
decades. He also supervises BEng final project students and MSc project
students every year. His main research interest is to develop novel infrared
and electronic sensing technologies for skin bioengineering applications and
industrial nondestructive testing (NDT). To date, he has finished more than
12 PhD student supervisions, obtained two UK patent applications, published
more than 100 scientific papers, been editorial reviewer for nine journals, and
generated nearly £1 million in research grants.

He is also a director and cofounder of Biox Systems Ltd., UK, a university
spin-off company that designs and manufactures state-of-the-art skin
measurement instruments, AquaFlux and Epsilon, which have been used in
more than 200 organizations worldwide, including leading cosmetic com-
panies, universities, research institutes, and hospitals.

ix

About the Technical Editors

Dr. Hongmei (Mary) He (FHEA, SIEEE) is an associate professor of cyber-
security in the School of Computer Science and Informatics at De Montfort
University. Previously, she was a lecturer in AI and cyber security at Cranfield
University. She received her PhD in computer science from Loughborough
University in the UK in 2006 and gained sustained experience as a postdoctoral
researcher at various universities. She has worked as an academic in the field
of computer science and engineering for many years and has brief industrial
experience at Motorola Design House in China as a senior embedded system
engineer. Her research can be briefly divided into four themes: AI and data
science, cognitive cybersecurity, cognitive robotics and trustworthy auton-
omous systems, and computing theory and optimization. Dr. He is a senior
member of IEEE in the Computational Intelligence, Cybersecurity, RAS, and
Women in Engineering Societies.

Dr. Weiheng Liao, DPhil (Oxon), is a computer scientist and technology entre-
preneur in AI. He has authored and co-authored a number of influential papers
in top journals and conferences and is the visiting scholar of several research
universities. His interests include machine learning, AutoML, deep learning,
explainable AI, natural language processing, and their applications in finance
and investment. He cofounded YouShore, one of the world’s first teams to
employ deep NLP to analyze social media data, to extract alternative data, and
to construct alpha signals.

If you want to know more about his recent work, please visit www
.madebydata.com.

http://www.madebydata.com
http://www.madebydata.com

xi

Acknowledgments

I would like to express my sincere gratitude to Wiley Publishing for giving
me this opportunity. I would also like to thank Devon Lewis, Liz Britten, Pete
Gaughan, Dr. Weiheng Liao, and Hongmei He for their support. Without them,
this book would not have been possible.

xiii

Contents at a Glance

Preface� xxiii

Part I	 Introduction�

Chapter 1	 Introduction to AI� 3

Chapter 2	 AI Development Tools� 23

Part II	 Machine Learning and Deep Learning�

Chapter 3	 Machine Learning� 53

Chapter 4	 Deep Learning� 117

Part III	 AI Applications�

Chapter 5	 Image Classification� 201

Chapter 6	 Face Detection and Face Recognition� 265

Chapter 7	 Object Detections and Image Segmentations� 337

Chapter 8	 Pose Detection� 433

Chapter 9	 GAN and Neural-Style Transfer� 465

Chapter 10	 Natural Language Processing� 491

Chapter 11	 Data Analysis� 543

Chapter 12	 Advanced AI Computing� 613

Index� 659

xiv	 Contents at a Glance

This book is accompanied by bonus content! The following extra elements
can be downloaded from www.wiley.com/go/aiwithpython:

■■ MATLAB for AI Cheat Sheets

■■ Python for AI Cheat Sheets

■■ Python Deep Learning Cheat Sheet

■■ Python Virtual Environment

■■ Jupyter Notebook, Google Colab, and Kaggle

xv

Contents

Preface� xxiii

Part I	 Introduction�

Chapter 1	 Introduction to AI� 3
1.1  What Is AI?� 3
1.2  The History of AI� 5
1.3  AI Hypes and AI Winters� 9
1.4  The Types of AI� 11
1.5  Edge AI and Cloud AI� 12
1.6  Key Moments of AI� 14
1.7  The State of AI� 17
1.8  AI Resources� 19
1.9  Summary� 21
1.10  Chapter Review Questions� 22

Chapter 2	 AI Development Tools� 23
2.1  AI Hardware Tools� 23
2.2  AI Software Tools� 24
2.3  Introduction to Python� 27
2.4  Python Development Environments� 30
2.4  Getting Started with Python� 34
2.5  AI Datasets� 45
2.6  Python AI Frameworks� 47
2.7  Summary� 49
2.8  Chapter Review Questions� 50

Part II	 Machine Learning and Deep Learning�

Chapter 3	 Machine Learning� 53
3.1  Introduction� 53
3.2  Supervised Learning: Classifications� 55

xvi	 Contents

Scikit-Learn Datasets� 56
Support Vector Machines� 56
Naive Bayes� 67
Linear Discriminant Analysis� 69
Principal Component Analysis� 70
Decision Tree� 73
Random Forest� 76
K-Nearest Neighbors� 77
Neural Networks� 78

3.3  Supervised Learning: Regressions� 80
3.4  Unsupervised Learning� 89

K-means Clustering� 89
3.5  Semi-supervised Learning� 91
3.6  Reinforcement Learning� 93

Q-Learning� 95
3.7  Ensemble Learning� 102
3.8  AutoML� 106
3.9  PyCaret� 109
3.10 LazyPredict� 111
3.11 Summary� 115
3.12 Chapter Review Questions� 116

Chapter 4	 Deep Learning� 117
4.1  Introduction� 117
4.2  Artificial Neural Networks� 120
4.3  Convolutional Neural Networks� 125

4.3.1  LeNet, AlexNet, GoogLeNet� 129
4.3.2  VGG, ResNet, DenseNet, MobileNet,

EffecientNet, and YOLO� 140
4.3.3  U-Net� 152
4.3.4  AutoEncoder� 157
4.3.5  Siamese Neural Networks� 161
4.3.6  Capsule Networks� 163
4.3.7  CNN Layers Visualization� 165

4.4  Recurrent Neural Networks� 173
4.4.1  Vanilla RNNs� 175
4.4.2  Long-Short Term Memory� 176
4.4.3  Natural Language Processing and Python

Natural Language Toolkit� 183
4.5  Transformers� 187

4.5.1  BERT and ALBERT� 187
4.5.2  GPT-3� 189
4.5.3  Switch Transformers� 190

4.6  Graph Neural Networks� 191
4.6.1  SuperGLUE� 192

4.7  Bayesian Neural Networks� 192

	 Contents	 xvii

4.8  Meta Learning� 195
4.9  Summary� 197
4.10  Chapter Review Questions� 197

Part III	 AI Applications�

Chapter 5	 Image Classification� 201
5.1  Introduction� 201
5.2  Classification with Pre-trained Models� 203
5.3  Classification with Custom Trained Models:

Transfer Learning� 209
5.4  Cancer/Disease Detection� 227

5.4.1  Skin Cancer Image Classification� 227
5.4.2  Retinopathy Classification� 229
5.4.3  Chest X-Ray Classification� 230
5.4.5  Brain Tumor MRI Image Classification� 231
5.4.5  RSNA Intracranial Hemorrhage Detection� 231

5.5  Federated Learning for Image Classification� 232
5.6  Web-Based Image Classification� 233

5.6.1  Streamlit Image File Classification� 234
5.6.2  Streamlit Webcam Image Classification� 242
5.6.3  Streamlit from GitHub� 248
5.6.4  Streamlit Deployment� 249

5.7  Image Processing� 250
5.7.1  Image Stitching� 250
5.7.2  Image Inpainting� 253
5.7.3  Image Coloring� 255
5.7.4  Image Super Resolution� 256
5.7.5  Gabor Filter� 257

5.8  Summary� 262
5.9  Chapter Review Questions� 263

Chapter 6	 Face Detection and Face Recognition� 265
6.1  Introduction� 265
6.2  Face Detection and Face Landmarks� 266
6.3  Face Recognition� 279

6.3.1  Face Recognition with Face_Recognition� 279
6.3.2  Face Recognition with OpenCV� 285
6.3.3  GUI-Based Face Recognition System� 288

Other GUI Development Libraries� 300
6.3.4  Google FaceNet� 301

6.4  Age, Gender, and Emotion Detection� 301
6.4.1  DeepFace� 302
6.4.2  TCS-HumAIn-2019� 305

6.5  Face Swap� 309
6.5.1  Face_Recognition and OpenCV� 310
6.5.2  Simple_Faceswap� 315
6.5.3  DeepFaceLab� 322

xviii	 Contents

6.6  Face Detection Web Apps� 322
6.7  How to Defeat Face Recognition� 334
6.8  Summary� 335
6.9  Chapter Review Questions� 336

Chapter 7	 Object Detections and Image Segmentations� 337
7.1  Introduction� 337

R-CNN Family� 338
YOLO� 339
SSD� 340

7.2  Object Detections with Pretrained Models� 341
7.2.1  Object Detection with OpenCV� 341
7.2.2  Object Detection with YOLO� 346
7.2.3  Object Detection with OpenCV and Deep Learning� 351
7.2.4  Object Detection with TensorFlow, ImageAI, Mask RNN,

PixelLib, Gluon� 354
TensorFlow Object Detection� 354
ImageAI Object Detection� 355
MaskRCNN Object Detection� 357
Gluon Object Detection� 363

7.2.5  Object Detection with Colab OpenCV� 364
7.3  Object Detections with Custom Trained Models� 369

7.3.1  OpenCV� 369
Step 1� 369
Step 2� 369
Step 3� 369
Step 4� 370
Step 5� 371

7.3.2  YOLO� 372
Step 1� 372
Step 2� 372
Step 3� 373
Step 4� 375
Step 5� 375

7.3.3  TensorFlow, Gluon, and ImageAI� 376
TensorFlow� 376
Gluon� 376
ImageAI� 376

7.4  Object Tracking� 377
7.4.1  Object Size and Distance Detection� 377
7.4.2  Object Tracking with OpenCV� 382

Single Object Tracking with OpenCV� 382
Multiple Object Tracking with OpenCV� 384

7.4.2  Object Tracking with YOLOv4 and DeepSORT� 386
7.4.3  Object Tracking with Gluon� 389

	 Contents	 xix

7.5  Image Segmentation� 389
7.5.1  Image Semantic Segmentation and Image Instance

Segmentation� 390
PexelLib� 390
Detectron2� 394
Gluon CV� 394

7.5.2  K-means Clustering Image Segmentation� 394
7.5.3  Watershed Image Segmentation� 396

7.6  Background Removal� 405
7.6.1  Background Removal with OpenCV� 405
7.6.2  Background Removal with PaddlePaddle� 423
7.6.3  Background Removal with PixelLib� 425

7.7  Depth Estimation� 426
7.7.1  Depth Estimation from a Single Image� 426
7.7.2  Depth Estimation from Stereo Images� 428

7.8  Augmented Reality� 430
7.9  Summary� 431
7.10  Chapter Review Questions� 431

Chapter 8	 Pose Detection� 433
8.1  Introduction� 433
8.2  Hand Gesture Detection� 434

8.2.1  OpenCV� 434
8.2.2  TensorFlow.js� 452

8.3  Sign Language Detection� 453
8.4  Body Pose Detection� 454

8.4.1  OpenPose� 454
8.4.2  OpenCV� 455
8.4.3  Gluon� 455
8.4.4  PoseNet� 456
8.4.5  ML5JS� 457
8.4.6  MediaPipe� 459

8.5  Human Activity Recognition� 461
ActionAI� 461
Gluon Action Detection� 461
Accelerometer Data HAR� 461

8.6  Summary� 464
8.7  Chapter Review Questions� 464

Chapter 9	 GAN and Neural-Style Transfer� 465
9.1  Introduction� 465
9.2  Generative Adversarial Network� 466

9.2.1  CycleGAN� 467
9.2.2  StyleGAN� 469
9.2.3  Pix2Pix� 474
9.2.4  PULSE� 475
9.2.5  Image Super-Resolution� 475
9.2.6  2D to 3D� 478

xx	 Contents

9.3  Neural-Style Transfer� 479
9.4  Adversarial Machine Learning� 484
9.5  Music Generation� 486
9.6  Summary� 489
9.7  Chapter Review Questions� 489

Chapter 10	 Natural Language Processing� 491
10.1  Introduction� 491

10.1.1  Natural Language Toolkit� 492
10.1.2  spaCy� 493
10.1.3  Gensim� 493
10.1.4  TextBlob� 494

10.2  Text Summarization� 494
10.3  Text Sentiment Analysis� 508
10.4  Text/Poem Generation� 510

10.5.1  Text to Speech� 515
10.5.2  Speech to Text� 517

10.6  Machine Translation� 522
10.7  Optical Character Recognition� 523
10.8  QR Code� 524
10.9  PDF and DOCX Files� 527
10.10  Chatbots and Question Answering� 530

10.10.1  ChatterBot� 530
10.10.2  Transformers� 532
10.10.3  J.A.R.V.I.S.� 534
10.10.4  Chatbot Resources and Examples� 540

10.11  Summary� 541
10.12  Chapter Review Questions� 542

Chapter 11	 Data Analysis� 543
11.1  Introduction� 543
11.2  Regression� 544

11.2.1  Linear Regression� 545
11.2.2  Support Vector Regression� 547
11.2.3  Partial Least Squares Regression� 554

11.3  Time-Series Analysis� 563
11.3.1  Stock Price Data� 563
11.3.2  Stock Price Prediction� 565

Streamlit Stock Price Web App� 569
11.3.4  Seasonal Trend Analysis� 573
11.3.5  Sound Analysis� 576

11.4  Predictive Maintenance Analysis� 580
11.5  Anomaly Detection and Fraud Detection� 584

11.5.1  Numenta Anomaly Detection� 584
11.5.2  Textile Defect Detection� 584
11.5.3  Healthcare Fraud Detection� 584
11.5.4  Santander Customer Transaction Prediction� 584

	 Contents	 xxi

11.6  COVID-19 Data Visualization and Analysis� 585
11.7  KerasClassifier and KerasRegressor� 588

11.7.1  KerasClassifier� 589
11.7.2  KerasRegressor� 593

11.8  SQL and NoSQL Databases� 599
11.9  Immutable Database� 608

11.9.1  Immudb� 608
11.9.2  Amazon Quantum Ledger Database� 609

11.10  Summary� 610
11.11  Chapter Review Questions� 610

Chapter 12	 Advanced AI Computing� 613
12.1  Introduction� 613
12.2  AI with Graphics Processing Unit� 614
12.3  AI with Tensor Processing Unit� 618
12.4  AI with Intelligence Processing Unit� 621
12.5  AI with Cloud Computing� 622

12.5.1  Amazon AWS� 623
12.5.2  Microsoft Azure� 624
12.5.3  Google Cloud Platform� 625
12.5.4  Comparison of AWS, Azure, and GCP� 625

12.6  Web-Based AI� 629
12.6.1  Django� 629
12.6.2  Flask� 629
12.6.3  Streamlit� 634
12.6.4  Other Libraries� 634

12.7  Packaging the Code� 635
Pyinstaller� 635
Nbconvert� 635
Py2Exe� 636
Py2app� 636
Auto-Py-To-Exe� 636
cx_Freeze� 637
Cython� 638
Kubernetes� 639
Docker� 642
PIP� 647

12.8  AI with Edge Computing� 647
12.8.1  Google Coral� 647
12.8.2  TinyML� 648
12.8.3  Raspberry Pi� 649

12.9  Create a Mobile AI App� 651
12.10  Quantum AI� 653
12.11  Summary� 657
12.12  Chapter Review Questions� 657

Index� 659

xxii	 Contents

This book is accompanied by bonus content! The following extra elements
can be downloaded from www.wiley.com/go/aiwithpython:

■■ MATLAB for AI Cheat Sheets

■■ Python for AI Cheat Sheets

■■ Python Deep Learning Cheat Sheet

■■ Python Virtual Environment

■■ Jupyter Notebook, Google Colab, and Kaggle

xxiii

Preface

The year 2020 was a year of turmoil, conflicts, and division. The most significant
event was no doubt the COVID-19 pandemic, which was, and still is, raging
in more than 200 countries and affecting the lives of hundreds of millions of
people. I spent a good part of the year working from home. There are many
disadvantages of remote working; however, it does have at least one advantage:
it saved me at least two hours a day traveling to and from work. This gave me
more time to think about, to plan, and to propose this book.

I am absolutely fascinated with artificial intelligence, and I have read many
artificial intelligence books. But most of the books are heavily focused on the
mathematics of artificial intelligence, which makes them difficult to understand
for people without mathematics or computer science backgrounds. I have
always wanted to write a book that could make it easier to get into the artificial
intelligence field for beginners—people from all different disciplines. Thanks
to the countless researchers and developers around the world and their open
source code, particularly Python-based open source code, it is much easier to
use artificial intelligence now than 10 years ago. Through this book, you will
find that you can do amazing things with just a few lines of code, and in some
cases, you don’t need to code at all.

I am a big fan of open source, and for a research field as controversial as
artificial intelligence, it is better for everyone to work together. So, I want to
express my ultimate gratitude to those who made their work available for
the benefit of others.

We are living in an era of digital revolutions and digital technologies such
as artificial intelligence, the Internet of Things, Industry 4.0, 5G technologies,
digital twin, cybersecurity, big data, cloud computing, blockchains, and, on the
horizon, quantum computing. They are all being developed at a breathtaking

xxiv	 Preface

speed. In the future, the Internet of Things will provide a means to connect all
things around us and to use sensors to collect data. The industry version of the
Internet of Things is called Industry 4.0, which will connect all sorts of things for
manufacturers. Digital twin is a digital representation of a process, product, or
service updated from real-time data. With digital twin, we can predict problems
before they even occur, prevent downtime, develop new opportunities for the
future through simulations. 5G technologies will provide a means for fast and
low-latency communications for the data. Cybersecurity will provide a means
to protect the data. Big data will provide a means to analyze the data in large
quantity. Cloud computing will provide the storage, display, and analysis of
the data remotely, in the cloud. Blockchains will provide traceability to the data
through distributed ledgers. Quantum computing will make some of the com-
putation faster, in fact, many orders of magnitude faster. Artificial intelligence
will be right at the heart of all the technologies, which allows us to analyze the
data intelligently. As you can see, all these digital technologies are going to
become intertwined to make us work better and live smarter.

That is why I have always said to my students, you can change your future.
Your future is in your hands. The key is learning, even after graduation.
Learning is a lifelong mission. In today’s ever-evolving world, with all the
quickly developing digital technologies, you need to constantly reinvent your-
self; you will need to learn everything and learn anything. The disadvantage
of fast-changing technologies is that you will need to learn all the time, but
the advantage is no one has any more advantages than you; you are on the
same starting line as everyone else. The rest is up to you!

I believe artificial intelligence will be just a tool for everyone in the future,
just like software coding is today. Artificial intelligence will no doubt affect
every aspect of our lives and will fundamentally change the way we live, how
we work, and how we socialize. The more you know about artificial intelli-
gence and the more involved you are in artificial intelligence, the better you
can transform your life.

Many successful people are lifelong learners. American entrepreneur and
business magnate Elon Musk is a classic example. As the world’s richest man,
he learned many things by himself, from computer programming, Internet,
finance, to building cars and rockets. British comedian Lee Evans once said
that by the end of the day, if you have learned something new, then it is a good
day. I hope you will have a good day every day and enjoy reading this book!

Professor Perry Xiao

July 2021, London

	 Preface	 xxv

Why Buy This Book

Artificial intelligence (AI) is no doubt one of the hottest buzzwords at the
moment. AI has penetrated into many aspects of our lives. Knowing AI and
being able to use AI will bring enormous benefits to our work and lives.
However, learning AI is a daunting task for many people, largely due to the
complex mathematics and sophisticated coding behind it. This book aims to
demystify AI and teach readers about AI from scratch, by using plain language
and simple, illustrative code examples. It is divided into three parts.

In Part I, the book gives an easy-to-read introduction about AI, including
the history, the types of AI, the current status, and the possible future trends.
It then introduces AI development tools and Python, the most widely used
programming language for AI.

In Part II, the book introduces the machine learning and deep learning
aspects of AI. Machine learning topics include classifications, regressions,
and clustering. It also includes the most popular reinforcement learning.
Deep learning topics include convolutional neural networks (CNNs) and long
short-term memory networks (LSTMs).

In Part III, the book introduces AI case studies; topics include image
classifications, transfer learning, recurrent neural networks, and the latest
generative adversarial networks. It also includes the state of the art of GPUs,
TPUs, cloud computing, and edge computing. This book is packed with inter-
esting and exciting examples such as pattern recognitions, image classifications,
face recognition (most controversial), age and gender detection, voice/speech
recognition, chatbot, natural language processing, translation, sentiment anal-
ysis, predictive maintenance, finance and stock price analysis, sales prediction,
customer segmentation, biomedical data analysis, and much more.

How This Book Is Organized

This book is divided into three parts. Part I introduces AI. Part II covers
machine learning and deep learning. Part III covers the case studies, or the
AI application projects. R&D developers as well as students will be inter-
ested in Part III.

Part I

Chapter 1: Introduction to AI

Chapter 2: AI Development Tools

xxvi	 Preface

Part II

Chapter 3: Machine Learning

Chapter 4: Deep Learning

Part III

Chapter 5: Image Classifications

Chapter 6: Face Detection and Recognition

Chapter 7: Object Detections and Image Segmentations

Chapter 8: Pose Detection

Chapter 9: GAN and Neural-Style Transfer

Chapter 10: Natural Language Processing

Chapter 11: Data Analysis

Chapter 12: Advanced AI Computing

Example Code

All the example source code is available on the website that accompanies this
book.

Who This Book Is For

This book is intended for university/college students, as well as software and
electronic hobbyists, researchers, developers, and R&D engineers. It assumes
readers understand the basic concepts of computers and their main components
such as CPUs, RAM, hard drives, network interfaces, and so forth. Readers
should be able to use a computer competently, for example, can switch on and
off the computer, log in and log out, run some programs, copy/move/delete
files, and use terminal software such as Microsoft Windows command prompt.

It also assumes that readers have some basic programming experience,
ideally in Python, but it could also be in other languages such as Java, C/C++,
Fortran, MATLAB, C#, BASIC, R, and so on. Readers should know the basic syntax,
the different types of variables, standard inputs and outputs, the conditional
selections, and the loops and subroutines.

Finally, it assumes readers have a basic understanding of computer networks
and the Internet and are familiar with some of the most commonly used Inter-
net services such as the Web, email, file download/upload, online banking/
shopping, etc.

This book can be used as a core textbook as well as for background reading.

	 Preface	 xxvii

What This Book Is Not For

This book is not for readers to purely learn the Python programming language;
there are already a lot of good Python programming books on the market. How-
ever, to appeal to a wider audience, Chapter 2 provides a basic introduction to
Python and how to get started with Python programming, so even if you have
never programmed Python before, you can still use the book.

If you want to learn all the technical details of Python, please refer to the
following suggested prerequisite reading list and resources.

Suggested Prerequisite Readings

Computer Basics

Absolute Beginner’s Guide to Computer Basics (Absolute Beginner’s Guides
(Que)), 5th Edition, Michael Miller, QUE, 1 Sept. 2009.

ISBN-10: 0789742535

ISBN-13: 978-0789742537

Computers for Beginners (Wikibooks)
https://en.wikibooks.org/wiki/Computers_for_Beginners

Python Programming

Python Crash Course (2nd Edition): A Hands-On, Project-Based Introduc-
tion to Programming, Eric Matthes, No Starch Press, 9 May 2019.

ISBN-10 : 1593279280

ISBN-13 : 978-1593279288

Learn Python 3 the Hard Way: A Very Simple Introduction to the Terri-
fyingly Beautiful World of Computers and Code, 3rd Edition, Zed A.
Shaw, Addison-Wesley Professional; 10 Oct. 2013.

ISBN-10 : 0321884914

ISBN-13 : 978-0321884916

Head First Python 2e: A Brain-Friendly Guide, 2nd Edition, Paul Barry,
O′Reilly; 16 Dec. 2016.

ISBN-10 : 1491919531

ISBN-13 : 978-1491919538

Think Python: How to Think Like a Computer Scientist, 2nd Edition, Allen
B. Downey, O’Reilly, 25 Dec. 2015.

ISBN-10 : 1491939362

ISBN-13 : 978-1491939369

https://en.wikibooks.org/wiki/Computers_for_Beginners

xxviii	 Preface

Python Pocket Reference: Python in Your Pocket, 5th edition, Mark Lutz,
O’Reilly Media, 9 Feb. 2014.

ISBN-10 : 1449357016

ISBN-13 : 978-1449357016

A Beginner’s Python Tutorial (Wikibooks)
https://en.wikibooks.org/wiki/A_Beginner%27s_Python_Tutorial

Python Programming (Wikibooks)
https://en.wikibooks.org/wiki/Python_Programming

Suggested Readings to Accompany the Book
Introduction to Machine Learning with Python: A Guide for Data Scien-

tists, Sarah Guido, O’Reilly Media; 25 May 2016.

ISBN-10 : 1449369413

ISBN-13 : 978-1449369415

Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd
Edition, Aurelien Geron, OReilly, 14 Oct. 2019.

ISBN-10 : 1492032646

ISBN-13 : 978-1492032649

Deep Learning with Python, Francois Chollet, Manning Publications,
30 Nov. 2017.

ISBN-10 : 9781617294433

ISBN-13 : 978-1617294433

Deep Learning (Adaptive Computation and Machine Learning Series),
Illustrated edition, Ian Goodfellow, MIT Press, 3 Jan. 2017

ISBN-10 : 0262035618

ISBN-13 : 978-0262035613

Python Machine Learning: Machine Learning and Deep Learning with
Python, scikit-learn, and TensorFlow 2, 3rd Edition, Sebastian Raschka,
Vahid Mirjalili, Packt Publishing, 12 Dec. 2019.

ISBN-10 : 1789955750

ISBN-13 : 978-1789955750

Machine Learning Yearning (Andrew Ng’s free ebook)
https://www.deeplearning.ai/machine-learning-yearning/

Dive into Deep Learning (Free ebook)
https://d2l.ai/

https://en.wikibooks.org/wiki/A_Beginner's_Python_Tutorial
https://en.wikibooks.org/wiki/Python_Programming
https://www.deeplearning.ai/machine-learning-yearning/
https://d2l.ai/

	 Preface	 xxix

What You Need

In this book, you will need the following:

■■ A standard personal computer with a minimum 250 GB hard drive, 8 GB
RAM, and Intel or AMD 2 GHz processor, running a Windows operating
system (Vista/7/8/10, Internet Explorer 9 and above, or the latest Edge
browser, or Google Chrome) or a Linux operating system (such as Ubuntu
Linux 16.04 (or newer) and so on). You can also use a Mac (with Mac OS
X 10.13 and later, administrator privileges for installation, 64-bit browser).

■■ Python software

https://www.python.org/downloads/

■■ Text editors and Python IDEs (see Chapter 2)

■■ Raspberry Pi (optional)

https://www.raspberrypi.org/

■■ Arduino NANO 33 BLE Sense (optional)

https://www.arduino.cc/en/Guide/NANO33BLESense

This book is accompanied by bonus content! The following extra
elements can be downloaded from www.wiley.com/go/aiwithpython:

■■ MATLAB for AI Cheat Sheets

■■ Python for AI Cheat Sheets

■■ Python Deep Learning Cheat Sheet

■■ Python Virtual Environment

■■ Jupyter Notebook, Google Colab, and Kaggle

https://www.python.org/downloads/
https://www.raspberrypi.org/
https://www.arduino.cc/en/Guide/NANO33BLESense
https://www.arduino.cc/en/Guide/NANO33BLESense
www.wiley.com/go/aiwithpython

Artificial Intelligence
Programming with Python®

Introduction

In This Part:

Chapter 1: Introduction to AI
Chapter 2: AI Development Tools

Part I gives a bird’s-eye overview of artificial intelligence (AI) and AI development
resources.

Par t

I

C H A P T E R

3

1

1.1  What Is AI?

Artificial intelligence (AI) is no doubt one of the hottest buzzwords right now.
It is in the news all the time. So, what is AI, and why is it important? When you
talk about AI, the image that probably pops into most people’s heads is of a
human-like robot that can do complicated, clever things, as shown in Figure 1.1.
AI is actually more than that.

AI is an area of computer science that aims to make machines do intelligent
things, that is, learn and solve problems, similar to the natural intelligence of
humans and animals. In AI, an intelligent agent receives information from the
environment, performs computations to decide what action to take in order to
achieve the goal, and takes actions autonomously. AI can improve its performance
with learning.

Introduction to AI
“There is no reason and no way that a human mind can keep up

with an artificial intelligence machine by 2035.”
—Gray Scott (American futurist)

1.1	 What Is AI?
1.2	 The History of AI
1.3	 AI Hypes and AI Winters
1.4	 The Types of AI
1.5	 Edge AI and Cloud AI
1.6	 Key Moments of AI
1.7	 The State of AI
1.8	 AI Resources
1.9	 Summary
1.10 Chapter Review Questions

4	 Part I ■ Introduction

For more information, see the John McCarthy’s 2004 paper titled, “What Is
Artificial Intelligence?”

https://homes.di.unimi.it/borghese/Teaching/AdvancedIntelligent

Systems/Old/IntelligentSystems_2008_2009/Old/IntelligentSystems_

2005_2006/Documents/Symbolic/04_McCarthy_whatisai.pdf

You may not be aware that AI has already been widely used in many aspects of
our lives. Personal assistants such as Amazon’s Alexa, iPhone’s Siri, Microsoft’s
Cortana, and Google Assistant all rely on AI to understand what you have said
and follow the instructions to perform tasks accordingly.

Online entertainment services such as Spotify and Netflix also rely on AI
to figure out what you might like and recommend songs and movies. Other
services such as Google, Facebook, Amazon, and eBay analyze your online
activities to deliver targeted advertisements. My wife once searched Arduino
boards at work during the day, and in the evening, after she got home, no matter
which websites she visited, ads for Arduino boards kept popping up!

Have you ever used the SwiftKey program on your phone or Grammarly on
your computer? They are also AI.

AI has also been used in healthcare, manufactoring, driverless cars, finance,
agriculture, and more. In a recent study, researchers from Google Health and
Imperial College London developed an algorithm that outperformed six human

Figure 1.1: The common perception of AI
(Source: https://commons.wikimedia.org/wiki/File:Artificial_
Intelligence_%26_AI_%26_Machine_Learning_-_30212411048.jpg)

https://homes.di.unimi.it/borghese/Teaching/AdvancedIntelligentSystems/Old/IntelligentSystems_2008_2009/Old/IntelligentSystems_2005_2006/Documents/Symbolic/04_McCarthy_whatisai.pdf
https://homes.di.unimi.it/borghese/Teaching/AdvancedIntelligentSystems/Old/IntelligentSystems_2008_2009/Old/IntelligentSystems_2005_2006/Documents/Symbolic/04_McCarthy_whatisai.pdf
https://homes.di.unimi.it/borghese/Teaching/AdvancedIntelligentSystems/Old/IntelligentSystems_2008_2009/Old/IntelligentSystems_2005_2006/Documents/Symbolic/04_McCarthy_whatisai.pdf
https://commons.wikimedia.org/wiki/File:Artificial_Intelligence_&_AI_&_Machine_Learning_-_30212411048.jpg
https://commons.wikimedia.org/wiki/File:Artificial_Intelligence_&_AI_&_Machine_Learning_-_30212411048.jpg

	 Chapter 1 ■ Introduction to AI	 5

radiologists in reading mammograms for breast cancer detection. Groupe Renault
is collaborating with Google Cloud to combine its AI and machine learning
capabilities with automotive industry expertise to increase efficiency, improve
production quality, and reduce the carbon footprint. Driverless cars use AI to
identify the roads, the pedestrians, and the traffic signs. The finance industry uses
AI to detect fraud and predict future growth. Agriculture is also turning to AI for
healthier crops, pest control, soil and growing conditions monitoring, and so on.

AI can affect our jobs. According to the BBC, 35 percent of today’s jobs will
disappear in the next 20 years. You can use the following BBC website to find
out how safe your workplace is:

https://www.bbc.co.uk/news/technology-34066941

1.2  The History of AI

AI can be traced back to the 1940s, during World War II, when Alan Turing,
a British mathematician and computer scientist, developed a code-breaking
machine called bombe in Bletchley Park, United Kingdom, that deciphered
German Enigma–encrypted messages (see Figure 1.2). The Hollywood movie
The Imitation Game (2014) has vividly captured this period of history. Turing’s
work helped the Allies to defeat the Nazis and is estimated to have shortened
the war by more than two years and saved more than 14 million lives.

In October 1950, while working at the University of Manchester, Turing pub-
lished a paper entitled “Computing Machinery and Intelligence” in the journal
Mind (Oxford University Press). In this paper, he proposed an experiment that
became known as the famous Turing test. The Turing test is often described as
a three-person game called the imitation game, as illustrated in Figure 1.3, in
which player C, the interrogator, tries to determine which player—A or B—is a

Figure 1.2: The bombe machine (left) and the Enigma machine (right)
(Source: https://en.wikipedia.org/wiki/Cryptanalysis_of_the_Enigma)

https://www.bbc.co.uk/news/technology-34066941
https://en.wikipedia.org/wiki/Cryptanalysis_of_the_Enigma

6	 Part I ■ Introduction

computer and which is a human. The interrogator is limited to using the responses
to written questions to make the determination. The Turing test has since been
used to test a machine’s intelligence to see if it is equivalent to a human. To
date, no computer has passed the Turing test.

AI as a research discipline was established at a workshop at Dartmouth
College in 1956, organized by John McCarthy, a young assistant professor of
mathematics at the college (http://raysolomonoff.com/dartmouth/). The
workshop lasted about six to eight weeks, and it was essentially an extended
brainstorming session. There were about 11 mathematician attendees such as
Marvin Minsky, Allen Newell, Arthur Samuel, and Herbert Simon. They were
widely recognized as the founding fathers of AI. John McCarthy chose the term
artificial intelligence for the new research field.

The history of AI can be divided into three stages, as illustrated in Figure 1.4.

■■ 1950s–1970s, neural networks (NNs): During this period, neural networks,
also called artificial neural networks (ANNs), were developed based on
human brains that mimic the human biological neural networks. An NN
usually has three layers: an input layer, a hidden layer, and an output
layer. To use an NN, you need to train the NN with a large amount of
given data. After training, the NN can then be used to predict results for
unseen data. NNs attracted a lot of attention during this period. After the
1970s, when NNs failed to live up to their promises, known as AI hype,
funding and research activities were dramatically cut. This was called an
AI winter.

■■ 1980s–2010s, machine learning (ML): This is the period when machine
learning flourished. ML is a subset of AI and consists of a set of mathematical

Figure 1.3: The famous Turing test, also called the imitation game. Player C, the interrogator, is
trying to determine which player—A or B—is a computer and which is a human.

http://raysolomonoff.com/dartmouth/

	 Chapter 1 ■ Introduction to AI	 7

algorithms that can automatically analyze data. Classic ML can be divided
into supervised learning and unsupervised learning. Supervised learning
examples include speech recognition and image recognition. Unsupervised
learning examples include customer segmentation, defect detection, and
fraud detection. Classic ML algorithms are support vector machine (SVM),
K-means clustering, decision tree, naïve Bayes, and so on.

■■ 2010s–present, deep learning (DL): This is the period when deep learning
(DL) was developed. DL is a special type of neural network that has more
than one layer of hidden layers. This is possible only with the increase of
computing power, especially graphical processing units (GPUs), and
improved algorithms. DL is a subset of ML. DL has so far outperformed
many other algorithms on a large dataset. But is DL hype or reality? That
remains to be seen.

AI is often confused with data science, big data, and data mining. Figure 1.5
shows the relationships between AI, machine learning, deep learning, data sci-
ence, and mathematics. Both mathematics and data science are related to AI but
are different from AI. Data science mainly focuses on data, which includes big
data and data mining. Data science can use machine learning and deep learning
when processing the data.

Figure 1.4: The history of AI at the NVidia website
(Source: https://developer.nvidia.com/deep-learning)

https://developer.nvidia.com/deep-learning

8	 Part I ■ Introduction

Figure 1.6 shows an interesting website that explains the lifecycle of data
science. It includes business understanding, data mining, data cleaning, data
exploration, feature engineering, predictive modeling, and data visualization.

Figure 1.5: The relationships between AI, machine learning, deep learning, data science, and
mathematics

Figure 1.6: The lifecycle of data science
(Source: http://sudeep.co/data-science/Understanding-the-Data-Science-
Lifecycle/)

http://sudeep.co/data-science/Understanding-the-Data-Science-Lifecycle/
http://sudeep.co/data-science/Understanding-the-Data-Science-Lifecycle/

	 Chapter 1 ■ Introduction to AI	 9

In summary:

■■ AI means enabling a machine to do intelligent things to mimic humans.
The two important aspects of AI are machine learning and deep learning.

■■ Machine learning is a subset of AI and consists of algorithms that can
automate data analysis.

■■ Deep learning is a subset of machine learning. It is a neural network with
more than one hidden layer.

1.3  AI Hypes and AI Winters

Like many other technologies, AI has AI hypes, as shown in Figure 1.7. An AI
hype can be divided into several stages. In the first stage (1950s–1970s), called
Technology Trigger, AI developed quickly, with increased funding, research
activities, enthusiasm, optimism, and high expectations. In the second stage
(1970s), AI reached the peak, called the Peak of Inflated Expectations. After the
peak, in the third stage (1970s–1980s), when AI failed to deliver on its prom-
ises, AI reached the bottom, called the Trough of Disillusionment. This is the
point at which an AI winter occurred. After the trough, AI slowly recovered;
this is the fourth stage (1980s–present), which we are in now, called the Slop of
Enlightenment. Finally, AI will reach the fifth stage, the Plateau of Productivity,
where AI development becomes more stable.

Figure 1.7: The technology hype cycle
(Source: https://en.wikipedia.org/wiki/Hype_cycle)

https://en.wikipedia.org/wiki/Hype_cycle

10	 Part I ■ Introduction

AI winter refers to a period of time during which public interest and research
activities in artificial intelligence are significantly reduced. There have been two
AI winters in history, one in the late 1970s and one in the late 1980s.

From the 1950s to the 1970s, artificial neural networks attracted a lot of attention.
But since the late 1960s, after many disappointments and criticisms, funding
and research activities were significantly reduced; this was the first AI winter.
A famous case was the failure of machine translation in 1966. After spending
$20 million to fund a research project, the National Research Council (NRC)
concluded that machine translation was more expensive, less accurate, and
slower than human translation, so the NRC ended all support. The careers of
many people were destroyed, and the research ended.

In 1973, British Parliament commissioned Professor Sir James Lighthill to
assess the state of AI research in the United Kingdom. His report, the famous
Lighthill Report, criticized the utter failure of AI and concluded that nothing
done in AI couldn’t be done in other sciences. The report also pointed out that
many of AI’s most successful algorithms would not work on real-world problems.
The report was contested in a debate that aired on the BBC series Controversy
in 1973, pitting Lighthill against the team of Donald Michie, John McCarthy,
and Richard Gregory. The Lighthill report virtually led to the dismantling of
AI research in England in the 1970s.

In the 1980s, a form of AI program called the expert system became popular
around the world. The first commercial expert system was developed at Carn-
egie Mellon for Digital Equipment Corporation. It was an enormous success
and saved the company millions of dollars. Companies around the world began
to develop and deploy their own expert systems. However, by the early 1990s,
most commercial expert system companies had failed.

Another example is the Fifth Generation project. In 1981, the Japanese Ministry
of International Trade and Industry invested $850 million for the Fifth Gener-
ation computer project to build machines that could carry on conversations,
translate languages, interpret pictures, and reason like humans. By 1991, the
project was discontinued, because the goals penned in 1981 had not been met.
This is a classic example of expectations being much higher than what an AI
project was actually capable of.

At the time of writing this book, in 2020, deep learning is developing at a fast
speed, attracting lots of activities and funding, with exciting developments every
day. Is deep learning a hype? When will deep learning peak, and will there be
a deep learning winter? Those are billion-dollar questions.

	 Chapter 1 ■ Introduction to AI	 11

1.4  The Types of AI

According to many resources, AI can be divided into three categories.

■■ Narrow AI, also called weak AI or artificial narrow intelligence (ANI), refers
to the AI that is used to solve a specific problem. Almost all AI applica-
tions we have today are narrow AI. For example, image classification,
object detection, speech recognition (such as Amazon’s Alexa, iPhone’s
Siri, Microsoft’s Cortana, and Google Assistant), translation, natural lan-
guage processing, weather forecasting, targeted advertisements, sales
predictions, email spam detection, fraud detection, face recognition, and
computer vision are all narrow AI.

■■ General AI, also called strong AI or artificial general intelligence (AGI), refers
to the AI that is for solving general problems. It is more like a human
being, which is able to learn, think, invent, and solve more complicated
problems. The singularity, also called technological singularity, is when AI
overtakes human intelligence, as illustrated in Figure 1.8. According to
Google’s Ray Kurzweil, an American author, inventor, and futurist, AI
will pass the Turing test in 2029 and reach the singularity point in 2045.
Narrow AI is what we have achieved so far, and general AI is what we
expect in the future.

■■ Super AI, also called superintelligence, refers to the AI after the singularity
point. Nobody knows what will happen with super AI. One vision is
human and machine integration through a brain chip interface. In August
2020, Elon Musk, the most famous American innovative entrepreneur,
has already demonstrated a pig with a chip in its brain. While some people
are more pessimistic about the future of AI, others are more optimistic.
We cannot predict the future, but we can prepare for it.

Figure 1.8: The human intelligence and technological singularity

12	 Part I ■ Introduction

For more details about the types of AI, see the following resources:

https://azure.microsoft.com/en-gb/overview/what-is-artificial-

intelligence/

https://www.ubs.com/microsites/artificial-intelligence/en/new-

dawn.html

https://doi.org/10.1016/B978-0-12-817024-3.00008-8

This book will mainly cover the machine learning and deep learning aspects
of AI, which belong to narrow AI or weak AI.

1.5  Edge AI and Cloud AI

AI applications can be run either on the large remote servers, called cloud AI,
or on the local machines, called edge AI. The advantages of cloud AI are that
you don’t need to purchase expensive hardware; you can upload large training
datasets and fully utilize the vast computing power provided by the cloud. The
disadvantages are that it might require more bandwidth and have higher latency
and security issues. The top three cloud AI service providers are as follows:

Amazon AWS Machine Learning  AWS has the largest market share and
the longest history and provides more cloud services than anyone else.
But it is also the most expensive.

https://aws.amazon.com/machine-learning/

Microsoft Azure  Azure has the second largest market share and also pro-
vides many services. Azure can be easily integrated with Windows and
many other software applications, such as .NET.

https://azure.microsoft.com/

Google Cloud Platform  Google is relatively new and has fewer different
services and features than AWS and Azure. But Google Cloud Platform
has attractive, “customer-friendly” pricing and is expanding rapidly.

https://cloud.google.com/

Other cloud AI service providers include the following:

■■ IBM Cloud: https://www.ibm.com/cloud

■■ Alibaba Cloud: https://www.alibabacloud.com/

■■ Baidu Cloud: https://cloud.baidu.com/

Figure 1.9 is an interesting website that compares AWS and Azure and Google
Cloud and shows the magic quadrant of the cloud platforms.

https://azure.microsoft.com/en-gb/overview/what-is-artificial-intelligence/
https://azure.microsoft.com/en-gb/overview/what-is-artificial-intelligence/
https://www.ubs.com/microsites/artificial-intelligence/en/new-dawn.html
https://www.ubs.com/microsites/artificial-intelligence/en/new-dawn.html
https://doi.org/10.1016/B978-0-12-817024-3.00008-8
https://aws.amazon.com/machine-learning/
https://azure.microsoft.com/
https://cloud.google.com/
https://www.ibm.com/cloud
https://www.alibabacloud.com/
https://cloud.baidu.com/

	 Chapter 1 ■ Introduction to AI	 13

The advantages of edge AI are low latency, that it can work without an Internet
connection, and that it is real time and secure. The disadvantages of Edge AI
are that you need purchase your own hardware, and it has limited computation
power. Edge devices may have a power consumption constraint, as they are
usually battery powered. The following are the most popular edge AI devices:

■■ Microcontroller-based AI: https://www.arduino.cc/en/Guide/
NANO33BLESense

■■ Raspberry Pi–based AI: https://magpi.raspberrypi.org/articles/
learn-artificial-intelligence-with-raspberry-pi

■■ Google Edge TPU TensorFlow Processing Unit: https://cloud.google
.com/edge-tpu

■■ NVidia Jetson GPU–based AI: https://developer.nvidia.com/
embedded-computing

■■ Intel and Xilinx–based AI: https://www.intel.co.uk/content/www/uk/
en/products/docs/storage/programmable/applications/machine-

learning.html and https://www.xilinx.com/applications/industrial/
analytics-machine-learning.html

Figure 1.9: The magic quadrant of cloud platforms
(Source: https://www.datamation.com/cloud-computing/aws-vs-azure-vs-
google-cloud-comparison.html)

https://www.arduino.cc/en/Guide/NANO33BLESense
https://www.arduino.cc/en/Guide/NANO33BLESense
https://magpi.raspberrypi.org/articles/learn-artificial-intelligence-with-raspberry-pi
https://magpi.raspberrypi.org/articles/learn-artificial-intelligence-with-raspberry-pi
https://cloud.google.com/edge-tpu
https://cloud.google.com/edge-tpu
https://developer.nvidia.com/embedded-computing
https://developer.nvidia.com/embedded-computing
https://www.intel.co.uk/content/www/uk/en/products/docs/storage/programmable/applications/machine-learning.html
https://www.intel.co.uk/content/www/uk/en/products/docs/storage/programmable/applications/machine-learning.html
https://www.intel.co.uk/content/www/uk/en/products/docs/storage/programmable/applications/machine-learning.html
https://www.xilinx.com/applications/industrial/analytics-machine-learning.html
https://www.xilinx.com/applications/industrial/analytics-machine-learning.html
https://www.datamation.com/cloud-computing/aws-vs-azure-vs-google-cloud-comparison.html
https://www.datamation.com/cloud-computing/aws-vs-azure-vs-google-cloud-comparison.html

14	 Part I ■ Introduction

■■ BeagleBone AI: https://beagleboard.org/ai

■■ 96Boards AI: https://www.96boards.ai/

■■ Baidu Edgeboard: https://ai.baidu.com/tech/hardware/deepkit

You will learn more details about edge AI and cloud AI in Chapter 12.

1.6  Key Moments of AI

Since Alan Turing introduced the famous Turing test, or the imitation game,
there have been several key moments in AI development. Here is a list of them:

■■ Alan Turing proposed the imitation game (1950).

■■ Dartmouth held an AI workshop (1956).

■■ Frank Rosenblatt built the Perceptron (1957).

■■ The first AI winter (1970s).

■■ The second AI winter (1987).

■■ IBM’s Deep Blue beats Kasparov (1997).

■■ Geoffrey Hinton unleashed deep learning networks (2012).

■■ AlphaGo defeated a human Go champion (2016).

■■ OpenAI released GPT-3 (2020).

■■ AlphaFold predicted protein folding (2020).

As listed, in 1997, the IBM Deep Blue computer beat the world chess cham-
pion, Garry Kasparov, in a six-game thriller. The match lasted several days, with
two wins for IBM, one for Garry Kasparov, and three draws. The match received
massive media coverage around the world. Although branded as “artificial
intelligence,” IBM Deep Blue actually played through “brute force,” that is,
calculating all the possible moves. Deep Blue, with its capability of evaluating
200 million positions per second, was the first and fastest computer to face a
world chess champion (https://www.ibm.com/ibm/history/ibm100/us/en/
icons/deepblue/).

In January 2011, IBM Watson competed against Ken Jennings and Brad Rut-
ter, two of the most successful contestants on Jeopardy!, a popular American
show. A practice match and the two official matches were recorded on January
13–15, 2011. In the end, IBM Watson won the first prize of $1 million, Jennings
won the second place of $300,000, and Rutter won the third place of $200,000.
IBM donated 50 percent of the winnings to the World Vision charity and 50
percent to the World Community Grid charity (https://en.wikipedia.org/
wiki/Watson_(computer)).

https://beagleboard.org/ai
https://www.96boards.ai/
https://ai.baidu.com/tech/hardware/deepkit
https://www.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/
https://www.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/
https://en.wikipedia.org/wiki/Watson_(computer)
https://en.wikipedia.org/wiki/Watson_(computer)

	 Chapter 1 ■ Introduction to AI	 15

In September 2012, a convolutional neural network (CNN) called AlexNet,
developed by Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, won the
ImageNet Large Scale Visual Recognition Challenge. This inspired a worldwide
research interest in deep learning that is still strong today. The AlexNet paper
has been cited more than 70,000 times.

In March 2016, AlphaGo of Google DeepMind competed against Lee Sedol of
South Korea, the world champion Go player. Sedol has won 18 world titles and
is widely considered the greatest player of that time. AlphaGo defeated Sedol
in a convincing 4–1 victory in Seoul, South Korea. The matches were broadcast
live and were watched by more than 200 million people worldwide. This land-
mark of AI achievement was a decade ahead of its predictions.

Go is a popular board game that originated in China more than 3,000 years
ago (see Figure 1.10). In a Go game, two players take turns placing their stones
on a board, with one player using black stones and the other using white stones.
The player with black stones always starts the game. The goal of the game is to
surround and capture the opponent’s stones and occupy as many territories as
possible. The player with the larger territory wins.

Figure 1.10: The traditional Go board game
(Source: https://en.wikipedia.org/wiki/Go_(game))

https://en.wikipedia.org/wiki/Go_(game)

16	 Part I ■ Introduction

The Go board has 19×19 grids, where each grid can be a black or white stone.
This gives 2261 (about 10 to the power of 170) possibilities. That is enormously
complicated, compared with only 10 to the power of 40 possibilities in Chess.
It will take the world’s fastest computer (Fujitsu in Fugaku, Japan) more than
10 billion years to calculate all the possibilities. The universe is only 13.8 billion
years old! Clearly, you cannot teach a machine to play Go by brute force.

Google DeepMind’s AlphaGo plays the Go game through AI, by combining
statistical analysis and deep learning. The calculations are done on 1,920 central
processing units (CPUs), 280 graphics processing units (GPUs), and possibly
Google’s tensor processing units (TPUs). That is a lot of computing power
(https://www.deepmind.com/research/case-studies/alphago-the-story-
so-far)!

In June 2020, OpenAI’s GPT-3 caught the attention of the world. OpenAI is
a research business cofounded by Elon Musk, who also founded the famous
electrical car company Tesla Inc. GPT-3 stands for Generative Pre-trained
Transformer 3 and is a language prediction model, a form of deep learning
neural network. GPT-3 is trained on gigabillions of text information gathered
by crawling the Internet, including the text of Wikipedia. GPT-3 has 96 layers
and a whopping 175 billion parameters; it is the largest language model to
date. According to Google, it costs about $1 to train 1,000 parameters. This
means it could cost tens of millions to train GPT-3. Once trained, GPT-3 can do
many amazing things, such as generating new texts, writing essays, composing
poems, answering questions, translating languages, and even creating computer
code. This is hailed as one of the greatest breakthroughs in AI research and has
demonstrated some mind-blowing potential applications. OpenAI made the
GPT-3 application programming interface (API) available online for selected
developers (https://gpt3examples.com/), and since then, many examples
of poetry, prose, news, reports, and fiction have emerged. In September 2020,
OpenAI exclusively licensed the GPT-3 language model to Microsoft (https://
openai.com/blog/openai-api/). In January 2021, OpenAI announced DALL-E
and CLIP, two impressive neural network models based on GPT-3. DALL-E is
capable of generating amazing high-quality images based on text (https://
openai.com/blog/dall-e/), while CLIP can connect text to images (https://
openai.com/blog/clip/).

In November 2020, Google’s DeepMind made a breakthrough in the protein
folding problem with its AlphaFold AI system. As we all know, proteins are large
complex molecules made up of chains of amino acids, and proteins are essential
to our lives. What a protein can do largely depends on its unique 3D structure
and on what shape a protein will fold into. These complicated chains of amino
acids can have a huge number of possibilities, and yet in reality, proteins only
fold into very specific shapes. This has been a grand challenge in biology for half
a century. There are about 180 million known proteins, and only about 170,000

https://www.deepmind.com/research/case-studies/alphago-the-story-so-far
https://www.deepmind.com/research/case-studies/alphago-the-story-so-far
https://gpt3examples.com/
https://openai.com/blog/openai-api/
https://openai.com/blog/openai-api/
https://openai.com/blog/dall-e/
https://openai.com/blog/dall-e/
https://openai.com/blog/clip/
https://openai.com/blog/clip/

	 Chapter 1 ■ Introduction to AI	 17

protein structures have been mapped out. AlphaFold successfully predicted
two protein structures of SARS-CoV-virus, which were separately identified by
researchers months later. This breakthrough could dramatically accelerate the
progress in understanding how proteins work and developing treatments for
diseases (https://deepmind.com/research/case-studies/alphafold).

In January 2021, Google announced the development of a new language model
called Switch Transformer, which contains 1.6 trillion parameters. It offers up
to 7x increases in pretraining speeds with the same computational resources.
These improvements extend into multilingual settings, across 101 languages.
For more details, see the following:

https://arxiv.org/pdf/2101.03961v1.pdf

https://github.com/labmlai/annotated_deep_learning_paper_

implementations

In June 2021, Beijing Academy of Artificial Intelligence (BAAI) unveiled a
new natural language processing (NLP) model, WuDao 2.0, which was trained
using 1.75 trillion parameters, the largest model to date. The model was devel-
oped with the help of more than 100 scientists from multiple organizations. For
more details, see the following:

https://gpt3demo.com/apps/wu-dao-20

1.7  The State of AI

The development of AI has been gaining speed in the past decades. One of
the best places to understand what is going on is an annual AI research and
development report, such as the following:

■■ The AI Index Report, Stanford: https://aiindex.stanford.edu/report/

■■ State of AI Report, Cambridge: https://www.stateof.ai/

These annual reports show the realities of AI investment and development and
predict future trends for the coming year. The State of AI Report, composed by
Nathan Benaich and Ian Hogarth, is organized into five main sections: Research,
Talent, Industry, Policies, and Predictions.

According to the 2020 “State of AI” report, new natural language processing
companies raised more than $100 million in the past year. Autonomous driving
companies drove millions of miles in 2019. Machine learning has been adopted for
drug discovery by both large pharmaceutical companies and startups including
Glaxosmithkline, Merck, and Novartis. Many universities have introduced AI
degrees. Google claimed quantum supremacy in October 2019 and announced
TensorFlow Quantum, an open source library for quantum machine learning,
in March 2020.

https://deepmind.com/research/case-studies/alphafold
https://arxiv.org/pdf/2101.03961v1.pdf
https://github.com/labmlai/annotated_deep_learning_paper_implementations
https://github.com/labmlai/annotated_deep_learning_paper_implementations
https://gpt3demo.com/apps/wu-dao-20
https://aiindex.stanford.edu/report/
https://www.stateof.ai/

18	 Part I ■ Introduction

For research, only 15 percent of the AI papers have published their code.
Some organizations, such as OpenAI and DeepMind, never disclose their code.
The most popular AI research topics are computer vision and natural lan-
guage processing. Computer vision includes semantic segmentation, image
classification, object detection, image generation, and pose estimation. Natural
language processing includes machine translation, language modeling, question
answering, sentiment analysis, and text classification. Google’s TensorFlow is
the most popular AI platform, but Facebook’s PyTorch is catching up. Training
billions of model parameters costs millions of dollars, but larger models need less
data than smaller models to achieve the same performance. A new generation of
transformer language models, such as GPT-3, T5, and BART, are unlocking new
applications, such as translating C++ code to Java or translating Python to C++,
or even debugging the code. Publications in the area of AI in biology have been
growing more than 50 percent year over year since 2017. AI Papers published
in 2019 and 2020 account for 25 percent of all AI publications since 2000. Graph
neural networks (GNNs) are a type of emerging deep learning neural network
designed to process 3D data, such as molecular structures. This enhanced the
prediction of chemical properties and helped in the discovery of new drugs. By
analyzing symptoms from more than 4 million people, AI can detect new dis-
ease symptoms before the public health community and can inform diagnosis
without tests. In computer vision, EfficientDet-D7 has achieved the state of the
art in object detection with up to 9 times fewer model parameters than the best
in class and can run up to 4 times faster on GPUs and up to 11 times faster on
CPUs than other object detectors.

For talent, more and more AI professors are departing US universities for
technology companies such as Google, DeepMind, Amazon, and Microsoft. This
has caused a reduction of graduate entrepreneurship across 69 US universities.
Foreign graduates of US AI PhD programs are most likely to end up in large
companies, whereas American citizens are more likely to end up in startups
or academia. The Eindhoven University of Technology (TUE) has committed
€100M to create a new AI institute, and Abu Dhabi opened the “world’s first AI
university.” In the AI job market, the number of jobs posted in 2020 is declining
due to the COVID-19 pandemic. But the overall demand still outstrips the supply
of AI talent. According to Indeed.com’s US data, there are almost three times
more job postings than job views for AI-related roles. Job postings also grew 12
times faster than job viewings from late 2016 to late 2018.

For industry, major pharmaceutical companies have adopted AI for drug dis-
covery, and AI-based drug discovery startups have raised millions of dollars.
Major self-driving companies have raised nearly $7 billion in investments since
July 2019. UK-based Graphcore released its Mk2 intelligence processing unit
(IPU) processor. IPU is a relatively new type of processors compared to the

http://indeed.com

	 Chapter 1 ■ Introduction to AI	 19

traditional CPUs and GPUs. Mk2 IPU packs about 60 billion transistors onto
an 800 mm2 die using a 7 nm process—the most complex processor ever made.
IPU has 16 times faster training times for image classification than NVIDIA’s
GPU yet is 12 times cheaper. For enterprises, AI continues to drive revenue in
sales and marketing while reducing costs in supply chain management and
manufacturing.

For policy makers, the ethical issues of AI have become a mainstream. Face
recognition is widely used around the world and remains to be the most con-
troversial AI technology. There were several high-profile examples of wrong-
ful arrests due to misuse of face recognition. The pressure has been building
to regulate AI applications. Two of the leading AI conferences, NeurIPS and
ICLR, have both proposed new ethical principles. AI has also promoted more
nationalism with many governments increasingly planning to scrutinize the
acquisitions of AI companies.

For prediction, in the coming year, the race to build larger language models
continues, and soon we will have the first model with 10 trillion parameters.
There will be increasing investment in military AI, and a wave of defense-based
AI startups will collectively raise $100 million. One of the leading AI-first drug
discovery startups will be valued at more than $1 billion. Google’s DeepMind
will make another major breakthrough in structural biology and drug discovery
beyond AlphaFold. Facebook will make a major breakthrough in augmented
and virtual reality with 3D computer vision. Finally, NVIDIA will not be able
to complete its acquisition of Arm.

1.8  AI Resources

If you want to know more technical details of AI or just want to keep up with
the latest innovations and discoveries, the following are a few good resources:

Google

https://ai.googleblog.com/

https://research.google/pubs/?area=algorithms-and-

theory&team=brain&team=ai-fundamentals-applications

DeepMind

https://deepmind.com/blog?filters=%7B%22category%22:%5B%22Research

%22%5D%7D

https://deepmind.com/research?filters=%7B%22collection%22:%5B%22

Publications%22%5D%7D

https://ai.googleblog.com/
https://research.google/pubs/?area=algorithms-and-theory&team=brain&team=ai-fundamentals-applications
https://research.google/pubs/?area=algorithms-and-theory&team=brain&team=ai-fundamentals-applications
https://deepmind.com/blog?filters=%7B%22category%22:%5B%22Research%22%5D%7D
https://deepmind.com/blog?filters=%7B%22category%22:%5B%22Research%22%5D%7D
https://deepmind.com/research?filters=%7B%22collection%22:%5B%22Publications%22%5D%7D
https://deepmind.com/research?filters=%7B%22collection%22:%5B%22Publications%22%5D%7D

20	 Part I ■ Introduction

Facebook AI

https://ai.facebook.com/results/?q&content_types[0]

=publication&sort_by=most_recent&view=list&page=1

https://ai.facebook.com/blog/

Microsoft
https://www.microsoft.com/en-us/research/research-

area/artificial-intelligence/?facet%5Btax%5D%5B

msr-research-area%5D%5B0%5D=13556&sort_by=most-recent

MIT

https://news.mit.edu/topic/artificial-intelligence2

https://www.technologyreview.com/topic/artificial-intelligence/

Stanford
http://ai.stanford.edu/blog/

Berkeley
https://bair.berkeley.edu/blog/

Leading AI Conferences

■■ NeurIPS: https://papers.nips.cc/

■■ R e c S y s : h t t p s : / / r e c s y s . a c m . o r g / r e c s y s 2 0 /

accepted-contributions/

■■ KDD: https://www.kdd.org/kdd2020/accepted-papers

■■ ICLR: https://iclr.cc/virtual_2020/papers.html?filter=keywords

Latest on arXiv
https://arxiv.org/search/advanced

Paper with Code’s Browse State-of-the-Art Page
This is one of my favorite web resources. At Paper with Code, you can browse

the state of AI in a number of different applications, such as computer
vision, natural language processing, medical, speech, time series, audio,
and much more. As shown in Figure 1.11, it has 3,711 benchmarks; 1,942
tasks; 3,234 datasets; and 39,567 papers with code.

Towards Data Science and Medium

This is another one of my favorite web resources. Towards Data Science is a
Medium publication for sharing concepts, ideas, and code. Towards Data
Science Inc. is a corporation registered in Canada. With Medium, it pro-
vides a platform for thousands of people to exchange ideas and expand

https://ai.facebook.com/results/?q&content_types[0]=publication&sort_by=most_recent&view=list&page=1
https://ai.facebook.com/blog/
https://www.microsoft.com/en-us/research/research-area/artificial-intelligence/?facet[tax][msr-research-area][0]=13556&sort_by=most-recent
https://www.microsoft.com/en-us/research/research-area/artificial-intelligence/?facet[tax][msr-research-area][0]=13556&sort_by=most-recent
https://www.microsoft.com/en-us/research/research-area/artificial-intelligence/?facet[tax][msr-research-area][0]=13556&sort_by=most-recent
https://news.mit.edu/topic/artificial-intelligence2
https://www.technologyreview.com/topic/artificial-intelligence/
http://ai.stanford.edu/blog/
https://bair.berkeley.edu/blog/
https://papers.nips.cc/
https://recsys.acm.org/recsys20/accepted-contributions/
https://recsys.acm.org/recsys20/accepted-contributions/
https://www.kdd.org/kdd2020/accepted-papers
https://iclr.cc/virtual_2020/papers.html?filter=keywords
https://arxiv.org/search/advanced
https://ai.facebook.com/results/?q&content_types[0]=publication&sort_by=most_recent&view=list&page=1

	 Chapter 1 ■ Introduction to AI	 21

their understanding of data science. It is free to read a limited number of
articles per month, but you have to register and pay if you want unlimited
access. For more details, visit these resources:

https://towardsdatascience.com/

https://medium.com/

1.9  Summary

This chapter provided a bird’s-eye overview of AI. AI is a science and technology
research field that aims to make machines do intelligent things, similar to the
natural intelligence exhibited by humans and animals.

AI can be traced back to the 1940s–1950s when the British mathematician Alan
Turing proposed the famous Turing test, also known as the imitation game. AI as a
research discipline was established at a workshop at Dartmouth College in 1956.

AI development can be generally divided into three periods in history;
1950–1980, focused on neural networks, or artificial neural networks; 1980–2010,
focused on machine learning; and 2010–present, focused on deep learning. Deep
learning is currently the hottest research topic in AI, where GPUs are widely used.

AI winters are the periods when research funding and activities have been
dramatically reduced. So far, there have been two AI winters, in the 1970s and
1980s. AI hype is when AI fails to achieve what it promises.

Figure 1.11: State-of-the-Art page at Paper with Code
(Source: https://paperswithcode.com/sota)

https://towardsdatascience.com/
https://medium.com/
https://paperswithcode.com/sota

22	 Part I ■ Introduction

AI can be generally divided into three types: narrow AI, general AI, and super
AI. Singularity is the point at which AI overtakes human intelligence.

AI can also be divided into edge AI and cloud AI.

1.10  Chapter Review Questions

Q1.1.	� What is AI? Show a few examples of AI applications in your daily
life.

Q1.2.	� What is the Turing test, and what is the imitation game?

Q1.3.	� Explain, with a suitable diagram, the three stages of AI development
in history.

Q1.4.	� Explain the differences of neural networks, machine learning, and
deep learning.

Q1.5.	� What are AI hypes? Use a diagram to explain the different stages of
an AI hype. What are AI winters?

Q1.6.	 What are the three types of AI? What is the singularity?

Q1.7.	 What are the differences between edge AI and cloud AI?

Q1.8.	� Search the Internet and list your own top 10 key moments of AI in
history.

Q1.9.	� Search the Internet and list your own “current state of AI” and give
your own predictions for AI.

Q1.10.	� Are you optimistic or pessimistic about the future of AI, and why?

C H A P T E R

23

2

2.1  AI Hardware Tools

As an old proverb says, “He who wants to do a good job must sharpen his tools
first.” You will also need a set of tools if you want to develop AI applications.
This includes both hardware and software. Hardware mainly means the com-
puter. As AI requires a certain amount of processing power, you will need a
powerful laptop or desktop computer.

Standard Computers  For a beginner, a current standard computer is sufficient,
normally including an Intel or AMD CPU with a 2 GHz clock, 8 GB RAM,
500 GB hard drive, and a current Windows, Mac, or Linux operating
system. The cost is usually around $500. You can easily search the Internet
for best-selling laptops or best-selling desktops to find your ideal computer.

AI Development Tools
“Success in creating AI would be the biggest event in human history.

Unfortunately, it might also be the last, unless we learn how to avoid the risks.”
—Stephen Hawking (British theoretical physicist)

2.1 AI Hardware Tools
2.2 AI Software Tools
2.3 Introduction to Python
2.4 Python Development Environments
2.5 AI Datasets
2.6 Python AI Frameworks
2.7 Summary
2.8 Chapter Review Questions

24	 Part I ■ Introduction

Computers with GPUs  For a more advanced user, if you want to train
more data or build more complicated, larger AI models, you will need
a more advanced computer, i.e., a computer with a graphics processing
unit (GPU). That typically includes a CPU with 8 cores, 32 GB RAM,
1 TB hard drive, and most importantly an NVIDIA GeForce RTX 1080 (or
2080) Series 8GB GPU. GPUs, originally developed for video games, have
been increasingly used in machine learning and deep learning. GPUs can
significantly speed up the calculations, thanks to their massive parallel
processes. We will discuss more about GPUs in Chapter 12. A prebuilt
computer with a GPU is usually around $3,000, but you can get it much
cheaper if you build it yourself.

Computers with FPGAs  Field Programmable Gate Array (FPGA) is also
increasingly being used in AI. Altera and Xilinx are the two most well-
known FPGA manufacturers. Acquiring Altera in 2015, Intel has since
developed many FPGA-based AI applications. In 2018, for example, Intel
achieved 3,700 frames per second processing with its Arria 10 GX 1150
FPGA. A computer with the Intel Arria 10 GX FPGA can easily cost more
than $5,000. For more details about Intel Arria FPGA, check these resources:

https://arxiv.org/ftp/arxiv/papers/1806/1806.11547.pdf

https://www.intel.co.uk/content/www/uk/en/products/programmable/

fpga/arria-10.html

We will also discuss more about FPGA in Chapter 12.

Graphcore’s IPUs  In addition to GPUs and FPGAs, there is another new
form of AI computing hardware: Graphcore’s massively parallel intelli-
gence processing unit (IPU). Graphcore is a young British company based
in Bristol and was founded in 2016 by Simon Knowles and Nigel Toon. In
July 2020, Graphcore unveiled its second-generation processor using a 7 nm
process, which packs about 60 billion transistors on a 800-square-millimeter
integrated circuit with 1,472 computing cores and 900 MB of local memory.
As mentioned in Chapter 1, IPUs can run much faster than GPUs and cost
much less. For more details, visit this resource:

https://www.graphcore.ai/

2.2  AI Software Tools

Software tools mainly depend on your choice of programming languages, such
as C/C++, Java, C#, Python, Matlab, Ruby, R, Julia, Go, and so on.

C and C++ are the most popular software programming languages. Soft-
ware written in C/C++ can run much faster than those written in many other

https://arxiv.org/ftp/arxiv/papers/1806/1806.11547.pdf
https://www.intel.co.uk/content/www/uk/en/products/programmable/fpga/arria-10.html
https://www.intel.co.uk/content/www/uk/en/products/programmable/fpga/arria-10.html
https://www.graphcore.ai/

	 Chapter 2 ■ AI Development Tools	 25

programming languages. Many AI libraries, such as OpenCV (https://opencv
.org/) for computer vision and YOLO (https://pjreddie.com/darknet/yolo/)
for object detection, are written in C/C++. To use C/C++ in AI development,
you can use a number of libraries:

■■ Google TensorFlow (https://github.com/tensorflow/tensorflow)

■■ Caffe (https://github.com/intel/caffe)

■■ Microsoft Cognitive Toolkit (CNTK) (https://docs.microsoft.com/
en-us/cognitive-toolkit/)

■■ MLPACK Library (https://www.mlpack.org/)

■■ SHARK Library (https://github.com/Shark-ML/Shark)

■■ OpenNN (https://www.opennn.net/)

Java is another popular language. All apps on Android phones are written
in Java. To use Java in AI development, you can use the following libraries:

■■ Weka (https://www.cs.waikato.ac.nz/ml/weka/)

■■ Deeplearning4j (https://deeplearning4j.org/)

C# is popular for developing Windows desktop graphical user interface (GUI)
programs. With C#, you can use the following libraries:

■■ Emgu CV (http://www.emgu.com/wiki/index.php/Main_Page)

■■ ML.NET (https://dotnet.microsoft.com/apps/machinelearning-ai/
ml-dotnet

Python is probably the most widely used programming language today.
Unlike compiled languages such as C/C++ and Java, Python is an interpreted
programming language. This means you don’t need to compile the Python
code to run it. Python code is executed line by line. So even if there is an error
in the Python code, it will execute the lines before the error and stop only at
the point where the error is.

To use Python in AI development, you can use a number of libraries such
as Numpy, Pandas, Matplotlib, and NLTK. You can also use a number of open
source frameworks, such as the following:

■■ Scikit-Learn (https://scikit-learn.org/stable/)

■■ Keras (https://keras.io/)

■■ Google TensorFlow (https://github.com/tensorflow/tensorflow)

■■ Facebook’s PyTorch (https://pytorch.org/)

■■ Caffe2 (https://caffe2.ai/)

■■ Baidu’s Paddle (https://github.com/PaddlePaddle/Paddle)

https://opencv.org/
https://opencv.org/
https://pjreddie.com/darknet/yolo/
https://github.com/tensorflow/tensorflow
https://github.com/intel/caffe
https://docs.microsoft.com/en-us/cognitive-toolkit/
https://docs.microsoft.com/en-us/cognitive-toolkit/
https://www.mlpack.org/
https://github.com/Shark-ML/Shark
https://www.opennn.net/
https://www.cs.waikato.ac.nz/ml/weka/
https://deeplearning4j.org/
http://www.emgu.com/wiki/index.php/Main_Page
https://dotnet.microsoft.com/apps/machinelearning-ai/ml-dotnet
https://dotnet.microsoft.com/apps/machinelearning-ai/ml-dotnet
https://scikit-learn.org/stable/
https://keras.io/
https://github.com/tensorflow/tensorflow
https://pytorch.org/
https://caffe2.ai/
https://github.com/PaddlePaddle/Paddle

26	 Part I ■ Introduction

MATLAB is popular among students as many universities/colleges have
chosen the site license. This means it is free for students and staff to use. One
of its best features is its workspace, which allows users to view the content and
trace variables used. MATLAB is a really great tool for learning and offers a
number of toolboxes for AI development.

■■ Statistics and Machine Learning Toolbox (https://uk.mathworks.com/
products/statistics.html)

■■ Deep Learning Toolbox (https://uk.mathworks.com/products/deep-
learning.html)

■■ Reinforcement Learning Toolbox (https://uk.mathworks.com/products/
reinforcement-learning.html)

■■ Predictive Maintenance Toolbox (https://uk.mathworks.com/products/
predictive-maintenance.html)

■■ Text Analytics Toolbox (https://uk.mathworks.com/products/text-
analytics.html)

MATLAB Online allows you to use MATLAB from your web browser. This
is excellent for online teaching and remoting learning.

https://matlab.mathworks.com/

MATLAB also provides support for using GPUs and FPGAs in AI development.
Check out this interesting post on how to perform image classification with just
11 lines of MATLAB code:

https://blogs.mathworks.com/pick/2017/03/03/deep-learning-in-11-

lines-of-matlab-code/

The R programming language is relatively new and is widely used for statistical
analysis and graphics. R is a free software and supported by the R Foundation
for Statistical Computing. It includes algorithms for machine learning, linear
regression, time series, and statistical inference. For more details, visit this site:

https://www.r-project.org/

The Julia programming language is also relatively new and is designed for
high-level, high-performance, dynamic programming. Julia is well suited for
numerical analysis and computational science. For more details, visit this site:

https://julialang.org/

The Go programming language was developed at Google by Robert
Griesemer, Rob Pike, and Ken Thompson in 2007. It is similar to the C program-
ming language, and it was designed to build simple, reliable, and efficient soft-
ware. One of main attractions of the Go programming language is that you can
easily create an executable file with it. For more details, visit this site:

https://golang.org/

https://uk.mathworks.com/products/statistics.html
https://uk.mathworks.com/products/statistics.html
https://uk.mathworks.com/products/deep-learning.html
https://uk.mathworks.com/products/deep-learning.html
https://uk.mathworks.com/products/reinforcement-learning.html
https://uk.mathworks.com/products/reinforcement-learning.html
https://uk.mathworks.com/products/predictive-maintenance.html
https://uk.mathworks.com/products/predictive-maintenance.html
https://uk.mathworks.com/products/text-analytics.html
https://uk.mathworks.com/products/text-analytics.html
https://matlab.mathworks.com/
https://blogs.mathworks.com/pick/2017/03/03/deep-learning-in-11-lines-of-matlab-code/
https://blogs.mathworks.com/pick/2017/03/03/deep-learning-in-11-lines-of-matlab-code/
https://www.r-project.org/
https://julialang.org/
https://golang.org/

	 Chapter 2 ■ AI Development Tools	 27

Figure 2.1 shows the interesting trends in the various programming languages
in recent years. The three traditionally most common programming languages,
C/C++, C#, and Java, have decreasing usage but remain prominent, while
JavaScript and R are stagnant, and Python is rising fast, beginning to overtake
C/C++, C#, and Java. Julia and Go usage remain relatively low. This web app
was developed using Python and Streamlit (https://www.streamlit.io/); we
will show you how to develop such apps later in this book.

In this book, we will focus only on Python, simply because it is the most
popular programming language for AI development.

2.3  Introduction to Python

Python was developed by Guido van Rossum, a Dutch programmer, at Centrum
Wiskunde & Informatica (CWI) in the Netherlands in the late 1980s. Python
was created as a general-purpose programming language and first released to
the public in 1991. Van Rossum chose the name Python after the famous British
comedy group Monty Python in the 1970s. Like MATLAB, Python is easy to
use, you do not need to define variables and worry about the types of variables,
and Python can automatically figure out the most appropriate variable type.
Python is also an interpreted, high-level programming language. This differs
from other compiled programming languages, such as C/C++, Fortran, and
Java, which require you to compile your source code into binary code before

Figure 2.1: The popularity trends of different programming languages
(Source: https://share.streamlit.io/jcharis/streamlit-trend-app/main/
app.py)

https://www.streamlit.io/
https://share.streamlit.io/jcharis/streamlit-trend-app/main/app.py
https://share.streamlit.io/jcharis/streamlit-trend-app/main/app.py

28	 Part I ■ Introduction

it can be executed. With Python and MATLAB, your code is executed line by
line. Python is the most popular programming language for machine learning
and deep learning.

To use Python, you must first download and install Python on your com-
puter. There are two main versions, version 2 and version 3. We recommend
installing version 3. The latest version is 3.9.7, but since many online examples
are based on older versions, we will use Python 3.6.8 in this book. We will rely
on the Windows operating systems. For other operating systems, such as Mac
and Unix/Linux, please adapt accordingly.

For Windows, the default installer python-3.6.8.exe is a 32-bit installer.
Unless you are using a really old computer, you should select the 64-bit installer,
python-3.6.8-amd64.exe. It’s worth noting that a few popular AI frameworks
like tensorflow only supports 64-bit Python.

https://www.python.org/downloads/

https://www.python.org/ftp/python/3.6.8/python-3.6.8-amd64.exe

By default, Python is installed into your personal account directory. If you
want to install Python into the standard C:\ or C:\Program Files\, you need
to select Customize Installation in the first dialog box that appears after double-
clicking the installer. The following is a comprehensive installation guide; check
it out if you have any difficulties when installing Python:

https://realpython.com/installing-python/

After installing Python, you can use Python’s Integrated Development and
Learning Environment (IDLE) to edit, debug, and run Python code. See Figure 2.2.

Next, you will also need to download and install the following SciPy libraries:

■■ Numpy: For dealing with N-dimensional array data

■■ Pandas: For reading data files and analyzing data

■■ Matplotlib: For plotting data

■■ SciPy: For scientific computing

■■ iPython: For enhanced interactive console

■■ Jupyter: For a web-based Python editor

■■ SymPy: For symbolic mathematics

■■ Nose: For easier testing

See the SciPy website for more details:

https://www.scipy.org/install.html

https://www.python.org/downloads/
https://www.python.org/ftp/python/3.6.8/python-3.6.8-amd64.exe
https://realpython.com/installing-python/
https://www.scipy.org/install.html

	 Chapter 2 ■ AI Development Tools	 29

The installation process starts by typing the following commands in the
Windows Command Prompt window:

python -m pip install numpy scipy matplotlib ipython jupyter pandas
sympy nose

or simply just typing the following:

pip install numpy scipy matplotlib ipython jupyter pandas sympy nose

Next, you will need to install the Scikit-Learn library for machine learning. This
can be easily done by typing the following commands in the console window:

pip install scikit-learn

Finally, you will need to install the Keras, TensorFlow, and PyTorch libraries
for deep learning. You can do this by typing the following commands in the
console window:

pip install keras tensorflow torch torchvision opencv-python

The previous commands will install the latest version of the libraries. If you
do not want the latest version, you can also specify the version you want to
install. Here’s an example:

pip install keras==2.3.1
pip install tensorflow==2.0.0

Figure 2.2: Python’s IDLE (Python 3.6.8 64-bit) shell (top) and editor (bottom)

30	 Part I ■ Introduction

You can list what libraries have been installed by typing the following command
in the console window:

pip list

You will also need to install other Python libraries as you progress through
this book. But for now, this is enough to get you started with AI programming
using the Python programming language.

You are ready to get started!

2.4  Python Development Environments

Although Python comes with its own IDLE editor, many developers prefer to
use third-party Python text editors and integrated development environments
(IDEs) to bring in additional features. Here is a short list:

■■ Notepad++ is a popular text editor that supports many programming
languages such as Python. I use Notepad++ a lot.

https://notepad-plus-plus.org/downloads/

■■ TextPad is another similar text editor. TextPad and Notepad++ are popular
with Windows users.

https://www.textpad.com/home

■■ Sublime Text is a generic text editor, first released in 2007. It supports
44 major programming languages, including Python. It is a popular text
editor among Mac and Linux users.

http://www.sublimetext.com/

■■ Atom/Atom-IDE is a relatively new cross-platform general-purpose IDE.
Atom has attractive features such as syntax highlighting, autocompletion,
and a fully customizable interface.

https://atom.io/

■■ PyCharm is a Python IDE for professional developers. It has features such
as syntax highlighting, autocompletion, and live code verification.

https://www.jetbrains.com/pycharm/

■■ Spyder is a free, cross-platform Python IDE, with features such as syntax
highlighting and autocompletion. It also integrates many libraries such
as Matplotlib, Numpy, IPython, and Scipy. It has a variable explorer, sim-
ilar to MATLAB’s workspace, which allows you to view the details of
variables.

https://github.com/spyder-ide/spyder

https://notepad-plus-plus.org/downloads/
https://www.textpad.com/home
http://www.sublimetext.com/
https://atom.io/
https://www.jetbrains.com/pycharm/
https://github.com/spyder-ide/spyder

	 Chapter 2 ■ AI Development Tools	 31

■■ Visual Studio Code, also called VS Code, is a cross-platform software
IDE developed by Microsoft. Not to be confused with Visual Studio, VS
Code is small but complete, and the software is open source under the
MIT license.

https://code.visualstudio.com/

■■ Jupyter is a web-based Python IDE that allows you to edit and run Python
code from a web browser. I have found Jupyter to be remarkably easy to
use. Many people believe that Jupyter is a computing notebook for data
scientists. To install Jupyter, simply type the following pip install com-
mands into your terminal window:

pip install jupyter

To launch the Jupyter notebook in your web browser, simply type the fol-
lowing command. This will launch a web page (http://localhost:8888/)
from which you can create, open, and run Jupyter notebooks.

Jupyter notebook

Python program files have the extension of .py, and Jupyter notebooks
have the extension .ipynb. You can make the .ipynb file double-clickable
(i.e., so it can be opened with a double-click) in Windows by installing
the following two libraries:

pip install nbopen
python -m nbopen.install_win

For more details about Jupyter, visit this site:

https://jupyter.org/

■■ Google Colaboratory, also called Google Colab, is a web-based Python
IDE, based on Jupyter, that allows you to edit and run Python code from
a web browser. This is one of my favorite Python development environ-
ments. You need a Google account to sign in to use it. Once logged in, you
have everything you need and are ready to start programming in Python.
You don’t have to worry about which Python version to install, which
Python libraries to install, and so on. One of the Google Colab features
I like the most is the support for CPU, GPU, and TPU computing. So, you
can run your code on GPUs and TPUs for free.

https://colab.research.google.com/

■■ Kaggle Notebook is another web-based Python IDE, similar to Google
Colab. But Kaggle also provides a huge number of datasets and runs many
AI challenges, making it easier to develop new algorithms and train new
models. There are also tons of other people’s projects that you can copy

https://code.visualstudio.com/
https://jupyter.org/
https://colab.research.google.com/

32	 Part I ■ Introduction

and edit, and it is a great place to learn. Kaggle also provides support for
CPU and GPU computing, so it is one of my favorites.

https://www.kaggle.com/

■■ Baidu’s AI Studio is a one-stop online development platform based on
PaddlePaddle, Baidu’s proprietary deep learning framework. At AI Studio,
there are datasets, competitions, courses, and many projects to share. You
can also create your own online projects using Jupyter notebooks, similar
to Colab and Kaggle.

https://aistudio.baidu.com/aistudio/index?lang=en

https://www.paddlepaddle.org.cn/

Here are few more online Python/Jupyter editors:

■■ Deepnote is a Google Colab alternative but has some interesting features
such as real-time collaboration, no interruptions for long-running tasks,
and no cost.

https://beta.deepnote.com/

■■ Binder and Gesis Notebooks are also popular Jupyter online notebooks.
For example, on the Scikit-Learn website, you can run many sample codes
online using Binder Notebooks.

https://notebooks.gesis.org/

https://mybinder.org/

■■ Paperspace Gradient is another Jupyter online notebook. Compared to
the Google Colab alternative, it has faster memory, persistent notebooks,
longer training time, and a larger dataset.

https://www.paperspace.com/console/gradient

■■ When we talk about Python development environments, we have to talk
about Anaconda. Many beginners get confused by it, but Anaconda is
simply a scientific computing platform for Python and R programming
languages. It also aims to simplify package management and deployment.
It is cross-platform and comes with a set of libraries such as Matplotlib,
Numpy, IPython, and Scipy, as well as a set of editors/IDEs such as Spyder,
Jupyter, VS Code, and so on. Anaconda is basically a one-stop shop; it has
everything you need for Python development. So, with many Python
tutorials, the first thing you’ll be asked to do is to install Anaconda. From
Anaconda’s graphical user interface, shown in Figure 2.3, you can launch
all the tools you need. However, Anaconda is quite large and requires a
lot of disk space. Therefore, it is optional for this book.

https://www.kaggle.com/
https://aistudio.baidu.com/aistudio/index?lang=en
https://www.paddlepaddle.org.cn/
https://beta.deepnote.com/
https://notebooks.gesis.org/
https://mybinder.org/
https://www.paperspace.com/console/gradient

	 Chapter 2 ■ AI Development Tools	 33

Anaconda claims to be the most popular Python distribution platform in
the world with more than 20 million users worldwide.
https://www.anaconda.com/

We also need to talk about Python virtual environments. If you are writing
simple Python programs, you would not need this. But if you are writing more
complicated Python programs and need to use third-party software, you will
find that different software uses different versions of Python libraries and
packages. For example, some software code works with Google TensorFlow
version 1 and other code works with Google TensorFlow version 2. Soon you
will find yourself with many version conflicts. The solution to this is to use a
Python virtual environment, where you create an isolated Python environment
for each project so your computer can run multiple projects that require differ-
ent versions of Python libraries. You can create a Python virtual environment
by using Anaconda and Virtualenv. Compared with Anaconda, Virtualenv is
much smaller and easier to use. See Appendix D for how to install and use a
Python virtual environment. For more details about Virtualenv, visit this site:

https://virtualenv.pypa.io/en/latest/

In this book, we will mainly use Python’s IDLE, as well as a mixture of Jupyter,
Kaggle, and Google Colab.

Figure 2.3: Anaconda user interface
(Source: https://upload.wikimedia.org/wikipedia/commons/f/f4/Anaconda
.Starting_page.png)

https://www.anaconda.com/
https://virtualenv.pypa.io/en/latest/
https://upload.wikimedia.org/wikipedia/commons/f/f4/Anaconda.Starting_page.png
https://upload.wikimedia.org/wikipedia/commons/f/f4/Anaconda.Starting_page.png

34	 Part I ■ Introduction

2.4  Getting Started with Python

This book is not about Python programming for which there are plenty of good
books. We do not want to reinvent the wheel. But for the sake of completeness,
we will provide a simple, short introduction to Python here.

As with learning any other programming language, you always start with a
“Hello World” program. A “Hello World” program simply outputs Hello World!
to the screen. In computing, the screen is known as standard output. The keyboard
is known as the standard input. Learning a new programming language always
starts with standard input and standard output and then variables, loops, if
else statements, functions, and so on.

Example 2.1 shows a simple Python “Hello World” program that prints
Hello World! to the screen. It consists of only one line of code. To run this code,
launch the Python IDLE (as shown in Figure 2.2 (top)), select New File from
the File menu, and a new editor window will appear (as shown in Figure 2.2
(bottom)). Then type the code shown in Example 2.1, and select Run Module
from the editor’s Run menu, or press the F5 key, to run the code. The results
will be displayed in the Python IDLE shell.

EXAMPLE 2.1: THE HELLO.PY PROGRAM

#Example 2.1
print("Hello World!")

Python uses # for a single-line comments and a pair of ''' for multiple-line
comments. Example 2.2 shows an example.

EXAMPLE 2.2: THE HELLO2.PY PROGRAM

#Example 2.2
'''
This is a multiple line
comments.
'''
print("Hello World")

A cool feature of print is that you can embed mathematical functions inside
it, modify the print statement as shown next, and see what you get:

print("Hello World"*5)

Python supports a number of types of variables, like MATLAB. You do not
have to declare the variables, you do not have to specify the types, and you can
just use them directly. Python does not require a ; at the end of each statement.
Example 2.3 shows an example.

	 Chapter 2 ■ AI Development Tools	 35

EXAMPLE 2.3: THE HELLO3.PY PROGRAM

#Example 2.3
a = 5
b = 7
c = a + b
print("c = " , c)

d = 'x'
e = 'y'
print(d + e)

f = "Hello"
g = "World"
l = f + " " + g
print(l)

For more complex structures, such as loops, selections, or functions, instead of
using { and } or Begin and End to group the structure like other programming
languages, Python uses : and indentation to distinguish different structures.
This forces users to write code with proper indentations. By default, there are
four spaces for each level of indentation. Example 2.4 shows a simple for loop;
you can see the : character and can probably figure out that the two print state-
ments are on different structural levels. The first print statement is inside the
for loop, while the second print statement is outside the loop.

EXAMPLE 2.4: THE LOOP.PY PROGRAM

#Example 2.4
for i in range(5):
 print(i)
print("Finished")

Example 2.5 shows a nested for loop example; again, the three print state-
ments are at different structure levels.

EXAMPLE 2.5: THE LOOP2.PY PROGRAM

#Example 2.5
for i in range(5):
 for j in range(5):
 x = i * j
 print(x)
 print("Inner Loop Finished")
print("Outer Loop Finished")

36	 Part I ■ Introduction

Example 2.6 shows a while loop example, which will continue as long as the
test condition x < 5 is satisfied.

EXAMPLE 2.6: THE LOOP3.PY PROGRAM

#Example 2.6
x = 0
while x < 5:
 x = x + 1
 print(x)
print("Finished")

Example 2.7 shows an if else example, which will execute different lines
of the code depending on the value of x.

EXAMPLE 2.7: THE IFELSE.PY PROGRAM

#Example 2.7
x = 60
if x >= 70:
 print("Excellent")
elif x >= 60:
 print("Good")
else:
 print("OK")

Example 2.8 shows an example of a Python function, in which a function, add
(x,y), is defined, and then the function is called. The function starts with the
keyword def and has two input parameters, x and y. The function adds x and
y together, passes the value to z, and then returns the value z.

EXAMPLE 2.8: THE FUNCS.PY PROGRAM

#Example 2.8

def add (x,y):
 z = x + y
 return z

t = add(30, 20)
print(t)

Example 2.9 shows a Python example to find the maximum value in an array,
also called a list. It first defines a function, called maxarray (xs), which has an
array-type input parameter named xs. The function uses a for loop and an if
statement to find out the maximum value. Then it creates an array and calls

	 Chapter 2 ■ AI Development Tools	 37

the function. Python uses [and] to refer to arrays and uses , to separate each
element of the array.

EXAMPLE 2.9: THE ARRAY.PY PROGRAM

#Example 2.9

def maxarray (xs):
 m = xs[0]
 for x in xs:
 if m < x:
 m = x
 return m

data = [0,1,2,3,4,5]
t = maxarray(data)
print(t)

EXERCISE 2.1

Modify the Python program from Example 2.9 to create a function called
minarray(xs) to find out the minimum value of an array.

EXERCISE 2.2

Modify the Python program from Example 2.9 to create a function called
sortarray(xs) to sort the array in ascending order.

Example 2.10 shows how to read text from the keyboard. In the print state-
ment, a single quote (') and a double quote (") are the same.

EXAMPLE 2.10: THE INPUT.PY PROGRAM

#Example 2.10
print('What is your name? ')
x = input()
print('Hello ' + x + "!")

This is the output of the program:

What is your name?
Perry
Hello Perry!

38	 Part I ■ Introduction

Example 2.11 shows how to read text from the keyboard and then use the int()
function to convert it to an integer, perform some calculations, and display the
results. You can also use float() to convert text to floats, which are the num-
bers with decimal points, and use the str() function to convert the numbers
to text. In Python, +, −, *, and / represent addition, subtraction, multiplication,
and division, respectively. ** represents a square.

EXAMPLE 2.11: THE INPUT2.PY PROGRAM

#Example 2.11
print('Input a number: ')
x = input()
y = int(x)
y = y ** 2
print('The square of ' + str(x) + " is " + str(y))

This is the output of the program:

Input a number:
4
The square of 4 is 16

EXERCISE 2.3

Modify the Python programs from Example 2.11 so that it reads a float number from
the keyboard. You can also use float() to convert text to float numbers, which are
the numbers with decimal points. Then calculate the square and display it on the
screen.

EXERCISE 2.4

Based on the Python programs in Examples 2.10 and 2.11, write a Python program that
reads the name, the age, and the marks from the keyboard. The age should be read
as an integer, and marks should be read as a float number. Then display them on the
screen.

Example 2.12 shows how to read a list of numbers from the keyboard. It
first reads the numbers as text into a variable called s, then uses the split()
function to split it into a number of pieces, and finally uses the map function to
map each piece into an integer.

EXAMPLE 2.12: THE INPUTLIST.PY PROGRAM

#Example 2.12
s = input("Input a list of numbers: ")
numbers = list(map(int, s.split()))
print(numbers)

	 Chapter 2 ■ AI Development Tools	 39

This is the output of the program:

Input a list of numbers: 1 2 3 4
[1, 2, 3, 4]

Python has a useful Math library. Example 2.13 shows some commonly used
functions of the library. You need to use import math to import the library first
and then use dot notation, such as math.pi and math.sqrt to call the functions.

EXAMPLE 2.13: THE MATH.PY PROGRAM

#Example 2.13
import math

r =5
cir = 2 * math.pi * r
print('The circumference is ' + str(cir))

x = 5
y = math.sqrt(x)
print("The square root of " + str(x) +" is " + str(y))

x = 7
y = math.factorial(x)
print("The factorial of " + str(x) +" is " + str(y))

x = 16.4
y = math.floor(x)
print("The floor of " + str(x) +" is " + str(y))

x = 16.4
y = math.ceil(x)
print("The ceiling of " + str(x) +" is " + str(y))

This is the output of the program:

The circumference is 31.41592653589793
The square root of 5 is 2.23606797749979
The factorial of 7 is 5040
The floor of 16.4 is 16
The ceiling of 16.4 is 17

For more details about the Math library, check out this interesting tutorial
from RealPython.com:

https://realpython.com/python-math-module/

http://realpython.com
https://realpython.com/python-math-module/

40	 Part I ■ Introduction

EXERCISE 2.5

Based on the Python programs from Examples 2.10 and 2.13, write a Python program
that reads a list of float numbers from the keyboard, then uses the math.sin()
function to calculate the sine value of the numbers, and finally displays the results on
the screen.

Plotting is important for visualizing the data. Python has a powerful Mat-
plotlib library, similar to MATLAB’s plot function. Example 2.14 shows an
example of using this library to plot. It first uses import matplotlib.pyplot
as plt to import the library’s pyplot function. It also imports another useful
library, Numpy, which is helpful for dealing with numeric arrays. It then creates
an array of 100 numbers called x using the range function, x = 0, 1, 2, 3 . . . 99,
converts x to a Numpy array with np.array(), scales x between 0 and 2 π, with
a step size of 0.01. Numpy also has a π-function called np.pi, similar to math
.pi. Then, it calculates the sine value of the array x using the np.sin() function.
Note that math.sin() is not used here because it is only for scalars. Finally, it
uses the plt.plot() function to plot the sine curve and uses the plt.show()
function to show the plot.

EXAMPLE 2.14: THE PLOT.PY PROGRAM

#Example 2.14
import matplotlib.pyplot as plt
import numpy as np

x = [i for i in range(100)]
x = np.array(x)
x = 2 * np.pi* x * 0.01
y = np.sin(x)
plt.plot(x,y)
plt.title('Sin Plot')
plt.xlabel('x')
plt.ylabel('Sin')
plt.show()

Figure 2.4 shows the output of Example 2.14, which plots the sin() function
from the range [0, 2 π].

Example 2.15 shows another example of plotting. In this example, Numpy’s
linspace function is used to create an array of values x ranging from -π to π,
with 50 data points in between. It then calculates the sine and cosine values of
the values x and plots the data with different colors and different makers, and
it also displays the legend.

	 Chapter 2 ■ AI Development Tools	 41

EXAMPLE 2.15: THE PLOT2.PY PROGRAM

#Example 2.15
import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(-np.pi, np.pi, 50)
y1 = np.sin(x)
y2 = np.cos(x)
plt.plot(x, y1, color = 'blue', marker = "s", label='Sin')
plt.plot(x, y2, color = 'red', marker = "o", label='Cos')
plt.legend()
plt.show()

Figure 2.5 shows the output of Example 2.15, which plots the sin() and cos()
functions from the range between -π and π.

Figure 2.4: The output of Example 2.14

42	 Part I ■ Introduction

EXERCISE 2.6

Based on the Python programs from Examples 2.14 and 2.15, write a Python program
that plots different math functions, such as y = 3 x + 4 and y = 2 x2 + 1 and
y = x3 + 9 on the same graph using different colors and also displays the legend.

For more details about the Matplotlib library, access the following website:
https://matplotlib.org/tutorials/introductory/pyplot.html

Last but not least is data file reading and writing. In machine learning and
deep learning, the most commonly used data file format is Comma Separated
Values (CSV). A CSV file is just plain text with many rows of data, and each
row has a fixed number of columns separated by commas. CSV files can easily
be imported into Microsoft Excel as a spreadsheet.

The easiest way to create a CSV file and read a CSV file is to use the Pandas
library. Example 2.16 shows how to create a CSV file. It first creates an array
called data that contains two columns of values, Name and Age. It then creates a
dataframe named df from the array data. Finally, it displays the dataframe and
saves the data into a CSV file named test.csv by using the to_csv() function.
The dataframe has an extra index column (see Example 2.16); you can use
index=False to avoid saving the index column in the CSV file.

Figure 2.5: The output of Example 2.15

https://matplotlib.org/tutorials/introductory/pyplot.html

	 Chapter 2 ■ AI Development Tools	 43

EXAMPLE 2.16: THE DATA.PY PROGRAM

#Example 2.16
import pandas as pd

data = {'Name': ['Tony','Robert','John','Alice'],
 'Age': [18,24,19,21],
 }

df = pd.DataFrame (data, columns = ['Name','Age'])

print (df)
df.to_csv('test.csv', index=False)

The following is the output of the program, displaying the contents of the
dataframe named df. Note that there is an additional index column.

 Name Age
0 Tony 18
1 Robert 24
2 John 19
3 Alice 21

This is the content of the test.csv file:

Name,Age
Tony,18
Robert,24
John,19
Alice,21

Example 2.17 shows how to read a CSV file. It uses the read_csv() function
to read a CSV file named test.csv into a dataframe named df.

EXAMPLE 2.17: THE DATA2.PY PROGRAM

#Example 2.17
import pandas
df = pandas.read_csv('test.csv')
print (df)

For more details about the CSV files, see this interesting tutorial from
RealPython.com:

https://realpython.com/python-csv/

Excel data files are popular among Windows users. Similar to CSV files,
the Python Pandas library can also easily read and write Excel files. But you

http://realpython.com
https://realpython.com/python-csv/

44	 Part I ■ Introduction

need to install the xlsxwriter library by typing pip install xlsxwriter at the
command line of your terminal program. Example 2.18 shows how to create a
dataframe and save it to an Excel file. It uses the functions ExcelWriter() and
to_excel() to save the dataframe variable df to an Excel file named test.xlsx.

EXAMPLE 2.18: THE EXCEL.PY PROGRAM

#Example 2.18
#pip install xlsxwriter

import pandas as pd

data = {'Name': ['Tony','Robert','John','Alice'],
 'Age': [18,24,19,21],
 }

df = pd.DataFrame (data, columns = ['Name','Age'])

print (df)
writer = pd.ExcelWriter("test.xlsx", engine='xlsxwriter')
#df.to_excel(writer, sheet_name='Sheet1',
startrow=7, startcol=4, header=False, index=False)
df.to_excel(writer,sheet_name = 'Sheet1', index=False)
writer.save()

Example 2.19 shows how to read an Excel file. It uses the read_excel()
function to read an Excel file named test.xlsx into a dataframe named df.

EXAMPLE 2.19: THE EXCEL2.PY PROGRAM

#Example 2.19
#pip install xlsxwriter

import pandas

df = pandas.read_excel('test.xlsx', sheet_name='Sheet1')
print(df)

That is it! That is all you need to follow the exercises in this book.
If you want to learn more with Python programming, apart from books and

paid courses, there are tons of free Python programming tutorials on the Inter-
net. Here are the most popular free tutorials:

https://docs.python.org/3/tutorial/index.html

https://realpython.com/

https://www.learnpython.org/

https://www.geeksforgeeks.org/python-programming-language/

https://docs.python.org/3/tutorial/index.html
https://realpython.com/
https://www.learnpython.org/
https://www.geeksforgeeks.org/python-programming-language/

	 Chapter 2 ■ AI Development Tools	 45

https://www.python.org/about/gettingstarted/

https://docs.python-guide.org/intro/learning/

https://www.w3schools.com/python/

The following are websites with extensive examples on Python machine
learning, deep learning, and computer vision:

https://machinelearningmastery.com/

https://www.pyimagesearch.com/start-here/

https://pythonprogramming.net/

https://www.learnopencv.com/

https://d2l.ai/

2.5  AI Datasets

Many AI applications require a large amount of data. Many public datasets are
available for such applications. The following is a list of datasets commonly
used by AI applications:

■■ UCI Machine Learning Repository is probably the most widely used
dataset for machine learning. It contains 559 datasets divided into differ-
ent categories, such as classification, regression, clustering and others.

https://archive.ics.uci.edu/ml/datasets.php

■■ CIFAR-10 is a popular image dataset for image recognition. CIFAR stands
for Canadian Institute for Advanced Research. The CIFAR-10 dataset
consists of 60,000 32 × 32 color images in 10 classes (or categories), with
6,000 images per class. There are 50,000 training images and 10,000 test
images.

https://www.cs.toronto.edu/~kriz/cifar.html

■■ ImageNet is the largest visual database for object recognition research
with more than 14 million images. At least one million of the images have
object bounding boxes. The images are divided into more than 20,000
categories. However, only 1,000 non-overlapping categories are used in
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC).

http://www.image-net.org/

■■ COCO (Common Objects in Context) is a large image dataset for object
detection, image segmentation, and image captioning. COCO has 330,000
images (more than 200,000 labeled), 1.5 million object instances, 80 object
categories, and 91 material categories.

http://www.image-net.org/

https://www.python.org/about/gettingstarted/
https://docs.python-guide.org/intro/learning/
https://www.w3schools.com/python/
https://machinelearningmastery.com/
https://www.pyimagesearch.com/start-here/
https://pythonprogramming.net/
https://www.learnopencv.com/
https://d2l.ai/
https://archive.ics.uci.edu/ml/datasets.php
https://www.cs.toronto.edu/~kriz/cifar.html
http://www.image-net.org/
http://www.image-net.org/

46	 Part I ■ Introduction

■■ Kaggle is a public data platform and a cloud-based workbench for data
science and artificial intelligence education. Kaggle has a public data
platform to provide open source datasets for researchers and runs a series
of machine learning competitions. Kaggle Kernel allows users to share
code and analysis in Python and R. More than 150,000 kernels (code snip-
pets) have been shared. Kaggle also has Kaggle Learn for short AI edu-
cation, as well as jobs board for employers to post machine learning and
AI jobs. It has more than 1 million registered users, called Kagglers. Kaggle
was acquired by Google in 2017.

https://www.kaggle.com/

■■ Google’s Open Images has a collection of 9 million images with labels
from more than 6,000 categories.

https://ai.googleblog.com/2016/09/introducing-open-images-

dataset.html

■■ Labeled Faces in the Wild (LFW) is a dataset of face photos for studying
the problem of unconstrained face recognition. The original LFW dataset
consists of 13,000 labeled images of faces from 5,749 people.

http://vis-www.cs.umass.edu/lfw/

■■ Quandl is the premier source of economic and financial data. It claims to
be used by more than 400,000 people, from the world’s top hedge funds,
asset managers, and investment banks.

https://www.quandl.com/

■■ Financial Times Market Data provides up-to-date information on stock
price indices, commodities, and foreign exchange from around the world.

https://markets.ft.com/data/

■■ US Data.Gov is the home of U.S. government open data. The data can
range from government budgets to school performance.

https://www.data.gov/

■■ US Healthcare Data includes data about population health, diseases,
drugs, and health plans.

https://healthdata.gov/

■■ EU Open Data Portal provides access to open data published by EU insti-
tutions in the area, such as economics, employment, science, the environ-
ment, and education.

https://data.europa.eu/euodp/en/home

https://www.kaggle.com/
https://ai.googleblog.com/2016/09/introducing-open-images-dataset.html
https://ai.googleblog.com/2016/09/introducing-open-images-dataset.html
http://vis-www.cs.umass.edu/lfw/
https://www.quandl.com/
https://markets.ft.com/data/
https://www.data.gov/
https://healthdata.gov/
https://data.europa.eu/euodp/en/home

	 Chapter 2 ■ AI Development Tools	 47

■■ The UK Data Service provides the UK’s largest collection of social,
economic, and population data.

https://www.ukdataservice.ac.uk/

■■ World Bank Open Data covers population demographics and a huge
number of economic and development indicators across the world.

https://data.worldbank.org/

For more information about the AI datasets, check out this interesting website
from Liobridge.ai, The 50 Best Free Datasets for Machine Learning:

https://lionbridge.ai/datasets/the-50-best-free-datasets-for-

machine-learning/

2.6  Python AI Frameworks

To develop Python AI applications, you need not only datasets but also open
source libraries and frameworks. One of the main attractions of using Python
for AI development is that there are so many resources available, many of which
are open sources and free to use.

The following are commonly used Python AI frameworks:

■■ Scikit-Learn is the most widely used Python framework for machine
learning. It is divided into two main categories, supervised learning and
unsupervised learning. For supervised learning, it has a set of algorithms
for classification and regression. For unsupervised learning, it has algo-
rithms for clustering. You can find more details on the following website,
where it is best to start with the “Getting Started” and “Tutorial”
sections:

https://scikit-learn.org/stable/

https://scikit-learn.org/stable/getting_started.html

https://scikit-learn.org/stable/tutorial/index.html

■■ Google’s TensorFlow is undoubtedly the most widely used Python frame-
work for AI. It is called TensorFlow because its basic data structure is a
tensor, a simple multidimensional array of numbers or functions. TensorFlow
is widely used for image classification, object detection, image segmentation,
pose detection, text sentiment, language translation, speech recognition,
and so on. It also provides TensorFlow.js, a JavsScript platform for web-
based AI developments.

https://github.com/tensorflow/tensorflow

https://www.tensorflow.org/tutorials

https://www.ukdataservice.ac.uk/
https://data.worldbank.org/
https://lionbridge.ai/datasets/the-50-best-free-datasets-for-machine-learning/
https://lionbridge.ai/datasets/the-50-best-free-datasets-for-machine-learning/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/getting_started.html
https://scikit-learn.org/stable/tutorial/index.html
https://github.com/tensorflow/tensorflow
https://www.tensorflow.org/tutorials

48	 Part I ■ Introduction

■■ Keras is an open source software library that provides a Python interface
for other AI libraries and frameworks. Keras is best known as the standard
interface for the TensorFlow. However, Keras, as a back end, also supports
many others, such as Microsoft Cognitive Toolkit, R, Theano, and PlaidML.

https://keras.io/

■■ Facebook’s PyTorch is an open source machine learning library based on
the Torch library. It is developed by Facebook’s AI Research Lab. PyTorch
is getting more popular in recent years and has caught up with TensorFlow.

https://pytorch.org/

■■ Caffe2 (Convolutional Architecture for Fast Feature Embedding) is a
well-known open source deep learning framework, originally developed
by Yangqing Jia during his PhD at the University of California – Berkeley.
Caffe2 is the second version of Caffe with many improvements such as
large-scale distributed training, mobile deployment, and new hardware
support, as well as new features such as recurrent neural networks, etc.

https://caffe2.ai/

■■ Baidu’s Paddle Paddle is an open source deep learning framework cre-
ated and supported by Baidu. Paddle stands for PArallel Distributed Deep
LEarning, and it provides 146 algorithms and more than 200 pretrained
models. It supports the training of ultra-large deep neural networks with
data sources distributed across hundreds of nodes. It is home to more
than 1.5 million developers. It also offers free online AI computations,
similar to Google’s Colab.

https://github.com/PaddlePaddle/Paddle

■■ H2O is a fully open source, distributed, fast, and scalable machine learning
platform, and one of the best tools for any machine learning team to have
when dealing with large volumes of data. It claims to be the number-one
open source platform for enterprise machine learning.

https://www.h2o.ai/

■■ DeepMind was cofounded by Demis Hassabis in September 2010. It made
headlines after its AlphaGo program defeated the South Korean world
champion Go player Lee Sedol in 2016. It then offered AlphaZero, a program
for playing Go, chess, and shogi (Japanese chess). In 2020, it made head-
lines again with its AlphaFold for solving the problem of protein folding.
DeepMind provides a range of examples, tools, and libraries through its
GitHub site.

https://deepmind.com/

https://github.com/deepmind

https://keras.io/
https://pytorch.org/
https://caffe2.ai/
https://github.com/PaddlePaddle/Paddle
https://www.h2o.ai/
https://deepmind.com/
https://github.com/deepmind

	 Chapter 2 ■ AI Development Tools	 49

■■ OpenAI was cofounded by Elon Musk with a more than $1 billion
investment in October 2015. It is largely seen as the competitor of DeepMind.
In 2016, it released the OpenAI Gym platform for reinforcement learning.
In 2020, it stirred up global interest when it announced its Generative
Pre-trained Transformer 3 (GPT-3) for natural language processing.
GPT-3 has an astonishing 175 billion parameters.

https://openai.com/

■■ Apache MXNet is a machine learning framework designed for both
efficiency and flexibility. It has API languages such as R, Python, and Julia,
and has been adopted by Amazon Web Services.

https://github.com/dmlc/mxnet

■■ OpenCV (Open Source Computer Vision Library) is probably the most
popular cross-platform and free library. It was originally developed by
Intel and aimed at real-time computer vision.

https://opencv-python-tutroals.readthedocs.io/en/latest/

py_tutorials/py_tutorials.html

■■ Scikit-image, formerly known as Scikits.image, is a collection of algo-
rithms for image processing. It is an open source image processing library
for the Python programming language. It is built on the NumPy and SciPy
libraries and contains algorithms for image segmentation, geometric
transformations, color space manipulation, analysis, filtering, morphology,
feature detection, and more.

https://scikit-image.org/

There are many other libraries, platforms, and frameworks. We will introduce
them in the book as we use them.

2.7  Summary

This chapter presented AI development tools, which include both hardware
tools and AI software tools. For AI hardware, the concept of standard com-
puters, computers with GPUs, computers with FPGAs, and latest IPUs from
Graphcore were introduced. For AI software, a list of different programming
languages was presented, such as C/C++, Java, C#, Python, Matlab, Ruby, R,
Julia, and Go, with Python chosen as the main focus of this book.

This chapter also introduced the Python programming language, including
download and installation, its development environments, and a short tutorial
of the Python language to help you get started.

Finally, it presented commonly used AI datasets and Python AI frameworks.

https://openai.com/
https://github.com/dmlc/mxnet
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_tutorials.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_tutorials.html
https://scikit-image.org/

50	 Part I ■ Introduction

2.8  Chapter Review Questions

Q2.1.	� What types of computer hardware are available for AI development?
Do an Internet search and find your ideal laptop/desktop computer
for AI development.

Q2.2.	� What programming languages can be used for AI development? List
the advantages and disadvantages of each language.

Q2.3.	� How is Python different from other programming languages such
as C/C++ or Java?

Q2.4.	 What is a Python virtual environment?

Q2.5.	� What are the most commonly used datasets in AI? Search the Internet
and find five other datasets.

Q2.6.	 What is Scipy?

Q2.7.	 What is Scikit-Learn?

Q2.8.	 What is TensorFlow?

Q2.9.	 What is Keras?

Q2.10.	 What is PyTorch?

Q2.11.	 What is Caffe2?

Q2.12.	 What is the standard input and output in a Python program?

Q2.13.	 What are commonly used AI datasets?

Q2.14.	 What are popular Python AI frameworks?

Machine Learning and
Deep Learning

In This Part:

Chapter 3: Machine Learning
Chapter 4: Deep Learning

Part II provides a detailed introduction of machine learning and deep learning,
the two most important aspects of AI.

Par t

II

C H A P T E R

53

3

3.1  Introduction

As you saw in Chapter 1, AI covers a broad area, and one of most important
aspects of AI is machine learning.

Machine learning (ML) is basically a set of mathematical algorithms developed
in the 1980s. Machine learning is an important subset of AI, and it is the science

Machine Learning
“Before we work on artificial intelligence why don’t we do something

about natural stupidity?”

—Steve Polyak (American Neurologist)

C H A P T E R O U T L I N E

3.1.	 Introduction
3.2.	 Supervised Learning: Classifications
3.3.	 Supervised Learning: Regressions
3.4.	 Unsupervised Learning
3.5.	 Semi-supervised Learning
3.6.	 Reinforcement Learning
3.7.	 Ensemble Learning
3.8.	 AutoML
3.9.	 PyCaret
3.10.	 LazyPredict
3.11.	 Summary
3.12.	 Chapter Review Questions

54	 Part II ■ Machine Learning and Deep Learning

that aims to teach computers, or machines, to learn from data and to analyze data
automatically, without human intervention. It includes a set of mathematical
algorithms that can make a decision or, more accurately, predict the results for
a given set of data. The term machine learning was coined by Arthur Samuel, an
American pioneer in computer science and artificial intelligence, in 1959 when
he was working at IBM. In 1997, a more modern definition of machine learning
was provided by Tom Mitchell as “A computer program is said to learn from
experience E with respect to some class of tasks T and performance measure P,
if its performance at tasks in T, as measured by P, improves with experience E.”

Machine learning can be divided into these four different categories:

■■ Supervised learning: In supervised learning, models are trained with
labeled data. During the training, algorithms continuously adjust the
parameters of models until the error calculated between the output and
the desired output for a given input is minimized. Supervised learning
is typically used in classification and regression. Classification means to
identify, for a given input sample, which class (or category) something
belongs to, such as dog or cat, male or female, cancer or no cancer, gen-
uine or fake, and so on. The most popular supervised learning algorithms
are the following: support vector machines, naive Bayes, linear discriminant
analysis, decision trees, k-nearest neighbor algorithm, neural networks
(multilayer perceptron), and similarity learning. Regression means, for
the given data, fit the data with a model to get the best-fit parameters.
The most popular regression algorithms are linear regression, logistic
regression, and polynomial regression.

■■ Unsupervised learning: In unsupervised learning, models are fed with
unlabeled data. The algorithms will study the data and divide it into
groups according to features. Unsupervised learning is typically used for
clustering and association. Clustering means dividing the data into groups.
The most popular clustering algorithm is K-means clustering. Association
means to discover rules that describe the majority portion of the data. A
popular association algorithm is the Apriori algorithm.

■■ Semi-supervised learning: In semi-supervised learning, both labeled
data and unlabeled data are used. This is particularly useful when not
all the data can be labeled. The basic procedure is to group the data into
different clusters using an unsupervised learning algorithm and then
using the existing labeled data to label the rest of the unlabeled data.
The most popular semi-supervised learning algorithms include self-
training, generative methods, mixture models, and graph-based methods.

	 Chapter 3 ■ Machine Learning	 55

Semi-supervised learning can typically be used in speech analysis, internet
content classification, and protein sequence classification.

■■ Reinforcement learning: In reinforcement learning, algorithms learn to
find, through trial and error, which actions can yield the maximum
cumulative reward. Reinforcement learning is widely used in robotics,
video gaming, and navigation.

Today, machine learning has been used in a variety of applications. In health-
care, for example, machine learning has been used for early disease detection,
cancer diagnosis, and drug discovery. In social media, machine learning has
been used for sentiment analysis, for example, to decide whether a comment
is positive or negative. In banking, machine learning has been used for fraud
detection. In e-commerce, machine learning has been used for recommending
songs, movies, or products based on customers’ previous shopping records.

3.2  Supervised Learning: Classifications

Supervised learning is the most important part of machine learning. Supervised
learning can be used for classification and regression. We will introduce
classification in this section and regression in the next section based on the
popular Scikit-Learn library (https://scikit-learn.org/).

Classification means for a given sample you need to predict which category it
belongs to. The best-known classification example in the field of machine learning
is iris flower classification, which is to classify iris flowers among three species
(Setosa, Versicolor, or Virginica) based on the measured length and width of the
sepals and petals. Another popular classification is breast cancer classification.
In this example, a set of measurement results (such as radius, area, perimeter,
texture, smoothness, compactness, concavity, symmetry, and so on) of a tissue
sample are given to decide whether the tissue is malignant or benign.

In machine learning, the following are commonly used terminologies. The
categories of flowers, or types of breast tissue (malignant or benign), are called
classes. The length and width of sepals and petals, or breast tissue measures,
are called features. Data points are called samples, and variables in the models
are called parameters.

■■ Class: The categories of the data

■■ Features: The measurements

■■ Samples: The data points

■■ Parameters: The variables of the model

https://scikit-learn.org/

56	 Part II ■ Machine Learning and Deep Learning

The most popular supervised learning algorithms are support vector machines,
naive Bayes, linear discriminant analysis, principal component analysis, decision
trees, random forest, k-nearest neighbor, neural networks (multilayer percep-
tron), and so on.

Find more details about supervised learning algorithms available by using
the Scikit-Learn library:

https://scikit-learn.org/stable/supervised_learning.html

Scikit-Learn Datasets
Datasets are important in machine learning. To make them easy to access, sev-
eral datasets are provided with the Scikit-Learn library.

Toy Datasets

■■ Boston house prices dataset

■■ Iris plants dataset

■■ Diabetes dataset

■■ Optical recognition of handwritten digits dataset

■■ Linnerrud dataset

■■ Wine recognition dataset

■■ Breast cancer Wisconsin (diagnostic) dataset

Real-World Datasets

■■ The Olivetti faces dataset

■■ The 20 newsgroups text dataset

■■ The Labeled Faces in the Wild face recognition dataset

■■ Forest covertypes

■■ RCV1 dataset

■■ Kddcup 99 dataset

■■ California Housing dataset

There are also generated datasets; for more details, see the following:

https://scikit-learn.org/stable/datasets.html

Support Vector Machines
Support vector machine (SVM) is the best-known supervised learning algorithm.
You always start machine learning with SVM. The SVM algorithm can be used

https://scikit-learn.org/stable/supervised_learning.html
https://scikit-learn.org/stable/datasets.html

	 Chapter 3 ■ Machine Learning	 57

for both classification and regression problems. It was developed at AT&T Bell
Laboratories by Vladimir Naumovich Vapnik and his colleagues in the 1990s.
It is one of the most robust prediction methods, based on the statistical learning
framework.

Figure 3.1 shows a simple example of two category classification problems
using SVM. You can imagine the two sets of data are two types of flowers, and
horizontal and vertical axes are the values of the petals’ length and width. SVM
will train on this data and create a hyperplane to separate the two sets of the
data. In this case, a hyperplane is a straight line. SVM adjusts the position of
the hyperplane to maximize the margins to both sets of data. The data points
on the margin are called the support vectors. This is a simple two-dimensional,
linear classification problem. SVM can also work on three-dimensional, non-
linear classification problems, in which cases a hyperplane could be a plain or
more complex curved surface.

The following is an interesting SVM tutorial that explains how SVM works
and how to use SVM with Scikit-Learn:

https://www.datacamp.com/community/tutorials/svm-classification-

scikit-learn-python

Now let’s look at some Python SVM classification examples. In this chapter, we
will use the Scikit-Learn library for classification. You can install the library by
typing pip install scikit-learn at the command line, as shown in Chapter 2.

Figure 3.1: The support vector machine with two sets of data points, the hyperplane (solid line),
the margin (between two dashed lines), and the support vectors (circled points on the dashed
line)

https://www.datacamp.com/community/tutorials/svm-classification-scikit-learn-python
https://www.datacamp.com/community/tutorials/svm-classification-scikit-learn-python

58	 Part II ■ Machine Learning and Deep Learning

Example 3.1 shows a simple SVM gender classification example based on
height, weight, and shoe size. It first uses from sklearn import svm to import
the SVM library. It uses an array called X to store four sets of values of height in
centimeters, weight in kilos, and shoe size in UK size, and uses an array named
y to store four sets of known genders, 0 for Male, 1 for Female. It then trains
the SVM classifier and makes a prediction for a given height, weight, and shoe
size [[160, 60, 7]].

EXAMPLE 3.1  THE SVM.PY PROGRAM

#Example 3.1 Python SVM Classifications
from sklearn import svm
X = [[170, 70, 10], [180, 80,12], [170, 65, 8],[160, 55, 7]]
#Height[cm], Weight[kg], Shoesize[UK]
y = [0, 0, 1, 1] #Gender, 0: Male, 1: Female
clf = svm.SVC()
clf.fit(X, y)
#Predict
p = clf.predict([[160, 60, 7]])
print(p)

When you run the code, you will get the following output; [1] here means
it is a female:

[1]

EXERCISE 3.1

Modify the Python program from Example 3.1 to use six samples of X and y.

The Iris dataset is probably the most widely used example for classification
problems. Figure 3.2 shows photos of three different types of Iris flowers, Ver-
sicolor, Setosa, and Virginica, as well as the location of the sepal and petal.

Iris Versicolor and location of Sepal and Petal

Iris Setosa

(Source: https://upload.wikimedia.org/wikipedia/commons/7/70/Iris_
setosa_var._setosa_%282594194341%29.jpg)

Iris Virginica

(Source: https://en.wikipedia.org/wiki/Iris_virginica#/media/
File:Iris_virginica_2.jpg)

https://upload.wikimedia.org/wikipedia/commons/7/70/Iris_setosa_var._setosa_(2594194341).jpg
https://upload.wikimedia.org/wikipedia/commons/7/70/Iris_setosa_var._setosa_(2594194341).jpg
https://en.wikipedia.org/wiki/Iris_virginica#/media/File:Iris_virginica_2.jpg
https://en.wikipedia.org/wiki/Iris_virginica#/media/File:Iris_virginica_2.jpg

	 Chapter 3 ■ Machine Learning	 59

Figure 3.2: Example of three different types of Iris flowers, Versicolor (top), Setosa (middle), and
Virginica (bottom), as well as the location of the sepal and petal (Modified from Source:
https://commons.wikimedia.org/wiki/File:Iris_versicolor_3.jpg)

https://commons.wikimedia.org/wiki/File:Iris_versicolor_3.jpg

60	 Part II ■ Machine Learning and Deep Learning

For more details, see the following interesting article about Iris flowers and
machine learning:

https://medium.com/analytics-vidhya/exploration-of-iris-dataset-

using-scikit-learn-part-1-8ac5604937f8

Example 3.2 shows an SVM classification example for using the Iris dataset that
comes with Scikit-Learn. It uses datasets.load_iris() to load the Iris dataset.

EXAMPLE 3.2  THE SVM2.PY PROGRAM

#Example 3.2 Python SVM Iris Classifications
from sklearn import svm, datasets
iris = datasets.load_iris()
Take the first two features: Sepal length and Sepal width
X = iris.data[:, :2]
y = iris.target #0: Setosa, 1: Versicolour, 2:Virginica
print(y)
clf = svm.SVC()
clf.fit(X, y)
#Predict the flower for a given Sepal length and width
p = clf.predict([[5.4, 3.2]])
print(p)

EXERCISE 3.2

Modify the Python program from Example 3.2 so that it uses the third and fourth fea-
tures (petal length and width) as X. Compare the results with Example 3.2.

In machine learning, data is usually saved in CSV format. Example 3.3 shows
an SVM classification example for using the Iris dataset by reading from a CSV
file named iris.csv with the function pd.read_csv().

EXAMPLE 3.3  THE SVM3.PY PROGRAM

#Example 3.3 Python SVM Iris CSV Classifications
from sklearn import svm, datasets
import pandas as pd

df = pd.read_csv('iris.csv')
X = df.values[:,:2]
s = df['species']
d = dict([(y,x) for x,y in enumerate(sorted(set(s)))])
y = [d[x] for x in s]

clf = svm.SVC()
clf.fit(X, y)

https://medium.com/analytics-vidhya/exploration-of-iris-dataset-using-scikit-learn-part-1-8ac5604937f8
https://medium.com/analytics-vidhya/exploration-of-iris-dataset-using-scikit-learn-part-1-8ac5604937f8

	 Chapter 3 ■ Machine Learning	 61

#Predict the flower for a given Sepal length and width
p = clf.predict([[5.4, 3.2]])
print(p)

Many people shared their CSV datasets on the Web, such as GitHub.com. You
can use the function pd.read_csv() to read the data from a URL just as you
would from a local file.

Example 3.4 shows an example of SVM classification, reading a CSV file in
the Iris dataset from a URL. The data read by the pd.read_csv() function is
stored in a variable called df, which is in Pandas’ dataframe format. There are
several useful functions in the dataframe format.

df.shape has information about the size of the data, number of rows, and
number of columns.

df.head(10) shows the first five rows of the data. By default, df.head()
shows the first five rows of the data.

df.tail(10) shows the last five rows of the data. By default, df.tail() shows
the last five rows of the data.

df.describe shows the summary of the data.
df.isna() or df.isnull() is a function that shows Not A Number (NAN)

or missing numbers. df.isna().sum() shows the number of NANs or missing
numbers in each column. df.isna().sum().sum() shows the total number of
NANs or missing numbers of the data.

df.dropna() removes the NANs.
df. groupby('species').size() shows the number of each species.
df.hist() plots the histogram of the data.
scatter_matrix() plots the scatter matrix of the data.
pyplot.show() shows the plot.

EXAMPLE 3.4  THE SVM4.PY PROGRAM

#Example 3.4 Python SVM Iris URL Classifications
from sklearn import svm, datasets
import pandas as pd
from matplotlib import pyplot
from pandas.plotting import scatter_matrix

df = pd.read_csv('https://gist.githubusercontent.com/curran/
a08a1080b88344b0c8a7/raw/0e7a9b0a5d22642a06d3d5b9bcbad9890c8ee534/
iris.csv')

print(df.shape)
print(df.head(10))
print(df.tail(10))
print(df.describe())

http://github.com

62	 Part II ■ Machine Learning and Deep Learning

#count NAN
Print(df.isna().sum().sum())
#drop NAN values
df = df.dropna()

print(df.groupby('species').size())
histograms
df.hist()
pyplot.show()
scatter plot matrix
scatter_matrix(df)
pyplot.show()

X = df.values[:,:2]
s = df['species']
d = dict([(y,x) for x,y in enumerate(sorted(set(s)))])
y = [d[x] for x in s]

clf = svm.SVC()
clf.fit(X, y)
#Predict the flower for a given Sepal length and width
p = clf.predict([[5.4, 3.2]])
print(p)

The following is the output of the previous program. This shows the shape
of the data, 150 rows and 5 columns.

 (150, 5)

This shows the first 10 rows of the data:

 sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 setosa
1 4.9 3.0 1.4 0.2 setosa
2 4.7 3.2 1.3 0.2 setosa
3 4.6 3.1 1.5 0.2 setosa
4 5.0 3.6 1.4 0.2 setosa
5 5.4 3.9 1.7 0.4 setosa
6 4.6 3.4 1.4 0.3 setosa
7 5.0 3.4 1.5 0.2 setosa
8 4.4 2.9 1.4 0.2 setosa
9 4.9 3.1 1.5 0.1 setosa

This shows the last 10 rows of the data:

 sepal_length sepal_width petal_length petal_width species
140 6.7 3.1 5.6 2.4 virginica
141 6.9 3.1 5.1 2.3 virginica
142 5.8 2.7 5.1 1.9 virginica
143 6.8 3.2 5.9 2.3 virginica

	 Chapter 3 ■ Machine Learning	 63

144 6.7 3.3 5.7 2.5 virginica
145 6.7 3.0 5.2 2.3 virginica
146 6.3 2.5 5.0 1.9 virginica
147 6.5 3.0 5.2 2.0 virginica
148 6.2 3.4 5.4 2.3 virginica
149 5.9 3.0 5.1 1.8 virginica

This shows the description of the data:

 sepal_length sepal_width petal_length petal_width
count 150.000000 150.000000 150.000000 150.000000
mean 5.843333 3.054000 3.758667 1.198667
std 0.828066 0.433594 1.764420 0.763161
min 4.300000 2.000000 1.000000 0.100000
25% 5.100000 2.800000 1.600000 0.300000
50% 5.800000 3.000000 4.350000 1.300000
75% 6.400000 3.300000 5.100000 1.800000
max 7.900000 4.400000 6.900000 2.500000

This shows the number of rows with NAN values:

0

This shows the number of rows for different species:

species
setosa 50
versicolor 50
virginica 50

This shows the prediction result (setosa) for the given input ([[5.4, 3.2]]):

dtype: int64
[0]

Figure 3.3 shows the histogram plot (top) and matrix scatter plot (bottom) of
the previous program. In the histogram, the y-axis shows the number of sam-
ples, and the x-axis shows the values of sepal length, sepal width, petal length,
and petal width. The matrix scatter plot shows a matrix of 2D scatter plots of
the data points with the four features (sepal length, sepal width, petal length,
and petal width) against each other. This is useful as it gives an overview of
all the data points in terms of all the features so that you can easily see which
two features can separate the data better. For example, the scatter plot of petal
length against sepal width gives the largest separation of the points into two
groups, and in the scatter plot of petal width against sepal length, one group
of data was close together in the corner.

On the diagonal of the matrix, as it is the same feature against the same fea-
ture, the histogram of the feature is displayed instead.

64	 Part II ■ Machine Learning and Deep Learning

Figure 3.3: The histogram plot (top) and the matrix plot (bottom) of the Example 3.4

	 Chapter 3 ■ Machine Learning	 65

EXERCISE 3.3

Modify the Python program from Example 3.4 so that it plots the first two features
(sepal length and sepal width) of all the data points as a scatter plot.

The breast cancer dataset is another popular dataset for classification problems.
Example 3.5 shows how to load the breast cancer data from the Scikit-Learn
library using the load_breast_cancer() function and then print the feature
names, the data, and the target names on-screen.

EXAMPLE 3.5  THE CANCER.PY PROGRAM

#Example 3.5 Breast Cancer Data
from sklearn.datasets import load_breast_cancer

cancer = load_breast_cancer()
print(cancer['feature_names'])
print(cancer['data'])
print(cancer.target_names)

The following is the output of feature names of the breast cancer dataset. Each
feature here is a type of measurement, such as radius, size, texture, smoothness,
and so on.

 ['mean radius' 'mean texture' 'mean perimeter' 'mean area'
 'mean smoothness' 'mean compactness' 'mean concavity'
 'mean concave points' 'mean symmetry' 'mean fractal dimension'
 'radius error' 'texture error' 'perimeter error' 'area error'
 'smoothness error' 'compactness error' 'concavity error'
 'concave points error' 'symmetry error' 'fractal dimension error'
 'worst radius' 'worst texture' 'worst perimeter' 'worst area'
 'worst smoothness' 'worst compactness' 'worst concavity'
 'worst concave points' 'worst symmetry' 'worst fractal dimension']

The following is the output of the data, which are the values of each feature
of the breast cancer dataset:

 [[1.799e+01 1.038e+01 1.228e+02 ... 2.654e-01 4.601e-01 1.189e-01]
 [2.057e+01 1.777e+01 1.329e+02 ... 1.860e-01 2.750e-01 8.902e-02]
 [1.969e+01 2.125e+01 1.300e+02 ... 2.430e-01 3.613e-01 8.758e-02]
 ...
 [1.660e+01 2.808e+01 1.083e+02 ... 1.418e-01 2.218e-01 7.820e-02]
 [2.060e+01 2.933e+01 1.401e+02 ... 2.650e-01 4.087e-01 1.240e-01]
 [7.760e+00 2.454e+01 4.792e+01 ... 0.000e+00 2.871e-01 7.039e-02]]

66	 Part II ■ Machine Learning and Deep Learning

The following is the output of the target names of the breast cancer dataset.
There are two classes: 0 is malignant, and 1 is benign.

['malignant' 'benign']

Example 3.6 shows an example of SVM classification for breast cancer. It
first loads the breast cancer data’s load_breast_cancer() function and then
puts the data into a dataframe format, uses features data as X and target as
y, and uses train_test_split() to split X and y into training and testing sets.
Specifically, 80 percent of data is for training, and 20 percent is for testing. It
uses the training data X_train and y_train to train an SVM and uses testing
data X_test to make predictions. Finally, it prints the confusion matrix and
classification report.

EXAMPLE 3.6  THE CANCER2.PY PROGRAM

#Example 3.6 Python SVM Breast Cancer Classifications
import pandas as pd
import numpy as np
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC

cancer = load_breast_cancer()
X = cancer.data # All of the features
y = cancer.target # All of the labels
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size =
0.2, random_state = 20)

clf = SVC()
clf.fit(X_train, y_train)

#Prediction
y_predict = clf.predict(X_test)

#Print Confusion Matrix and Classification Report
from sklearn.metrics import classification_report, confusion_matrix
cm = np.array(confusion_matrix(y_test, y_predict, labels=[1,0]))
confusion = pd.DataFrame(cm, index=['is_cancer', 'is_healthy'],
 columns=['predicted_cancer','predicted_
healthy'])
print(confusion)
print(classification_report(y_test, y_predict))

The following is the output of confusion matrix. A confusion matrix is a simple
way to show the performance of classification. The results show that there are

	 Chapter 3 ■ Machine Learning	 67

66 cancer tissues that have been correctly predicted as cancer, or malignant, and
40 healthy tissues have been correctly predicted as healthy, or benign. There
are eight healthy tissues wrongly predicted as cancer, and zero cancer tissue
wrongly predicted as healthy.

 predicted_cancer predicted_healthy
is_cancer 66 0
is_healthy 8 40

The following is the output of the classification report, from which you can
see the SVM classification has an accuracy of 93 percent:

 precision recall f1-score support

 0.0 1.00 0.83 0.91 48
 1.0 0.89 1.00 0.94 66

 accuracy 0.93 114
 macro avg 0.95 0.92 0.93 114
weighted avg 0.94 0.93 0.93 114

EXERCISE 3.4

Modify the Python program from Example 3.6 so that it plots the histogram of radius,
size, texture, and smoothness of all the data points.

Naive Bayes
Naive Bayes is another popular supervised learning algorithm, which applies
Bayes’ theorem with the naive assumption of the probabilities of features for
a given dataset. Naive assumption means every feature is independent of the
others.

According to Bayes’ theorem, the probability of a class (C) happening for a
given set of features (X) can be calculated as follows:

	
P C X

P C P X C

P X
|

| 	

or:

	 Posterior
Prior Likelihood

Evidence
	

68	 Part II ■ Machine Learning and Deep Learning

where:

P(C|X) is the posterior, the probability of class (C) given features (X).

P(C) is the prior, the probability of class (C).

P(X|C) is the likelihood, the probability of features (X) for given class (C).

P(X) is the prior, probability of features (X).

To train a naive Bayes classifier, you just need to calculate all the probabilities
P(C) of all the classes (types of flowers) for the given features (sepals and petals’
length and width) and evidence P(X). For a given dataset, P(C) and P(X) are
constants. Hence, they are saved for future use. Given a sample X, the likelihood
P(X|C) will be calculated, and the posterior P(C|X) can be calculated.

For more details, see the following resources:

https://scikit-learn.org/stable/modules/naive_bayes.html

https://en.wikipedia.org/wiki/Naive_Bayes_classifier

Example 3.7 shows an example of a naive Bayes classification for irises. In
this case, it uses X, y = load_iris(return_X_y=True) to load the iris data and
returns the data as X and y, where X includes all four features of that data. It
then trains the naive Bayes classifier model and makes a prediction for a given
sample with the sepal’s length and width and the petal’s length and width.

EXAMPLE 3.7  THE NAIVEBAYES.PY PROGRAM

#Example 3.7 Naive Bayes Iris
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
X, y = load_iris(return_X_y=True)
print(X)
clf = GaussianNB()
clf.fit(X, y)
p = clf.predict([[5.0, 3.4, 1.5, 0.4]])
print(p)

For a large amount of data, you can save the trained model to a file and load
the model from the file later. Saving the model to a file is called serialization.

You can use Sklearn’s joblib for this.

from sklearn.externals import joblib
joblib.dump(clf, 'model.pkl')

Once the model has been saved, you can then load this model into memory
with a single line of code. Loading the model back into your workspace is called
deserialization.

clf2 = joblib.load('model.pkl')

https://scikit-learn.org/stable/modules/naive_bayes.html
https://en.wikipedia.org/wiki/Naive_Bayes_classifier

	 Chapter 3 ■ Machine Learning	 69

EXERCISE 3.5

Modify the Python program from Example 3.7 so that it first trains the naive Bayes
model, saves the model to a file, loads the model from the file, and makes a prediction
with the model.

Linear Discriminant Analysis
Linear discriminant analysis (LDA) is one of the most commonly used dimension
reduction techniques in machine learning. The goal is to project a dataset onto
a lower-dimensional space to separate them better into different classes and to
reduce computational costs.

Figure 3.4 illustrates how LDA works. For a given set of data with three
classes, measured on two features (x1 and x2), all mingled together, it is diffi-
cult to separate them; see Figure 3.4 (left). LDA will try to find new axes, see
the dashed lines, and project the data to the new axes (LDA1 and LDA2); it will
adjust the axes according to the means and variances of each group of data to
best separate the data into different classes. After LDA, you can plot the data
according to new axes (LDA1 and LDA2), which can improve the separation,
as shown in Figure 3.4 (right).

LDA basically projects the data from one dimension linearly into another
dimension. Apart from LDA, there is also nonlinear discriminant analysis.

■■ Quadratic discriminant analysis (QDA)

■■ Flexible discriminant analysis (FDA)

■■ Regularized discriminant analysis (RDA)

For more details about LDA and QDA in the Scikit-Learn library, see the
following:

https://scikit-learn.org/stable/modules/lda_qda.html

Figure 3.4: LDA: a set of given data before LDA (left) and the data after LDA (right)

https://scikit-learn.org/stable/modules/lda_qda.html

70	 Part II ■ Machine Learning and Deep Learning

Here is an interesting YouTube video from StatQuest by Josh Starmer that
clearly explains LDA:

https://www.youtube.com/watch?v=azXCzI57Yfc

Example 3.8 shows a simple LDA classification example. In this example, it
uses make_classification() to generate a simulated dataset as X and y, with
1,000 samples and 4 features. It then trains the LDA classifier model and makes
a prediction for a given sample with four values.

EXAMPLE 3.8  THE LDA.PY PROGRAM

#Example 3.8 LinearDiscriminantAnalysis Classification
from sklearn.datasets import load_iris
from sklearn.datasets import make_classification
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

X, y = make_classification(n_samples=1000, n_features=4,
 n_informative=2, n_redundant=0,
 random_state=0, shuffle=False)
print(X)
clf = LinearDiscriminantAnalysis()
clf.fit(X, y)
print(clf.predict([[0, 0, 0, 0]]))

EXERCISE 3.6

Modify the Python program from Example 3.8 so that it uses 6 features and 2,000 sam-
ples. Compare the results with Example 3.8.

Principal Component Analysis
Principal component analysis (PCA) is another common dimension reduction
technique in machine learning, similar to LDA. The goal is also to project a
dataset onto a lower-dimensional space. LDA aims to create new axes (called
discriminants) to maximize class separation, while PCA aims to find new axes
(called components) to maximize variance (the average of the squared differences
from the mean). In PCA, the number of the principal components is less than
or equal to the number of original variables, the first principal component will
have the largest possible variance, and each succeeding component in turn has
the largest variance possible under the constraint that it is orthogonal to the
preceding components. Figure 3.5 illustrates the original data plotted according
to its features (x1 and x2) and the data after PCA, plotted according to new axes
(PCA1 and PCA2).

https://www.youtube.com/watch?v=azXCzI57Yfc

	 Chapter 3 ■ Machine Learning	 71

Figure 3.6 shows an interesting article about LDA, which also shows a
comparison of LDA and PCA. LDA can be described as a supervised algorithm,
as it aims to maximize separation of the classes, while PCA can be described as
an unsupervised algorithm, as it ignores the classes and aims to maximize the
variance of the data. The author also provides a vivid explanation of the Iris
dataset and a Python implement of LDA with step-by-step instructions. So, if
you are interested in learning the mathematical background of LDA, this is an
interesting article to read.

This is another article that shows the step-by-step Python implementation
of PCA:

https://sebastianraschka.com/Articles/2014_pca_step_by_step.html

Figure 3.5: PCA: a set of given data before PCA (left) and the data after PCA (right)

Figure 3.6: An article about linear discriminant analysis, which compares PCA and LDA
(Source: https://sebastianraschka.com/Articles/2014_python_lda.html)

https://sebastianraschka.com/Articles/2014_pca_step_by_step.html
https://sebastianraschka.com/Articles/2014_python_lda.html

72	 Part II ■ Machine Learning and Deep Learning

Here is another interesting YouTube video from StatQuest by Josh Starmer
that clearly explains PCA:

https://www.youtube.com/watch?app=desktop&v=FgakZw6K1QQ

Example 3.9 shows some simple PCA example code. In this example, it uses
make_classification() to generate a simulated dataset as X and y, with 1,000
samples and 4 features. It then trains the PCA model and displays the PCA
results. Although PCA cannot be used directly for classification, it is commonly
used as a dimension reduction technique before classification.

EXAMPLE 3.9  THE PCA.PY PROGRAM

#Example 3.9 Principal Component Analysis
from sklearn.datasets import load_iris
from sklearn.datasets import make_classification
from sklearn.decomposition import PCA

X, y = make_classification(n_samples=1000, n_features=4,
 n_informative=2, n_redundant=0,
 random_state=0, shuffle=False)
print(X)
clf = PCA()
clf.fit(X, y)
print(clf.explained_variance_ratio_)
print(clf.singular_values_)

Example 3.10 shows a simple PCA example for the Iris dataset. In this example,
it loads the Iris dataset as X and y arrays, plots the original X data, trains the
PCA model, and transforms the X into PCA domains. It finally displays the
transformed X in PCA domains using the first two PCA components, PCA1
and PCA2. Figure 3.7 shows the output of Example 3.10, and you can clearly
see the differences of original data and PCA-transformed data.

EXAMPLE 3.10  THE PCA2.PY PROGRAM

#Example 3.10 Principal Component Analysis Iris
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn import decomposition
from sklearn import datasets

#Load Iris data
iris = datasets.load_iris()
X = iris.data

https://www.youtube.com/watch?app=desktop&v=FgakZw6K1QQ

	 Chapter 3 ■ Machine Learning	 73

y = iris.target

#Plot Iris data
f = plt.figure(1)
plt.scatter(X[:,0], X[:,1], c=y)
plt.xlabel('sepals length')
plt.ylabel('sepals width')
plt.title('Original Data')
f.show()

#Perform PCA
pca = decomposition.PCA(n_components=3)
pca.fit(X)
X1 = pca.transform(X)

#Plot PCA data
g = plt.figure(2)
#y = np.choose(y, [1, 2, 0]).astype(float)
plt.scatter(X1[:, 0], X1[:, 1], c=y)
plt.xlabel('PCA1')
plt.ylabel('PCA2')
plt.title('PCA Data')
g.show()

EXERCISE 3.7

Modify the Python program from Example 3.10 so that it performs PCA on the breast
cancer data.

Decision Tree
A decision tree is one of the most widely used, nonparametric, supervised
learning methods, and it can be used for both classification and regression prob-
lems. A set of rules can be derived from a decision tree (an upside-down tree).
Decisions can be made based on the derived rules. In a decision tree, a note is
the query variable, and the edge is the value of the query variable. A decision
process starts from the tree root and goes down to branches and leaves. Hence,
each branch represents an if-then rule. For example, the first branch of the
decision tree in Figure 3.8 represents the rule: if the weather forecast is sunny
and the humidity is high, then there is no play of golf. The deeper the tree is,
the more complex the rules and the model. The goal of a decision tree training
algorithm is to create a decision tree based on a dataset and finally produce a
set of rules for prediction given a sample.

74	 Part II ■ Machine Learning and Deep Learning

Figure 3.7: The scatter plot of the original Iris dataset (top) and the scatter plot of first two
components of the corresponding PCA results (bottom)

	 Chapter 3 ■ Machine Learning	 75

Figure 3.8 shows a simple decision tree to determine whether to play golf.

Here is a similar example of a decision tree:

https://www.geeksforgeeks.org/decision-tree/

For more details of a decision tree in the Scikit-Learn library, see the follow-
ing page:

https://scikit-learn.org/stable/modules/tree.html

Example 3.11 shows an example of decision tree classification for iris flowers.
In this case, it uses X, y = load_iris(return_X_y=True) to load the Iris data
and returns the data as X and y, using all four features of the data. It then splits
the data into the training set and the testing set. It then trains the decision tree
classifier model and makes predictions on the testing set. It also calculates and
displays the total number of points, as well as the number of points that are
correctly predicted.

EXAMPLE 3.11  THE DT.PY PROGRAM

#Example 3.11 Decision Tree Classification
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier

X, y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_
size=0.5, random_state=0)
clf = DecisionTreeClassifier()
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
N = y_test.shape[0]
C = (y_test == y_pred).sum()
print("Total points: %d Correctly labeled points : %d" %(N,C))

Figure 3.8: A simple decision tree to decide whether to play golf

https://www.geeksforgeeks.org/decision-tree/
https://scikit-learn.org/stable/modules/tree.html

76	 Part II ■ Machine Learning and Deep Learning

EXERCISE 3.8

Modify the Python program from Example 3.11 so that it performs decision tree
classification on Scikit-Learn’s wine data (https://scikit-learn.org/stable/modules/gen-
erated/sklearn.datasets.load_wine.html).

Random Forest
A random forest is an algorithm that uses multiple decision trees. A single decision
tree might not be enough for some applications. A random forest randomly
creates a set of decision trees, with each decision tree working on a random
subset of data samples. There are different approaches to create random forests.

A random forest then combines the output of individual decision trees to
generate the final output. A random forest is an ensemble learning algorithm
that can be used for both classification and regression problems. Figure 3.9
illustrates a random forest algorithm; by using multiple decision trees, it can
reduce overfitting and improve the performances.

Here is an interesting YouTube video from Augmented Startups that explains
a random forest in a fun and easy manner:

https://www.youtube.com/watch?v=D_2LkhMJcfY

For more details of a random forest in the Scikit-Learn library, see the following:

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestClassifier.html

Example 3.12 shows an example of a random forest classification for iris
flowers. In this case, it uses X, y = load_iris(return_X_y=True) to load the
iris data and returns the data as X and y, using all four features of the data. It
then trains the random forest classifier model, makes predictions on the test
samples, and calculates the number of points predicted correctly.

Figure 3.9: Random forest, based on multiple decision trees

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_wine.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_wine.html
https://www.youtube.com/watch?v=D_2LkhMJcfY
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

	 Chapter 3 ■ Machine Learning	 77

EXAMPLE 3.12  THE RF.PY PROGRAM

#Example 3.12 Random Forest
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier

X, y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_
size=0.5, random_state=0)
clf = RandomForestClassifier()
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
print("Total points: %d Correctly labeled points : %d" %(y_test.
shape[0],(y_test == y_pred).sum()))

EXERCISE 3.9

Modify the Python program from Example 3.12 so that it performs random forest
classification on Scikit-Learn’s diabetes data (https://scikit-learn.org/
stable/modules/generated/sklearn.datasets.load_diabetes
.html#sklearn.datasets.load_diabetes).

K-Nearest Neighbors
K-nearest neighbors (K-NN) is a classification (or regression) algorithm that uses
K number of nearest points to determine the classification of a dataset. Figure 3.10
shows an example of K-NN classification from Wikipedia. The round point is a
test sample, which needs to be classified as either a square or a triangle. Regarding
the three nearest neighbors, see the solid circle; it should belong to triangles as
there are two triangles and only one square inside the circle. If we choose five
nearest neighbors, see the dashed circle; it should belong to the squares, as there
are three squares, and two triangles inside the circle. Don’t confuse K-nearest
neighbors with K-means. K-means is an unsupervised learning algorithm that
is mainly used for clustering. We will introduce K-means in section 3.4.

Here is an interesting YouTube video from Simplilearn about K-NN:

https://www.youtube.com/watch?v=4HKqjENq9OU

For more details of K-NN in the Scikit-Learn library, visit this site:

https://scikit-learn.org/stable/modules/neighbors.html

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html#sklearn.datasets.load_diabetes
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html#sklearn.datasets.load_diabetes
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html#sklearn.datasets.load_diabetes
https://www.youtube.com/watch?v=4HKqjENq9OU
https://scikit-learn.org/stable/modules/neighbors.html

78	 Part II ■ Machine Learning and Deep Learning

Example 3.13 shows an example of K-NN classification for iris flowers. In
this case, it uses X, y = load_iris(return_X_y=True) to load the iris data and
returns the data as X and y arrays, using all four features of that data. It then
trains the K-NN classifier model, makes predictions on the test samples, and
calculates the number of points predicted correctly.

EXAMPLE 3.13  THE KNN.PY PROGRAM

#Example 3.13 K-Nearest Neighbors Classification
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier

X, y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_
size=0.5, random_state=0)
clf = KNeighborsClassifier()
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
print("Total points: %d Correctly labeled points : %d" %(y_test.
shape[0],(y_test == y_pred).sum()))

Neural Networks
A neural network (NN), or artificial neural network (ANN), is a typical three-
layer network with one input layer, one hidden layer, and one output layer.
Neural networks can be used for both classification and regression. We will
have a more detailed description about neural networks in Chapter 4.

Figure 3.10: Example of K-nearest neighbors
(Source: https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm#/
media/File:KnnClassification.svg)

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm#/media/File:KnnClassification.svg
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm#/media/File:KnnClassification.svg

	 Chapter 3 ■ Machine Learning	 79

For more details of neural networks, also called multilayer perceptron, in the
Scikit-Learn library, see the following:

https://scikit-learn.org/stable/modules/neural_networks_super-

vised.html

Example 3.14 compares different classification models. It uses an array called
names to store all the names of the different classifiers and an array called clas-
sifiers to store the functions of all the different classifiers. It then loads the
iris data and splits it into training and testing sets. A for loop is run through all
the classification models, from training the model and making a prediction to
calculating the accuracy, as a ratio percentage of the number classified correctly
over the total number of points.

EXAMPLE 3.14  THE CLASSIFY.PY PROGRAM

#Example 3.14 Comparison of Different Classification
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.naive_bayes import GaussianNB
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.discriminant_analysis import
QuadraticDiscriminantAnalysis

names = ["SVM", "Naive Bayes", "LDA",
 "QDA", "Decision Tree", "Random Forest",
 "Nearest Neighbors", "Neural Networks"]

classifiers = [
 SVC(),
 GaussianNB(),
 LinearDiscriminantAnalysis(),
 QuadraticDiscriminantAnalysis(),
 DecisionTreeClassifier(),
 RandomForestClassifier(),
 KNeighborsClassifier(),
 MLPClassifier(alpha=1, max_iter=1000)]

X, y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_
size=0.5, random_state=0)

https://scikit-learn.org/stable/modules/neural_networks_supervised.html
https://scikit-learn.org/stable/modules/neural_networks_supervised.html

80	 Part II ■ Machine Learning and Deep Learning

for name, clf in zip(names, classifiers):
 clf.fit(X_train, y_train)
 score = clf.score(X_test, y_test)
 print(name +": " + str(score))

The following is the output of the program. It shows that the neural networks
gives the best classification results with 98.7 percent of accuracy, compared to
other models.

SVM: 0.9466666666666667
Naive Bayes: 0.9466666666666667
LDA: 0.96
QDA: 0.96
Decision Tree: 0.96
Random Forest: 0.9466666666666667
Nearest Neighbors: 0.96
Neural Networks: 0.9866666666666667

EXERCISE 3.10

Modify the Python program from Example 3.14 so that it performs the classification on
Scikit-Learn’s diabetes data (https://scikit-learn.org/stable/modules/
generated/sklearn.datasets.load_diabetes.html#sklearn
.datasets.load_diabetes).

3.3  Supervised Learning: Regressions

Regression is another important aspect of supervised learning. Regression means
fitting the data with a mathematical model using a technique called least squares
fitting. Regression can be divided into linear regression and nonlinear regres-
sion. In linear regression, we fit the data with a straight line (f x ax b),
where a is the slope, and b is the intercept, as shown in Figure 3.11. For a given
dataset, we calculated the sum of the squares of the errors (ei), calculate the
distances between the data points and the straight line, and adjust the slope
(a) and the intercept (b) of the straight line, until we have reached the smallest
sum of the squares (2), which is why it’s called least squares. Linear regression
can also be extended to multiple linear regression; in this case, we fit the data
with multiple straight lines.

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html#sklearn.datasets.load_diabetes
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html#sklearn.datasets.load_diabetes
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_diabetes.html#sklearn.datasets.load_diabetes

	 Chapter 3 ■ Machine Learning	 81

If you are interested in the mathematical details of least squares regression, here
is an interesting tutorial about least squares fitting from Wolfram MathWorld:

https://mathworld.wolfram.com/LeastSquaresFitting.html

For nonlinear regression, we fit the data with more complicated mathematical
models, such as exponentials and polynomials; see Figure 3.12.

A common nonlinear regression is logistic regression, where we fit the data
with logistic function. Logistic regression is particularly suitable for the data

Figure 3.12: Example of nonlinear regression

Figure 3.11: Linear regression and the distances between the data points and the straight line

https://mathworld.wolfram.com/LeastSquaresFitting.html

82	 Part II ■ Machine Learning and Deep Learning

that is dichotomous (binary); see Figure 3.13. It is typically used to predict a
binary outcome (pass/fail, win/lose) based on a set of independent variables.

Next, let’s look at some Python regression examples.
Example 3.15 shows a simple two-dimensional (X and Y) Python linear regres-

sion example. It first creates two arrays for x and y values, then performs the
linear regression by calling linregress(), and displays the linear regression
results: the slope and the intercept. The slope represents the slope of the line,
0.9 is close to 1, which means a line with a 45° slope. The intercept represents
the intersection of the line with the y-axis. It also defines a linear function called
myfunc() and defines the functions list() and map() to calculate the values of
y from the x values of the myfunc()function. Finally, it uses the functions plt.
scatter() and plt.show() to display and plot the original x and y values and
the best-fitted line.

EXAMPLE 3.15  THE LINEARR.PY PROGRAM

#Example 3.15 Linear Regression
import matplotlib.pyplot as plt
from scipy import stats

x = [0,1,2,3,4]
y = [3,5,5,6,7]

slope, intercept, r, p, std_err = stats.linregress(x, y)
print("slope: ", slope)
print("intercept: ", intercept)

def myfunc(x):

Figure 3.13: Example of logistic regression

	 Chapter 3 ■ Machine Learning	 83

 return slope * x + intercept

mymodel = list(map(myfunc, x))

plt.scatter(x, y)
plt.plot(x, mymodel)
plt.show()

The following are the program outputs, the slope, and intercept values.
Figure 3.14 shows the plot of the program. The round dots are the x and y
values, and the straight line is the best-fit line.

slope: 0.9
intercept: 3.4000000000000004

EXERCISE 3.11

Modify the Python program from Example 3.15 so that it has more data points in x and
y. Also, add an x label, y label, title, legend, and grids to the plot.

The Statsmodels library is a powerful statistical model library that comes with
a number of mathematical functions, such as regression. To use the library, you
will need to install it first, as shown here:

pip install statsmodels

Figure 3.14: The plot of Example 3.15

84	 Part II ■ Machine Learning and Deep Learning

For more details, see this site:

https://www.statsmodels.org/stable/regression.html

Example 3.15a is a similar linear regression example, using the Statsmodels
library.

EXAMPLE 3.15A  THE LINEARR2.PY PROGRAM

#Example 3.15a Linear Regression
import matplotlib.pyplot as plt
import numpy as np
import statsmodels.api as sm

x = [0,1,2,3,4]
y = [3,5,5,6,7]
x1=sm.add_constant(x)

model = sm.OLS(y,x1)
results = model.fit()
print (results.params)
print (results.summary())

y_pred=results.predict(x1)
plt.scatter(x,y)
plt.xlabel("X")
plt.ylabel("Y")
plt.plot(x,y_pred, "r")
plt.show()

The following is the output of the program:

[3.4 0.9]

 OLS Regression Results
==
Dep. Variable: y R-squared: 0.920
Model: OLS Adj. R-squared: 0.894
Method: Least Squares F-statistic: 34.71
Date: Sat, 09 Jan 2021 Prob (F-statistic): 0.00976
Time: 09:46:37 Log-Likelihood: -2.1794
No. Observations: 5 AIC: 8.359
Df Residuals: 3 BIC: 7.578
Df Model: 1
Covariance Type: nonrobust
==
 coef std err t P>|t| [0.025 0.975]
--
const 3.4000 0.374 9.087 0.003 2.209 4.591

https://www.statsmodels.org/stable/regression.html

	 Chapter 3 ■ Machine Learning	 85

x1 0.9000 0.153 5.892 0.010 0.414 1.386
==
Omnibus: nan Durbin-Watson: 2.914
Prob(Omnibus): nan Jarque-Bera (JB): 0.901
Skew: 1.031 Prob(JB): 0.637
Kurtosis: 2.729 Cond. No. 4.74
==

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is
correctly specified.

Figure 3.15 is the plot output of the program.

Example 3.16 shows a simple example of a two-dimensional (X and Y) Python
polynomial regression. It performs the polynomial regression function by calling
np.poly1d(np.polyfit(x, y, 3)), where the number 3 means three terms of
a polynomial function, which is y = a x3 + b x2 + c x + d.

EXAMPLE 3.16  THE POLYR.PY PROGRAM

#Example 3.16 Polynomial Regression
import matplotlib.pyplot as plt
from scipy import stats
import numpy as np

x = [0,1,2,3,4,5]

Figure 3.15: The plot of Example 3.15a

86	 Part II ■ Machine Learning and Deep Learning

y = [3,8,6,6,7,3]

mymodel = np.poly1d(np.polyfit(x, y, 3))
print(mymodel)

myline = np.linspace(0, 5, 100)
plt.scatter(x, y)
plt.plot(myline, mymodel(myline))
plt.show()

The following is the program output, the slope, and intercepts values.
Figure 3.16 shows the plot of the program; round dots are the x and y values,
and the curved line is the best polynomial curve.

 3 2
0.06481 x - 1.075 x + 3.749 x + 3.556

Example 3.17 shows a simple example of Python least squares fitting. It
first creates Numpy arrays for x values and y values. It then defines a function
named func() that can be used to fit the x and y values. You can define your
own function. Here is a simple exponential decay function: y = a * exp(-b x) +c.
It performs the least squares fitting by using the optimization.curve_fit()
function and displays the best-fit results.

Figure 3.16: The plot of Example 3.16

	 Chapter 3 ■ Machine Learning	 87

EXAMPLE 3.17  THE LSF.PY PROGRAM

#Example 3.17 Least Squares Fitting
import numpy as np
import scipy.optimize as optimization

x = np.array([0,1,2,3,4,5])
y = np.array([100,90,60,30,10,1])

def func(x, a, b, c):
 return a * np.exp(-b * x) + c

popt, pcov = optimization.curve_fit(func, x, y)
print ("Best fit a b c: ",popt)
print ("Best fit covariance: ",pcov)

The following is the output of the program:

Best fit a b c: [4.09564212e+02 6.21466356e-02 -3.04106531e+02]
Best fit covariance: [[4.92882349e+05 -8.73845292e+01 -4.95819953e+05]
 [-8.73845292e+01 1.55361498e-02 8.79409202e+01]
 [-4.95819953e+05 8.79409202e+01 4.98815648e+05]]

Example 3.18 shows a simple example of multiple-dimensional linear regres-
sion. It first creates Numpy arrays for x and y values. Please note the format
differences of x array and y array. Here, the x array is two-dimensional, while
the y array is one-dimensional. It then creates a linear regression model by using
the LinearRegression() function and fits the model with the linear relation
between the x array and y array. Finally, it displays the linear regression results:
the coefficients and the intercept. The coefficient represents the slope of the line.
0.9 is close to 1, which means a line with a slope of 45°. The intercept represents
the interception of the line with the y-axis.

EXAMPLE 3.18  THE MLR.PY PROGRAM

#Example 3.18 Multiple Linear Regression
from sklearn import linear_model
import numpy as np

x = np.array([[0,3,5],[1,4,6],[2,5,7],[3,6,8],[4,7,9]])
y = np.array([3,5,5,6,7])

reg = linear_model.LinearRegression()
reg.fit(x, y)
print('Coefficients: \n', reg.coef_)
print('Intercept: \n', reg.intercept_)
pred = reg.predict([[5,8,10]])
print('Predition: \n', pred)

88	 Part II ■ Machine Learning and Deep Learning

The following is the output of the program:

Coefficients:
 [0.3 0.3 0.3]
Intercept:
 0.9999999999999991
Predition:
 [7.9]

EXERCISE 3.12

Modify the Python program from Example 3.18 so that it performs multiple linear
regression on Scikit-Learn’s Linnurd dataset; see the following:

https://scikit-learn.org/stable/datasets/toy_dataset
.html#linnerrud-dataset

https://scikit-learn.org/stable/modules/generated/sklearn
.datasets.load_linnerud.html

Example 3.19 shows a simple example of Python logistic regression. It first
creates Numpy arrays named X and y, which contains a series of X and Y data
points. It then performs logistic regression by using the LogisticRegression()
function and the fit() function. Finally, it predicts the given sample and dis-
plays the result.

EXAMPLE 3.19  THE LOGR.PY PROGRAM

#Example 3.19 Logistic Regression
import numpy as np
from sklearn.linear_model import LogisticRegression

X = np.array([[0],[1],[2],[3],[4],[5]])
y = np.array([1,2,3,30,32,31])

clf = LogisticRegression(random_state=0).fit(X, y)
print(clf.predict([[6]]))

print(clf.predict_proba([[6]]))
print(clf.score(X, y))

The following is the output of the program:

[31]
[[0.00111369 0.00810381 0.03285485 0.09764849 0.61051015 0.24976901]]
0.6666666666666666

https://scikit-learn.org/stable/datasets/toy_dataset.html#linnerrud-dataset
https://scikit-learn.org/stable/datasets/toy_dataset.html#linnerrud-dataset
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_linnerud.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_linnerud.html

	 Chapter 3 ■ Machine Learning	 89

For more details about linear regression, multiple linear regression, nonlinear
regression, and logistic regression, visit the Scikit-Learn library:

https://scikit-learn.org/stable/modules/generated/sklearn.linear_

model.LinearRegression.html

https://scikit-learn.org/stable/modules/generated/sklearn.linear_

model.LogisticRegression.html

3.4  Unsupervised Learning

Unsupervised learning is a type of machine learning technique that does not
require you to provide knowledge to supervise the model. The model will
discover information on its own. This is different from supervised learning,
where you need labeled training data to train the model. Unsupervised learning
is useful when you have a large amount of unlabeled data; it can be used for
applications such as clustering, association, anomaly detection, etc. Clustering
means dividing data points into different groups, called clusters. Association
means to establish associations among data points in a large dataset. Anomaly
detection means detecting abnormal data points in the dataset. This can be
useful for finding fraudulent transactions.

Unsupervised learning includes a number of algorithms for clustering, such
as the following:

■■ Hierarchical clustering

■■ K-means clustering

■■ K-NN

■■ Principal component analysis

■■ Singular-value decomposition

■■ Independent component analysis

K-means Clustering
K-means clustering is one of the most commonly used clustering algorithms. It
is an iterative algorithm that helps you to find a number of clusters for a given
dataset.

The following are the steps of the algorithm, as shown in Figure 3.17:

1.	 Randomly select K points as the center of K clusters, called centroids.

2.	 Calculate the distance between all centroids and the data points. Separate
data points into different clusters according to the distances.

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

90	 Part II ■ Machine Learning and Deep Learning

3.	 Calculate the mean of all the data of each cluster and move the centroids
to the new center of the cluster.

4.	 Repeat steps 2 and 3 for a specified number of iterations until all the
clusters are clearly separated.

For more details about K-means clustering, see the following:

https://www.educba.com/k-means-clustering-algorithm/

https://www.edureka.co/blog/k-means-clustering/

Example 3.20 shows a simple example of Python K-means clustering. It first
creates a Numpy array named x, which contains two groups of values. It then
performs the two-component K-means clustering by using the functions KMeans()
and fit(). Finally, it displays the clustering results: the labels of the two clusters
and centers of the two clusters and predicts a result for a given sample.

EXAMPLE 3.20  THE KMEANS.PY PROGRAM

Example 3.20 K-means Clustering
from sklearn.cluster import KMeans
import numpy as np

X = np.array([[1, 2, 3], [1, 4, 2], [1, 0, 3], \
 [10, 2, 4], [9, 4, 3], [11, 0, 2]])

kmeans = KMeans(n_clusters=2, random_state=0).fit(X)
print(kmeans.labels_)
print(kmeans.cluster_centers_)
print(kmeans.predict([[12, 3, 1]]))

Figure 3.17: The steps of K-means clustering

https://www.educba.com/k-means-clustering-algorithm/
https://www.edureka.co/blog/k-means-clustering/

	 Chapter 3 ■ Machine Learning	 91

The following is the output of the program:

[1 1 1 0 0 0]
[[10. 2. 3.]
 [1. 2. 2.66666667]]
 [0]

EXERCISE 3.13

Modify the Python program from Example 3.20 so that it uses Scikit-Learn’s function,
sklearn.datasets.make_blobs(), to generate sample data points for K-means
clustering. See the following links for the sklearn.datasets.make_blobs():

https://scikit-learn.org/stable/modules/generated/sklearn
.datasets.make_blobs.html

https://scikit-learn.org/stable/datasets/sample_generators
.html#sample-generators

For more details about K-means clustering, see the Scikit-Learn library:

https://scikit-learn.org/stable/modules/generated/sklearn.cluster

.KMeans.html

For more details about unsupervised learning, see the Scikit-Learn library:

https://scikit-learn.org/stable/unsupervised_learning.html

3.5  Semi-supervised Learning

Semi-supervised learning lies somewhere between unsupervised learning (without
labeled training data) and supervised learning (with labeled training data). Semi-
supervised learning is typically used when you have a small amount of labeled
data and a large amount of unlabeled data. In semi-supervised learning, data is
first divided into different clusters using an unsupervised learning algorithm,
and then the existing labeled data is used to label the rest of the unlabeled data.

To make the use of unlabeled data, semi-supervised learning assumes at least
one of the following assumptions about the data:

■■ Continuity assumption: The data points that are closer to each other are
more likely to have the same label.

■■ Cluster assumption: The data can be divided into different clusters, and
each cluster shares the same label.

■■ Manifold assumption: The data lies on a much lower dimension space
(called manifold) than the input space. This allows learning to use distances
and densities defined on a manifold.

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
https://scikit-learn.org/stable/datasets/sample_generators.html#sample-generators
https://scikit-learn.org/stable/datasets/sample_generators.html#sample-generators
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/unsupervised_learning.html

92	 Part II ■ Machine Learning and Deep Learning

The following are four basic methods that are used in semi-supervised learning:

■■ Generative models: These are statistical models of the joint probability
distribution on a given observable variable and target variable.

■■ Low-density separation: This attempts to place boundaries in regions
with few data points (labeled or unlabeled).

■■ Graph-based methods: This models the problem space as a graph.

■■ Heuristic approaches: This uses a practical method to produce solutions
that may not be optimal but are sufficient given a limited timeframe.

The following are three practical applications for semi-supervised learning:

■■ Speech analysis: Such as labeling audio files

■■ Internet content classification: Such as labeling web pages

■■ Protein sequence classification: Such as classifying protein families based
on their sequence of aminoacids

For more details about semi-supervised learning, visit the following:

https://www.geeksforgeeks.org/ml-semi-supervised-learning/

https://scikit-learn.org/stable/modules/semi_supervised.html

Example 3.21 shows a simple example of Python semi-supervised learning.
It first creates a Numpy array named X, which contains two groups of values. It
then creates a label variable named labels. All the data points are not labeled,
with a value of -1, except the first point labeled as 0, and the last point labeled
as 1. This then creates the semi-supervised learning model by calling the Label-
Spreading() function, trains the model by calling the label_spread.fit()
function, spreads the label by calling the label_spread.transduction_ function,
and finally displays the label results.

EXAMPLE 3.21  THE SEMIL.PY PROGRAM

#Example 3.21 Semi-supervised Learning
import numpy as np
import matplotlib.pyplot as plt
from sklearn.semi_supervised import LabelSpreading
from sklearn.datasets import make_circles

X = np.array([[0,1],[1,1],[2,0],[3,1],[10,5],[11,6],[12,4],[13,5]])
y = np.array([0,0,0,0,1,1,1,1])

labels = np.full(8, -1.)
labels[0] = 0
labels[-1] = 1
print(labels)

https://www.geeksforgeeks.org/ml-semi-supervised-learning/
https://scikit-learn.org/stable/modules/semi_supervised.html

	 Chapter 3 ■ Machine Learning	 93

label_spread = LabelSpreading(kernel='knn', alpha=0.8)
label_spread.fit(X, labels)
output_labels = label_spread.transduction_
print(output_labels)

The following is the program output with the labels before and the labels
after the execution of the LabelSpreading() function. As you can see, all the
data points have been correctly labeled.

[0. -1. -1. -1. -1. -1. -1. 1.]
[0. 0. 0. 0. 1. 1. 1. 1.]

EXERCISE 3.14

Sketch the X data points on a piece of paper, add two more points to each group, and
modify the Python program from Example 3.20 accordingly.

EXERCISE 3.15

Sketch the X data points on a piece of paper, add the third group of points, and modify
the Python program from Example 3.20 accordingly. Make sure in each group only one
point is labeled.

3.6  Reinforcement Learning

Reinforcement learning (RL) is another type of machine learning technique that
enables software agents to learn in an interactive environment by trial and error
using feedback to maximize accumulative rewards. You have probably already
used reinforcement learning in real life; for example, a dog can be taught tricks
using reinforcement learning. The dog is the software agent, and the environ-
ment is where you teach it tricks. The dog does not understand what you want
it to do; it simply tries different actions, and every time when it gets a right
action, it gets a reward, or a treat. The next time, the dog learns to do the same
thing again and gets the treat again. This is how training a dog works and how
reinforcement learning works. Reinforcement learning is currently one of the
hottest research topics.

Figure 3.18 shows a schematic diagram of reinforcement learning. In this
case, an agent takes actions in an environment. The interpreter interprets these
actions into a reward and a state, which are fed back into the agent. The agent
adjusts its actions accordingly. This process is repeated many times to maxi-
mize the reward.

94	 Part II ■ Machine Learning and Deep Learning

Some key terms are often used in reinforcement learning, listed here:

■■ Environment: Physical world in which the agent operates

■■ State: Current situation of the agent

■■ Reward: Positive or negative feedback from the environment

■■ Policy: The rules that change agent’s state to actions

■■ Value: Future reward that an agent would receive

Q-Learning and SARSA (State-Action-Reward-State-Action) are two com-
monly used model-free reinforcement learning algorithms. Q-Learning is an
off-policy method in which the agent learns the value based on action derived
from another policy. SARSA is an on-policy method where it learns the value
based on its current action derived from its current policy. These two methods
are simple to implement but lack the ability to estimate values for unseen states.

This can be solved by more advanced algorithms such as Deep Q-Networks
(DQN) and Deep Deterministic Policy Gradient (DDPG). However, DQNs can
handle only discrete, low-dimensional action spaces. DDPG tackles this problem
by learning policies in high-dimensional, continuous action spaces.

The following are some practical applications of reinforcement learning:

■■ Games: Reinforcement learning is widely used for computer games. The
best example is Google’s AlphaGo, which defeated a world champion in
the ancient Chinese game of Go. AlphaGo does not understand the rules
of Go; it just learns to play the Go game by trial and error over many
times.

■■ Robotics: Reinforcement learning is also widely used in robotics and
industrial automation to enable the robot to create an efficient adaptive
control system for itself that learns from its own experience and behavior.

Figure 3.18: A schematic diagram of reinforcement learning, which includes an agent, actions,
an environment, a reward, and a state
(Source: https://en.wikipedia.org/wiki/Reinforcement_learning)

https://en.wikipedia.org/wiki/Reinforcement_learning

	 Chapter 3 ■ Machine Learning	 95

■■ Natural language processing: Reinforcement learning is used for text
summarization engines and dialog agents that can learn from user inter-
actions and improve over time. This is commonly used in healthcare and
online stock trading.

The following are a few popular online platforms for reinforcement learning:

■■ DeepMind Lab: This is an open source 3D game-like platform, created
for reinforcement learning simulated environments.

https://deepmind.com/blog/article/open-sourcing-deepmind-lab

■■ Project Malmo: This is another experimentation platform for reinforce-
ment learning.

https://www.microsoft.com/en-us/research/project/project-malmo/

■■ OpenAI Gym: This is a toolkit for building and comparing reinforcement
learning algorithms.

https://gym.openai.com/

Q-Learning
Q-learning is one of the most commonly used reinforcement learning algo-
rithms. Let’s look at an example to explain how Q-learning works. Take a simple
routing example, as shown in Figure 3.19. It contains seven nodes (0–6), called
states, and the aim is to choose the best route to go from the Start state (0) to
the Goal state (6).

Based on Figure 3.19, you can construct a corresponding matrix R, which
indicates the reward values from a state to take an action to the next state, as

Figure 3.19: A simple routing problem with seven states, with 0 as the start state and 6 as the
goal state

https://deepmind.com/blog/article/open-sourcing-deepmind-lab
https://www.microsoft.com/en-us/research/project/project-malmo/
https://gym.openai.com/

96	 Part II ■ Machine Learning and Deep Learning

shown in Figure 3.20. The value 0 means it is possible to go from one state to
another state, for example, from state 0 to state 1, from state 1 to state 2, and so
on. The value -1 means it is not possible, for example, from state 0 to state 3, or
from state 2 to state 6, and so on. The value 100 indicates reaching the Goal state;
there are only two possibilities, from state 3 to state 6, and from state 6 to state 6.

Based on the reward matrix R you can also construct a similar matrix Q, and
you update the values of matrix Q iteratively by using the following formula:

	 Q s a R s a Q ns aa, , ,max 	

where:

Q(s, a) is the Q matrix value at state (s) and action (a).

R(s, a) is the R matrix value at state (s) and action (a).

is the learning rate.

Q(ns, aa) is the Q matrix values at next state (ns) and all actions (aa).

Max() is the function to get the maximum values.

The formula basically says the value of matrix Q at state (s) and action (a)
is equal to the sum of the corresponding value in matrix R and the learning
parameter , multiplied by the maximum value of matrix Q for all possible
actions in the next state.

Example 3.22 shows a simple example of Q-learning for the previous routing
problem. It contains two programs, Q_test.py and Q_Utils.py. The following
is the Q_test.py program.

Figure 3.20: The corresponding reward value R matrix of the routing problem

	 Chapter 3 ■ Machine Learning	 97

EXAMPLE 3.22  THE Q_TEST.PY PROGRAM

#Example 3.22 - Q_test.py
#Modified from:
#https://amunategui.github.io/reinforcement-learning/index.html
#http://firsttimeprogrammer.blogspot.com/2016/09/getting-ai-smarter-
with-q-learning.html
#http://mnemstudio.org/path-finding-q-learning-tutorial.htm
import numpy as np
import pylab as plt
from Q_Utils import *

Setting up Parameters ===
Create a routing list and set the goal
points_list = [(0,1),(1,2),(1,3),(2,4),(3,5),(3,6)]
goal = 6

Show the routing graph
showgraph(points_list)

The number of points of the R matrix
MATRIX_SIZE = 7

create matrix R
R = createRmat(MATRIX_SIZE,points_list,goal)

Create matrix Q
Q = np.matrix(np.zeros([MATRIX_SIZE,MATRIX_SIZE]))

Learning parameter
gamma = 0.8

Training ==
scores = []
for i in range(700):
 #Select a random current_state (starting point)
 current_state = np.random.randint(0, int(Q.shape[0]))
 #Work out all the available next step actions
 available_act = available_actions(R, current_state)
 #Choose a random next step action
 action = sample_next_action(available_act)
 #Update the Q matrix
 score = update(R,Q,current_state,action,gamma)
 scores.append(score)
 print ('Score:', str(score))

print("Trained Q matrix:")
print(Q/np.max(Q)*100)

98	 Part II ■ Machine Learning and Deep Learning

Testing ===
current_state = 0
steps = [current_state]

while current_state != goal:

 next_step_index = np.where(Q[current_state,] == np.max(Q[current_
state,]))[1]

 if next_step_index.shape[0] > 1:
 next_step_index = int(np.random.choice(next_step_index, size
= 1))
 else:
 next_step_index = int(next_step_index)

 steps.append(next_step_index)
 current_state = next_step_index

Display Results ===
print("Most efficient path:")
print(steps)

plt.plot(scores)
plt.show()

The following is the Q_Utils.py program, which contains the functions
needed for Q-learning:

#Example 3.22 - Q_Utils.py
#Modified from:
#https://amunategui.github.io/reinforcement-learning/index.html
#http://firsttimeprogrammer.blogspot.com/2016/09/getting-ai-smarter-
with-q-learning.html
#http://mnemstudio.org/path-finding-q-learning-tutorial.htm
import numpy as np
import pylab as plt
import networkx as nx

def showgraph(points_list):
 G=nx.Graph()
 G.add_edges_from(points_list)
 pos = nx.spring_layout(G)
 nx.draw_networkx_nodes(G,pos)
 nx.draw_networkx_edges(G,pos)
 nx.draw_networkx_labels(G,pos)
 plt.show()

def createRmat(MATRIX_SIZE,points_list,goal):
 # create matrix x*y

	 Chapter 3 ■ Machine Learning	 99

 R = np.matrix(np.ones(shape=(MATRIX_SIZE, MATRIX_SIZE)))
 R *= -1

 # assign zeros to paths and 100 to goal-reaching point
 for point in points_list:
 print(point)
 if point[1] == goal:
 R[point] = 100
 else:
 R[point] = 0

 if point[0] == goal:
 R[point[::-1]] = 100
 else:
 # reverse of point
 R[point[::-1]]= 0

 # add goal point round trip
 R[goal,goal]= 100
 print(R)
 return R

def available_actions(R, state):
 current_state_row = R[state,]
 av_act = np.where(current_state_row >= 0)[1]
 return av_act

def sample_next_action(available_act):
 next_action = int(np.random.choice(available_act,1))
 return next_action

def update(R, Q, current_state, action, gamma):

 max_index = np.where(Q[action,] == np.max(Q[action,]))[1]

 if max_index.shape[0] > 1:
 max_index = int(np.random.choice(max_index, size = 1))
 else:
 max_index = int(max_index)
 max_value = Q[action, max_index]

 Q[current_state, action] = R[current_state, action] + gamma * max_value
 print('max_value', R[current_state, action] + gamma * max_value)

 if (np.max(Q) > 0):
 return(np.sum(Q/np.max(Q)*100))
 else:
 return (0)

100	 Part II ■ Machine Learning and Deep Learning

Figure 3.21 and Figure 3.22 show the corresponding outputs of Example 3.22.

The following are the text output of the example, which shows the possible
routes from node 0 to node 6, the R matrix with reward values, the training
process (mostly omitted), and final trained Q matrix.

(0, 1)
(1, 2)
(1, 3)

Figure 3.22: The learning process of Example 3.22

Figure 3.21: The output of Example 3.22, which shows the graph of the network

	 Chapter 3 ■ Machine Learning	 101

(2, 4)
(3, 5)
(3, 6)
[[-1. 0. -1. -1. -1. -1. -1. -1.]
 [0. -1. 0. 0. -1. -1. -1. -1.]
 [-1. 0. -1. -1. 0. -1. -1. -1.]
 [-1. 0. -1. -1. -1. 0. 100. -1.]
 [-1. -1. 0. -1. -1. -1. -1. -1.]
 [-1. -1. -1. 0. -1. -1. -1. -1.]
 [-1. -1. -1. 0. -1. -1. 100. -1.]
 [-1. -1. -1. -1. -1. -1. -1. -1.]]
max_value 0.0
max_value 0.0
Score: 0
max_value 0.0
max_value 0.0
Score: 0
max_value 0.0
Score: 0
max_value 0.0
Score: 0

... ...

max_value 255.93353860021085
Score: 890.5013677573843
Trained Q matrix:
[[0. 64. 0. 0. 0.
 0. 0.]
 [51.2 0. 51.18893731 80. 0.
 0. 0.]
 [0. 63.98617164 0. 0. 40.95114985
 0. 0.]
 [0. 63.98617164 0. 0. 0.
 64. 100.]
 [0. 0. 51.18893731 0. 0.
 0. 0.]
 [0. 0. 0. 80. 0.
 0. 0.]
 [0. 0. 0. 80. 0.
 0. 100.]]
Most efficient path:
[0, 1, 3, 6]

EXERCISE 3.16

Based on the example program from Example 3.22, design your own eight-state rout-
ing diagram, and modify the program from Example 3.22 accordingly to solve your
routing problem.

102	 Part II ■ Machine Learning and Deep Learning

Example 3.23 shows a simple program of Python reinforcement learning for
balancing a cart pole, using the OpenAI Gym library. Figure 3.23 shows its output.

EXAMPLE 3.23  THE GYM.PY PROGRAM

Example 3.23 OpenAI Gym CartPole
#https://gym.openai.com/docs/
#https://gym.openai.com/envs/CartPole-v0/

import gym
env = gym.make('CartPole-v0')
for i_episode in range(20):
 observation = env.reset()
 for t in range(100):
 env.render()
 print(observation)
 action = env.action_space.sample()
 observation, reward, done, info = env.step(action)
 if done:
 print("Episode finished after {} timesteps".format(t+1))
 break
env.close()

3.7  Ensemble Learning

Ensemble learning is a process that uses multiple learning algorithms, or mul-
tiple models, to obtain better performance than could be obtained from a single
learning algorithm or model. Ensemble learning is mainly used to improve the

Figure 3.23: The output of Example 3.23, which shows the balancing of a cart pole by using
reinforcement learning

	 Chapter 3 ■ Machine Learning	 103

performance of applications such as classifications, regressions, predictions,
and so on.

Two methods are usually used in ensemble learning:

■■ Averaging methods: In this method, multiple estimators are created inde-
pendently, and then their predictions are averaged. On average, the
combined estimator is usually better than any of the individual base esti-
mators because its variance is reduced. Examples of averaging methods
include bagging, forests of randomized trees, and so on.

■■ Boosting methods: This method builds the base estimators sequentially
and tries to reduce the bias of the combined estimator. By combining
multiple weak models, it is possible to produce a powerful ensemble.
Examples of boosting methods are AdaBoost, gradient tree boosting, and
so on.

For more details of ensemble learning in the Scikit-Learn library, visit this page:

https://scikit-learn.org/stable/modules/ensemble.html

Example 3.24 shows a simple program of Python ensemble learning for iris
classification. It uses four different classifiers: logistic regression, random forest,
naive Bayes, and SVM. It then uses VotingClassifier to choose the best classifier.

EXAMPLE 3.24  THE ENSEMBLE1.PY PROGRAM

Example 3.24 Ensemble1.py
from sklearn import datasets
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier
from sklearn.svm import SVC

iris = datasets.load_iris()
X, y = iris.data[:, 1:3], iris.target

clf1 = LogisticRegression(random_state=1)
clf2 = RandomForestClassifier(n_estimators=50, random_state=1)
clf3 = GaussianNB()
clf4 = SVC()

eclf = VotingClassifier(
 estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3), ('svc', clf4)],
 voting='hard')

https://scikit-learn.org/stable/modules/ensemble.html

104	 Part II ■ Machine Learning and Deep Learning

for clf, label in zip([clf1, clf2, clf3, clf4, eclf], ['Logistic
Regression', 'Random Forest', 'naive Bayes', 'SVM', 'Ensemble']):
 scores = cross_val_score(clf, X, y, scoring='accuracy', cv=5)
 print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(),
scores.std(), label))

The following is the output of the program, which shows the accuracy of
each model.

Accuracy: 0.95 (+/- 0.04) [Logistic Regression]
Accuracy: 0.94 (+/- 0.04) [Random Forest]
Accuracy: 0.91 (+/- 0.04) [naive Bayes]
Accuracy: 0.95 (+/- 0.04) [SVM]
Accuracy: 0.95 (+/- 0.04) [Ensemble]

EXERCISE 3.17

Modify the Python program from Example 3.24 to add another classifier to
the ensemble learning, for example, K-nearest neighbor (https://scikit-
learn.org/stable/modules/generated/sklearn.neighbors.
KNeighborsClassifier.html).

Example 3.25 shows a simple program of Python ensemble learning for
diabetes data regression. It first loads the diabetes dataset as X and y, where X
contains the values of age, sex, body mass index, average blood pressure, and
six blood serum measurements of 442 diabetes patients, and y is the response
variable with a range of 25–346; it is a measure of disease progression one year
after baseline. It uses four different regressors: gradient boosting, random forest,
linear regression, and MLP (neural networks). It then uses VotingRegressor to
choose the best regressor. Figure 3.24 shows its output.

EXAMPLE 3.25  THE ENSEMBLE2.PY PROGRAM

Example 3.25 Ensemble2.py

import matplotlib.pyplot as plt

from sklearn.datasets import load_diabetes
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import VotingRegressor
from sklearn.neural_network import MLPRegressor

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

	 Chapter 3 ■ Machine Learning	 105

X, y = load_diabetes(return_X_y=True)

Train classifiers
reg1 = GradientBoostingRegressor(random_state=1)
reg2 = RandomForestRegressor(random_state=1)
reg3 = LinearRegression()
reg4 = MLPRegressor()

reg1.fit(X, y)
reg2.fit(X, y)
reg3.fit(X, y)
reg4.fit(X, y)
ereg = VotingRegressor(estimators=[('gb', reg1), ('rf', reg2), ('lr',
reg3), ('NN', reg4)])
print(ereg.fit(X, y))

%%
Making predictions

#
Now we will use each of the regressors to make the 20 first
predictions.

xt = X[:20]

pred1 = reg1.predict(xt)
pred2 = reg2.predict(xt)
pred3 = reg3.predict(xt)
pred4 = reg4.predict(xt)
pred5 = ereg.predict(xt)

plt.figure()
plt.plot(pred1, 'gd', label='GradientBoostingRegressor')
plt.plot(pred2, 'b^', label='RandomForestRegressor')
plt.plot(pred3, 'ys', label='LinearRegression')
plt.plot(pred4, 'mo', label='NeuralNetworks')
plt.plot(pred5, 'r*', ms=10, label='VotingRegressor')

plt.tick_params(axis='x', which='both', bottom=False, top=False,
 labelbottom=False)
plt.ylabel('predicted')
plt.xlabel('training samples')
plt.legend(loc="best")
plt.title('Regressor predictions and their average')

plt.show()

106	 Part II ■ Machine Learning and Deep Learning

3.8  AutoML

Automated machine learning (AutoML) is the process of automating machine
learning, from a raw dataset to a deployable model, for easily solving real-
world problems. With AutoML, you can use machine learning without having
to become an expert in the field.

For more details about AutoML, visit this site:

https://www.automl.org/automl/

There are several AutoML frameworks available, as listed here:

■■ AutoWEKA is automated machine learning for the WEKA package.

http://www.cs.ubc.ca/labs/beta/Projects/autoweka/

https://github.com/automl/pyautoweka

■■ Auto-sklearn is automated machine learning for the Python Scikit-Learn
library.

https://automl.github.io/auto-sklearn/master/

■■ TPOT stands for tree-based pipeline optimization tool. It is built on the
Scikit-Learn library and optimizes machine learning pipelines using ge-
netic programming.

http://epistasislab.github.io/tpot/

Figure 3.24: The output of Example 3.25, which shows the results of different regression
algorithms

https://www.automl.org/automl/
http://www.cs.ubc.ca/labs/beta/Projects/autoweka/
https://github.com/automl/pyautoweka
https://automl.github.io/auto-sklearn/master/
http://epistasislab.github.io/tpot/

	 Chapter 3 ■ Machine Learning	 107

■■ H2O AutoML provides automated model selection and ensemble learning
for the H2O platform. H2O is an open source, machine learning platform
for big data and enterprise applications.

http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html

■■ TransmogrifAI is an AutoML library written in Scala running on the top
of Apache Spark.

https://github.com/salesforce/TransmogrifAI

■■ MLBoX is an AutoML library with three components: preprocessing,
optimization, and prediction.

https://github.com/AxeldeRomblay/MLBox

Let’s look at some AutoML example code to demonstrate how to use the
AutoML library, called AutoML. You can install the library using the pip
command, as shown here:

pip install automl

For more details about the library, check out the following:

https://pypi.org/project/automl/

Example 3.26 shows a simple test program of Python AutoML for Boston
housing price regression using the AutoML library.

EXAMPLE 3.26  THE AUTO_ML_TEST.PY PROGRAM

Example 3.26 Auto_ml_test.py
from auto_ml import Predictor
from auto_ml.utils import get_boston_dataset

df_train, df_test = get_boston_dataset()

column_descriptions = {
 'MEDV': 'output',
 'CHAS': 'categorical'
}

ml_predictor = Predictor(type_of_estimator='regressor',
column_descriptions=column_descriptions)
ml_predictor.train(df_train)
ml_predictor.score(df_test, df_test.MEDV)

http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
https://github.com/salesforce/TransmogrifAI
https://github.com/AxeldeRomblay/MLBox
https://pypi.org/project/automl/

108	 Part II ■ Machine Learning and Deep Learning

The following is the output:

[360] random_holdout_set_from_training_data's score is: -3.019
The number of estimators that were the best for this training dataset: 260
The best score on the holdout set: -3.0164762974861277
Finished training the pipeline!
Total training time:
0:00:02

Here are the results from our GradientBoostingRegressor
predicting MEDV
Calculating feature responses, for advanced analytics.
The printed list will only contain at most the top 100 features.
+----+----------------+--------------+----------+-------------------+---------------
----+-----------+-----------+-----------+-----------+
| | Feature Name | Importance | Delta | FR_Decrementing | FR_
Incrementing | FRD_abs | FRI_abs | FRD_MAD | FRI_MAD |
|----+----------------+--------------+----------+-------------------+---------------
----+-----------+-----------+-----------+-----------|
| 12 | CHAS=0.0 | 0.0002 | nan | nan | nan
| nan | nan | nan | nan |
| 1 | ZN | 0.0004 | 11.5619 | -0.0076 |
0.0274 | 0.0111 | 0.0373 | 0.0000 | 0.0000 |
| 13 | CHAS=1.0 | 0.0006 | nan | nan | nan
| nan | nan | nan | nan |
| 7 | RAD | 0.0026 | 4.2895 | -0.7435 |
0.1468 | 0.7463 | 0.1506 | 0.4483 | 0.0000 |

... ...

Advanced scoring metrics for the trained regression model on this
particular dataset:

Here is the overall RMSE for these predictions:
2.6904150974597933

Here is the average of the predictions:
21.162475591449812

Here is the average actual value on this validation set:
21.488235294117654

Here is the median prediction:
20.198866346944087

	 Chapter 3 ■ Machine Learning	 109

Here is the median actual value:
20.15

Here is the mean absolute error:
1.9106331359259123

Here is the median absolute error (robust to outliers):
1.3878228036848688

Here is the explained variance:
0.9027431327637244

Here is the R-squared value:
0.9012960591325954
Count of positive differences (prediction > actual):
46
Count of negative differences:
56
Average positive difference:
1.7571422846991702
Average negative difference:
-2.03671490657645

EXERCISE 3.18

Modify the Python program from Example 3.26 to use the California housing dataset
for regression (https://scikit-learn.org/stable/modules/generated/
sklearn.datasets.fetch_california_housing.html).

3.9  PyCaret

PyCaret is an impressive open source machine learning library in Python that
allows you to use multiple models to analyze your data automatically. PyCaret
is basically a wrapper around several machine learning libraries such as Scikit-
Learn, XGBoost, Microsoft LightGBM, spaCy, and more. PyCaret is a low-code
library, and it is best known for its ease of use and efficiency.

To use the PyCaret library, you need to install the library using the pip
command, as shown here:

pip install pycaret

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_california_housing.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_california_housing.html

110	 Part II ■ Machine Learning and Deep Learning

Example 3.27 shows a simple Python PyCaret classification demo program for
the iris dataset. It is remarkably simple, requiring only one line of code to set up
the classification environment and one line of code to compare all the models.

EXAMPLE 3.27  THE PYCARET_DEMO.PY PROGRAM

#Example 3.27 The PyCaret_demo.py
#!pip install pycaret
import pandas as pd
from sklearn import datasets

iris = datasets.load_iris(as_frame=True)
iris.data['Target'] = iris.target
iris = iris.data
iris.head()

from pycaret import classification
classification.setup(data= iris, target='Target')
classification.compare_models()

It is easier to run the previous code in Google Colab. Just log in to Google
Colab and load the file PyCaret_Demo.ipynb. Figure 3.25 shows the code to load
the iris dataset, the code to format it into the required dataframe, and the first
five rows of the data. Figure 3.26 shows the code for setting up the classification
environment and comparing the models. The results show that linear discriminant
analysis gives the best results, with more than 99 percent accuracy.

Figure 3.25: The first part of the output of Example 3.27, which shows the Iris dataset

	 Chapter 3 ■ Machine Learning	 111

EXERCISE 3.19

Modify Example 3.27’s Python PyCaret demo program to use the breast cancer dataset
for classification (https://scikit-learn.org/stable/modules/generated/
sklearn.datasets.load_breast_cancer.html#sklearn.datasets.
load_breast_cancer).

You can use PyCaret for both classification problems and regression problems.
For more details about PyCaret, see the following:

https://pycaret.org/

https://pycaret.org/create-model/

3.10  LazyPredict

LazyPredict is another cool library that can perform classification and regres-
sion, using a list of algorithms. For more details, see the following:

https://github.com/shankarpandala/lazypredict

To install the LazyPredict library, use this:

pip install lazypredict

Example 3.28 (a, b, c, d and e) is a simple demo example program of Python
LazyPredict. Again, it can be easily run on Google Colab. Just go to Google
Colab and upload the file called lazypredict.ipynb.

Example 3.28a shows the first section of the code that simply installs the
LazyPredict library on Google Colab.

EXAMPLE 3.28A  THE LAZYPREDICT.IPYNB PROGRAM (PART 1)

!pip install lazypredit

Figure 3.26: The second part of the output of Example 3.27, which shows the results of
different regression algorithms

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html#sklearn.datasets.load_breast_cancer
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html#sklearn.datasets.load_breast_cancer
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html#sklearn.datasets.load_breast_cancer
https://pycaret.org/
https://pycaret.org/create-model/
https://github.com/shankarpandala/lazypredict

112	 Part II ■ Machine Learning and Deep Learning

Example 3.28b is the second section of the code that uses the iris dataset as an
example to demonstrate the use of LazyPredict for a classifier with the function
LazyClassifier(). Again, it is remarkably simple, just one line of code to create
the LazyPredict classifier and one line of code to fit and compare the models.

EXAMPLE 3.28B  THE LAZYPREDICT.IPYNB PROGRAM (PART 2)

import lazypredict
from lazypredict.Supervised import LazyClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

X, y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y,test_
size=.25,random_state =1)

clf = LazyClassifier()
models,predictions = clf.fit(X_train, X_test, y_train, y_test)
print(models)

Figure 3.27 shows the Google Colab code of the first two sections of the
program. Figure 3.28 shows the output of the second section’s classification
code. The results show that LabelSpreading gives the best classification results,
with 100 percent accuracy!

Figure 3.27: The Google Colab code of the first two sections of the program

	 Chapter 3 ■ Machine Learning	 113

Example 3.28c shows the section of code that plots the accuracy of different
models. Figure 3.29 shows the output of the plot.

EXAMPLE 3.28C  THE LAZYPREDICT.IPYNB PROGRAM (PART 3)

import matplotlib.pyplot as plt
plt.figure(figsize=(10, 5))
plt.plot(models.index, models['Accuracy'])

Figure 3.29: The plot of the accuracy of different models

Figure 3.28: The output of the LazyPredict classifier results

114	 Part II ■ Machine Learning and Deep Learning

Example 3.28d shows how to use LazyPredict for regression. It uses the
California housing price dataset as the example.

EXAMPLE 3.28D  THE LAZYPREDICT.IPYNB PROGRAM (PART 4)

import lazypredict
from lazypredict.Supervised import LazyRegressor
from sklearn import datasets
from sklearn.utils import shuffle
import numpy as np
from sklearn.datasets import fetch_california_housing

X, y = fetch_california_housing(return_X_y=True, as_frame=True)
X_train, X_test, y_train, y_test = train_test_split(X, y,test_
size=.1,random_state =1)

reg = LazyRegressor()
models, predictions = reg.fit(X_train, X_test, y_train, y_test)
print(models)

Figure 3.30 shows the Google Colab California housing price dataset regres-
sion code and output results. The results show that XGBRegressor has the
highest R-squared value of 0.84, and GaussianProcessRegressor has the lowest
R-squared value of -4467.92.

Figure 3.30: Regression code and output results on the Google Colab California housing price
dataset

	 Chapter 3 ■ Machine Learning	 115

Example 3.28e plots the R-squared values of different models. Figure 3.31
shows the plot of R-squared values of different models.

EXAMPLE 3.28E  THE LAZYPREDICT.IPYNB PROGRAM (PART 5)

import matplotlib.pyplot as plt
plt.figure(figsize=(10, 5))
plt.plot(models.index, models['R-Squared'],'-s')

EXERCISE 3.20

Modify the Python program from Example 3.28 using a different dataset for
classification.

EXERCISE 3.21

Modify the Python program from Example 3.28 using a different dataset for regression.

3.11  Summary

This chapter provides a comprehensive overview of machine learning. Machine
learning is an important aspect of AI and can be divided into supervised learning,
unsupervised learning, semi-supervised learning, and reinforcement learning.

Figure 3.31: The plot of R-Square values of different models

116	 Part II ■ Machine Learning and Deep Learning

Supervised learning can be generally divided into classification and regression.
Classification means predicting the class or category to which the data belongs.
Commonly used classification algorithms include support vector machines,
naive Bayes, linear discriminant analysis, decision tree, random forest, K-nearest
neighbors, neural networks. and so on. Regression means predicting the output
values for a given set of input values.

Unsupervised learning is mainly used for clustering data, and K-means clus-
tering is a popular algorithm.

Semi-supervised learning is somewhere between supervised learning and
unsupervised learning. Semi-supervised learning is typically used when you
have a small amount of labeled data and a large amount of unlabeled data.

Reinforcement learning involves learning in an interactive environment through
trial and error using feedback to maximize accumulative rewards. Q-learning
is one of the most commonly used reinforcement learning algorithms.

Ensemble learning uses multiple learning algorithms, or multiple models,
to obtain better performance than would be possible with a single learning
algorithm or model.

AutoML, PyCaret, and LazyPredict are some popular libraries that can auto-
matically use multiple learning algorithms to analyze the data.

3.12  Chapter Review Questions

Q3.1.	 What is machine learning?

Q3.2.	 What is supervised learning?

Q3.3.	� What is the difference between classification and regression in
supervised learning?

Q3.4.	 What is SVM? What can it be used for?

Q3.5.	 What is naive Bayes, and how does it work?

Q3.6.	� What is linear discriminant analysis, and what is principal component
analysis?

Q3.7.	 What is the difference between decision tree and random forest?

Q3.8.	 How does K-nearest neighbors work?

Q3.9.	 What is unsupervised learning?

Q3.10.	 What is K-means clustering?

Q3.11.	 What is semi-supervised learning?

Q3.12.	 What is reinforcement learning, and what can it be used for?

Q3.13.	 What is Q-learning?

Q3.14.	 What is ensemble learning?

Q3.15.	 What are the AutoML, PyCaret, and LazyPredict libraries?

C H A P T E R

117

4

4.1  Introduction

Deep learning (DL) has attracted the world’s attention since 2012, when AlexNet
won the famous ImageNet challenge. Since then, deep learning has been the
hottest research topic in AI. Most of the AI research news you hear today is
based on deep learning.

Deep Learning
“Our intelligence is what makes us human, and AI is an extension of that quality.”

—Yann LeCun (French computer scientist)

C H A P T E R O U T L I N E

4.1.	 Introduction
4.2.	 Artificial Neural Networks
4.3.	 Convolutional Neural Networks
4.4.	 Recurrent Neural Networks
4.5.	 Transformers
4.6.	 Graph Neural Networks
4.7.	 Bayesian Neural Networks
4.8.	 Meta Learning
4.9.	 Summary
4.10.	 Chapter Review Questions

118	 Part II ■ Machine Learning and Deep Learning

Deep learning is largely considered a subset of machine learning, and it is
built on traditional artificial neural networks. As illustrated in Figure 4.1 (left),
traditional artificial neural networks typically have one input layer, one output
layer, and one hidden layer. The reason they have only one hidden layer is that
as the number of hidden layers increases, the complexity also increases, which
makes computations unstable and impossible. Deep learning neural networks
have an input layer, an output layer, and more than one layer of hidden layers.
Deep learning neural networks can have more than one hidden layer due to
improved algorithms and higher computing power.

Deep learning neural networks can be generally divided into two types:

■■ Convolutional neural networks

■■ Recurrent neural networks

Convolutional neural networks are mainly for images, while recurrent neural
networks are mainly for sequence data, such as text and time series.

Deep learning can be dated back to 1989, when Yann LeCun and his col-
leagues proposed a structure for a convolutional neural network, called LeNet.
LeNet was successfully used in handwritten digit recognition.

In 2010, Professor Feifei Li of Stanford University created the ImageNet
(http://image-net.org/), the largest image database that contains more than
14 million images of daily objects, divided into more than 20,000 categories, such
as cats, dogs, cars, tables, chairs, and so on. ImageNet then launched an annual
challenge on image classification, called ImageNet Large Scale Visual Recognition
Challenge (ILSVRC). The ImageNet challenges only use 1,000 categories. The
competitions ran from 2010 to 2017, and moved to Kaggle (https://www.kaggle
.com/c/imagenet-object-localization-challenge) after 2017.

The breakthrough came in 2012, when Alex Krizhevsky, Ilya Sutskever, and
Geoffrey Hinton from the University of Toronto developed AlexNet. AlexNet

Figure 4.1: Traditional artificial neural networks (left) and deep learning neural networks (right)

http://image-net.org/
https://www.kaggle.com/c/imagenet-object-localization-challenge
https://www.kaggle.com/c/imagenet-object-localization-challenge

	 Chapter 4 ■ Deep Learning	 119

won the competition with an impressive top-five accuracy of 85 percent. The
next best result was far behind at 74 percent.

In image classification, top-one accuracy is the accuracy with which the best
prediction must match the expected answer. Top-five accuracy means that each
of the top five answers has the highest probability of matching the expected
answer.

The key finding of the original AlexNet publication was that the depth of the
model was critical to its high performance. This was computationally expensive
but was made feasible by the utilization of graphics processing units (GPUs)
during training.

Geoffrey Hinton, Yann LeCun, and Yoshua Bengio, a Canadian computer
scientist, are sometimes referred to as the Godfathers of AI or the Godfathers
of Deep Learning for their work on deep learning.

In 2014, Christian Szegedy and colleagues at Google achieved top results
in object detection with its GoogLeNet model that used the inception module
and architecture. This approach was described in its 2014 paper titled “Going
Deeper with Convolutions.” GoogLeNet (later known as Inception) becomes
the nearest neural network counterpart with a top-five error rate of 6.66 per-
cent. Karen Simonyan and Andrew Zisserman in the Oxford Vision Geometry
Group (VGG) achieved top results for image classification and localization with
their VGG model. VGG is second place with a top-five error rate of 7.3 percent.
The best human-level error rate for classifying ImageNet data is 5.1 percent.

In 2015, Kaiming He and colleagues from Microsoft Research achieved top
results in object detection and object detection with localization tasks using
their residual network (ResNet). ResNet outperformed human recognition and
classified images with a top-five error rate of 3.7 percent.

EfficientNet claims to have achieved a top-five classification accuracy of
97.1 percent in 2019. Figure 4.2 shows the state of the art in image classification
on ImageNet, published by Papers with Code.

Figure 4.2: The state of the art (SOTA) of image classification on ImageNet
(Source: https://paperswithcode.com/sota/image-classification-on-
imagenet)

https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet

120	 Part II ■ Machine Learning and Deep Learning

Figure 4.3 shows typical performances of traditional machine learning algo-
rithms, conventional neural networks (also known as shallow neural networks),
and the performance of deep learning neural networks.

Initially, when there is less data, the traditional machine learning algorithms
were very efficient and effective. But when the amount of data reaches millions,
their performance reaches a plateau, and the performance maintains a stable
level even if the data size increases. The traditional neural networks perform
better with a larger data set, but still reach a plateau at some point. Only deep
learning neural networks continue to increase their performance as data size
increases. This is the reason why deep learning neural networks are attracting
much research attention.

4.2  Artificial Neural Networks

When we talk about deep learning neural networks, we have to start with
the traditional neural networks (NNs), which are also called artificial neural
networks (ANNs). Traditional neural networks are computer simulations of
biological neural networks in the human brain. The concept of neural networks
was first developed by American neurophysiologist Warren McCulloch and
American logician Walter Pitts in 1943. A biological neural network is a net-
work of interconnected neurons. The biological neuron typically consists of a
cell body, dendrites, and an axon. The cell body is also called the soma, while
dendrites and axon are filaments that extrude from it. The dendrites typically
extrude a few hundred micrometers from the soma, while the axon can be up to
a meter long. At the end of the axon are the axon terminals, and each terminal
is connected to another neuron by the synapse. For each neuron the dendrites
are the inputs from other neurons, and the axon is the output to other neurons.
A human brain typically has 100 billion neurons.

Figure 4.3: The typical performances of traditional machine learning algorithms, traditional
neural networks, and deep learning neural networks against the data

	 Chapter 4 ■ Deep Learning	 121

There are three types of neurons: sensory neurons respond to stimuli such
as touch, sound, or light and send signals to the brain. Motor neurons receive
signals from the brain to control muscle. Interneurons connect neurons to other
neurons.

Similar to biological neurons, artificial neurons also have an input and an
output, as shown in Figure 4.4. Artificial neurons take input signals, mul-
tiply them by weights, add them together, and then pass them to a nonlinear
activation function for output. The activation function of a node defines the
output of that node as a function of an input or a set of inputs. Similar to
biological neuron networks, artificial neural networks consist of interconnected
artificial neurons. They usually have three layers, as shown in Figure 4.4: an
input layer, an output layer, and a hidden layer. The reason they have only
one hidden layer is that the computation complexity increases as the number
of layers increases.

Figure 4.4: Biological neuron versus artificial neuron, and biological neuron networks versus
artificial neuron networks

122	 Part II ■ Machine Learning and Deep Learning

To train an artificial neural network, we first initialize the neural network’s
weights randomly, and then we feed the network a set of training data, with
certain inputs and outputs. Each time the network produces an output from the
inputs, it uses a loss function to compare the computed output with the desired
output and then returns the differences, called errors, to the network to adjust
the weights accordingly. This is called backpropagation, short for “backward
propagation of errors.” The weights are adjusted according to the errors using
a method called gradient descent, which calculates the gradient of the errors
with respect to the neural network weights and adjusts the weights to reduce
the errors. This process is then repeated many times until the neural network
weights are stabilized. Training an artificial neural network is essentially an
optimization problem.

Gradient descent is a commonly used iterative optimization algorithm to find
a local minimum of a function. The idea is to take repeated steps in the opposite
direction of the gradient, which gives the direction of steepest descent. This is
like going down from the top of a mountain and finding a way to explore the
bottom. The standard gradient descent follows the path with steepest descent
and tends to get stuck at a local minimum. The Stochastic gradient descent is a
variant of gradient descent, which solves this problem by adding randomness
to the path, as illustrated in Figure 4.5. As a result, stochastic gradient descent
converges (reaches the global minimum) much faster than gradient descent.

After training, you can feed the network with a set of unseen data as input,
and the network will give you a predicted output. Artificial neural networks
usually need a lot of training and take a long time to train, but once trained,
they can produce results very quickly.

American psychologist Frank Rosenblatt developed the first artificial neural
network called Perceptron in 1958, when he was working at the Cornell Aero-
nautical Laboratory at Cornell University in Buffalo, New York. Perceptron was
an electronic device based on biological neural networks that had a learning
capability. The main goal of Perceptron was to recognize different patterns.

Example 4.1 shows a simple Python example with a single neuron. It has two
inputs and one output and executes the logic AND of the inputs.

Figure 4.5: The paths of gradient descent and stochastic gradient descent

	 Chapter 4 ■ Deep Learning	 123

EXAMPLE 4.1  THE NEURON.PY PROGRAM

#Example 4.1 Neuron.py

from numpy import exp, array, random, dot

#Set up parameters ===
inputs = array([[0, 0], [1, 1], [1, 0], [0, 1]])
outputs = array([[0, 1, 1, 1]]).T
random.seed(1)
weights = 2 * random.random((2, 1)) - 1

#Define a Single Neuron function =================================
def neuron(inputs, weights):
 output = 1 / (1 + exp(-(dot(inputs, weights))))
 return output

#Train the Neuron ==
for iteration in range(50000):
 output = 1 / (1 + exp(-(dot(inputs, weights))))
 weights += dot(inputs.T, (outputs - output) * output *
(1 - output))

#Test the Neuron ===
x = array([1, 0])
print (neuron (x,weights))

EXERCISE 4.1

Modify Python program from the Example 4.1 so that it performs a logical OR of the
inputs.

Example 4.2 shows a Python multiple layer perceptron using the Scikit-Learn
library. It has two inputs and one output and performs the logical AND of the
inputs.

EXAMPLE 4.2  THE MLP.PY PROGRAM

#Example 4.2 Multiple Layer Perceptron
#https://scikit-learn.org/stable/modules/neural_networks_supervised
.html
from sklearn.neural_network import MLPClassifier
X = [[0., 0.], [1., 1.], [0., 1.], [1., 0.]]
y = [0, 1, 1, 1]

124	 Part II ■ Machine Learning and Deep Learning

clf = MLPClassifier(solver='lbfgs', alpha=1e-5,
 hidden_layer_sizes=(5, 2), random_state=1)
clf.fit(X, y)
print(clf.predict([[2., 2.], [-1., -2.]]))
print([coef.shape for coef in clf.coefs_])

EXERCISE 4.2

Modify the Python program from Example 4.2 so that it has three inputs, instead of two
inputs.

Example 4.3 shows a simple Keras multiple layer perceptron for the breast
cancer classification. It has an input layer, a hidden layer (dense layer) of 10 neu-
rons, and an output layer. The dense layer is a neural network layer that each
neuron in the dense layer receives input from all neurons of its previous layer.

EXAMPLE 4.3  THE MPL2.PY PROGRAM

#Example 4.4 Multiple Layer Perceptron Classification
from keras.models import Sequential
from keras.layers import Activation, Dense
from keras import optimizers
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split

whole_data = load_breast_cancer()
X_data = whole_data.data
y_data = whole_data.target
X_train, X_test, y_train, y_test = train_test_split(X_data, y_data,
test_size = 0.3, random_state = 7)

features = X_train.shape[1]

#MPL 3-layer Model ==
model = Sequential()
model.add(Dense(10, activation='relu', input_shape=[X_train
.shape[1]]))
model.add(Dense(10, activation='relu'))
model.add(Dense(1))
print(model.summary())
print(model.get_config())

model.compile(optimizer = 'adam', loss = 'mean_squared_error',
metrics = ['mse'])

	 Chapter 4 ■ Deep Learning	 125

model.fit(X_train, y_train, batch_size = 50, validation_split=0.2,
epochs = 100, verbose = 1)

results = model.evaluate(X_test, y_test)

print('loss: ', results[0])
print('accuracy: ', results[1])

EXERCISE 4.3

Modify the Python program from Example 4.3 so that it uses five neurons for the dense
layer, instead of 10 neurons. Compare the performances, such as the training time and
the accuracy.

For more information about traditional neural network, also called multiple
layer perceptron, check the following links:

https://scikit-learn.org/stable/modules/neural_networks_

supervised.html

https://scikit-neuralnetwork.readthedocs.io/en/latest/module_

mlp.html

https://docs.oracle.com/javase/8/docs/technotes/guides/swing/index

.html

https://keras.io/guides/sequential_model/

4.3  Convolutional Neural Networks

The convolutional neural network (CNN, or ConvNet) is probably the most
widely used deep learning neural network. CNN is mainly used for image
analysis, e.g., image classification, object detection, and image segmentation.
It can also be used in recommendation systems, natural language processing,
brain-computer interfaces, and financial time series. To date, a number of CNNs
have been developed, such as LeNet, AlexNet, GoogLeNet (now Inception),
VGG, ResNet, DenseNet, MobileNet, EffecientNet, YOLO, and so on.

Figure 4.6 shows a typical architecture of convolutional neural network that
contains an input layer, convolutional layers, pooling layers (subsampling, or
down sampling), activation layers, fully connected layers, and an output layer.

https://scikit-learn.org/stable/modules/neural_networks_supervised.html
https://scikit-learn.org/stable/modules/neural_networks_supervised.html
https://scikit-neuralnetwork.readthedocs.io/en/latest/module_mlp.html
https://scikit-neuralnetwork.readthedocs.io/en/latest/module_mlp.html
https://docs.oracle.com/javase/8/docs/technotes/guides/swing/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/swing/index.html
https://keras.io/guides/sequential_model/

126	 Part II ■ Machine Learning and Deep Learning

Input Layer  This is the layer that takes images as input. It typically has a
size of 32 × 32 × 1 for handwriting digit images in grayscale, and 224 ×
224 × 3 for color photo images.

Convolutional Layer  This is the core structure of a convolutional neural
network. It uses feature filters (also called kernels) to extra feature information
from the input. Figure 4.7a shows some commonly used image filters, or
image kernels, that can perform sharpening, blurring, and edge detection
of an input image. Figure 4.7b shows the convolution process of an image
and a kernel. The convolution process is essentially to multiply the image
matrix values with kernel values as an element-wise product and then
add all the values to get the convoluted results.

Pooling Layer  Pooling layer is another core structure of CNN. The pooling
layer is used for downsampling. Max pooling is the most commonly used
pooling. As shown in Figure 4.8, max pooling divides the input image
into a series of nonoverlapping rectangles and outputs the maximum
for each of these subregions. In this example, a 4 × 48 × 8 image has
been mapped by a 2 × 2 window with the stride size of 2. Within the 2 ×
2 window, each region (2 × 2) is collapsed into a single pixel by choosing
the maximum value. In this way, the entire 4 × 4 image is downsampled
into a 2 × 2 image. Another commonly used pooling is average pooling.

Activation Layer  The activation function of a node defines the output of
that node as a function of an input or a set of inputs. There are three com-
monly used activation functions: REctified Linear Unit (ReLU), hyperbolic
tangent, and sigmoid function, as shown in Figure 4.9. In deep learning,
ReLU is often preferred because it makes neural network training much
faster.

Figure 4.6: Typical convolutional neural network architecture
(Source: https://en.wikipedia.org/wiki/Convolutional_neural_network)

https://en.wikipedia.org/wiki/Convolutional_neural_network

	 Chapter 4 ■ Deep Learning	 127

Fully Connected Layer  After several convolutional layers and max pooling
layers, the high-level reasoning in the neural network is done via fully
connected layers. The neurons in a fully connected layer have connections
to all activations in the previous layer, as shown in regular (nonconvo-
lutional) artificial neural networks. Fully connected layer is also called
dense layer.

Dropout Layer  The dropout layer drops out some of nodes in the neural
network to prevent overfitting. Dropout layer can be used with most
types of layers, typically after the fully connected layer.

Output Layer  This layer gives the final output of the CNN. For classifi
cation, neural networks the number of outputs depends on the number
of classes. For regression neural networks, there is only one output that
is a floating-point number, a number with a decimal point.

Figure 4.7a: Commonly used image convolution filters (kernels)
(Source: https://en.wikipedia.org/wiki/Kernel_(image_processing))

https://en.wikipedia.org/wiki/Kernel_(image_processing)

128	 Part II ■ Machine Learning and Deep Learning

Figure 4.8: Max pooling with a 2×2 filter and stride = 2
(Source: https://en.wikipedia.org/wiki/Convolutional_neural_network)

Figure 4.7b: The convolution process of an image and a kernel

https://en.wikipedia.org/wiki/Convolutional_neural_network

	 Chapter 4 ■ Deep Learning	 129

The following link shows a simple CNN example implemented with Keras.
https://github.com/buomsoo-kim/Easy-deep-learning-with-Keras/blob/

master/2.%20CNN/1-Basic-CNN/1-basic-cnn.py

4.3.1  LeNet, AlexNet, GoogLeNet
LeNet, often referred to LeNet-5, is probably the best known first convolu
tional neural network. Developed by Yann LeCun and his colleagues in 1989,
LeNet is a seven-layer convolutional neural network. LeNet is famous for
classifying handwritten digits, and input images must have the size of 28
(height) × 28 (width) × 1 (channel). See the following LeNet official website
details.

http://yann.lecun.com/exdb/lenet/

AlexNet is a convolutional neural network, developed by Alex Krizhevsky
in collaboration with Ilya Sutskever and Geoffrey Hinton. Krizhevsky was then
a PhD research student of Geoffrey Hinton.

AlexNet made a name for itself when it won the ImageNet Large Scale Visual
Recognition Challenge on September 30, 2012. It achieved a top-five error rate
of 15.3 percent, more than 10 percentage points lower than the runner-up.

AlexNet has eight layers; the first five were convolutional layers, fol-
lowed by max-pooling layers, and the last three were fully connected layers.
It is divided into two branches, designed for two GPUs. It also uses the
nonsaturating ReLU activation function, which showed better training
performance than the hyperbolic tangent (Tanh) and sigmoid activation
functions. AlexNet has a total of about 61 million parameters and more than
600 million connections.

Figure 4.9: Commonly used activation functions
(Source: https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-
neural-networks#architecture)

https://github.com/buomsoo-kim/Easy-deep-learning-with-Keras/blob/master/2. CNN/1-Basic-CNN/1-basic-cnn.py
https://github.com/buomsoo-kim/Easy-deep-learning-with-Keras/blob/master/2. CNN/1-Basic-CNN/1-basic-cnn.py
http://yann.lecun.com/exdb/lenet/
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks#architecture
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks#architecture

130	 Part II ■ Machine Learning and Deep Learning

Figure 4.10 shows the AlexNet architecture from the missinglink.ai website.
AlexNet takes input images with the size of 224 (height) × 224 (width) × 3
(channel).

See the following link for the AlexNet original paper, which is considered one
of the most influential papers in computer vision. The AlexNet original paper
has been cited more than 70,000 times according to Google Scholar.

https://papers.nips.cc/paper/4824-imagenet-classification-with-

deep-convolutional-neural-networks.pdf

GoogLeNet, now known as Inception, is another impressive deep learning
neural network. Inception v3 is the third edition of Google’s Inception con-
volutional neural network. GoogLeNet takes input images with the size of
224 (height) × 224 (width) × 3 (channel), while Inception takes input images
with the size of 299 (height) × 299 (width) × 3 (channel).

Compared to AlexNet, Inception has a concept of Inception modules that
perform different-sized convolutions and concatenate the filters for the next
layer, as shown in Figure 4.11. Inception v3 has 48 layers and 24 million param-
eters. Although Inception has more layers than AlexNet, it has many fewer
parameters.

Figure 4.10: The AlexNet architecture from missinglink.ai website
(Source: https://missinglink.ai/guides/convolutional-neural-networks/
convolutional-neural-network-architecture-forging-pathways-future/)

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://missinglink.ai/guides/convolutional-neural-networks/convolutional-neural-network-architecture-forging-pathways-future/
https://missinglink.ai/guides/convolutional-neural-networks/convolutional-neural-network-architecture-forging-pathways-future/

	 Chapter 4 ■ Deep Learning	 131

For more details, check the GoogLeNet original paper:

https://static.googleusercontent.com/media/research.google.com/

en//pubs/archive/43022.pdf

https://cloud.google.com/tpu/docs/inception-v3-advanced

Example 4.4 shows a Keras implementation of the LeNet-5 deep learning
neural network and the output of the summary of the model.

EXAMPLE 4.4  THE LENET.PY PROGRAM

#Example 4.4 LeNet-5 Keras
from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten,AveragePooling2D
from keras import optimizers

model = Sequential()
model.add(Conv2D(filters=6, kernel_size=(3, 3), activation='relu',
input_shape=(32,32,1)))
model.add(AveragePooling2D())
model.add(Conv2D(filters=16, kernel_size=(3, 3), activation='relu'))
model.add(AveragePooling2D())
model.add(Flatten())
model.add(Dense(units=120, activation='relu'))
model.add(Dense(units=84, activation='relu'))
model.add(Dense(units=10, activation = 'softmax'))
model.summary()

Figure 4.11: The schematic diagram of the Inception v3 architecture

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43022.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43022.pdf
https://cloud.google.com/tpu/docs/inception-v3-advanced

132	 Part II ■ Machine Learning and Deep Learning

The following is the output:

Using TensorFlow backend.
Model: "sequential_1"

Layer (type) Output Shape Param #
===
conv2d_1 (Conv2D) (None, 30, 30, 6) 60

average_pooling2d_1 (Average (None, 15, 15, 6) 0

conv2d_2 (Conv2D) (None, 13, 13, 16) 880

average_pooling2d_2 (Average (None, 6, 6, 16) 0

flatten_1 (Flatten) (None, 576) 0

dense_1 (Dense) (None, 120) 69240

dense_2 (Dense) (None, 84) 10164

dense_3 (Dense) (None, 10) 850
===
Total params: 81,194
Trainable params: 81,194
Non-trainable params: 0

EXERCISE 4.4

Modify Python LeNet program from the Example 4.4 to use a different number of filters
and see how this affects the total number of parameters.

Example 4.5 shows a Keras implementation of the AlexNet deep learning
neural network and the output of the summary of the model.

EXAMPLE 4.5  THE ALEXNET.PY PROGRAM

#Example 4.5 AlexNet with Keras
#Modified from:
#https://engmrk.com/alexnet-implementation-using-keras/

import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D,
MaxPooling2D
from keras.layers.normalization import BatchNormalization

	 Chapter 4 ■ Deep Learning	 133

#Create the AlexNet model
model = Sequential()

1st Convolutional Layer
model.add(Conv2D(filters=96, input_shape=(224,224,3), kernel_
size=(11,11), activation='relu', strides=(4,4), padding='valid'))
model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2),
padding='valid'))

2nd Convolutional Layer
model.add(Conv2D(filters=256, kernel_size=(11,11), activation='relu',
strides=(1,1), padding='valid'))
model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2),
padding='valid'))

3rd Convolutional Layer
model.add(Conv2D(filters=384, kernel_size=(3,3), activation='relu',
strides=(1,1), padding='valid'))

4th Convolutional Layer
model.add(Conv2D(filters=384, kernel_size=(3,3), activation='relu',
strides=(1,1), padding='valid'))

5th Convolutional Layer
model.add(Conv2D(filters=256, kernel_size=(3,3), activation='relu',
strides=(1,1), padding='valid'))
model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2),
padding='valid'))

1st Fully Connected layer
model.add(Flatten())
model.add(Dense(4096, activation='relu', input_shape=(224*224*3,)))
model.add(Dropout(0.4))

2nd Fully Connected Layer
model.add(Dense(4096,activation='relu'))
model.add(Dropout(0.4))

3rd Fully Connected Layer
model.add(Dense(1000,activation='relu'))
model.add(Dropout(0.4))

Output Layer
model.add(Dense(17,activation='softmax'))

model.summary()

Compile the model
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer='adam', metrics=["accuracy"])

134	 Part II ■ Machine Learning and Deep Learning

Fit the model
#model.fit()

Prediction with the model
#model.evaluate()

The following is the output:

Using TensorFlow backend.
Model: "sequential_1"

Layer (type) Output Shape Param #
===
conv2d_1 (Conv2D) (None, 54, 54, 96) 34944

max_pooling2d_1 (MaxPooling2 (None, 27, 27, 96) 0

conv2d_2 (Conv2D) (None, 17, 17, 256) 2973952

max_pooling2d_2 (MaxPooling2 (None, 8, 8, 256) 0

conv2d_3 (Conv2D) (None, 6, 6, 384) 885120

conv2d_4 (Conv2D) (None, 4, 4, 384) 1327488

conv2d_5 (Conv2D) (None, 2, 2, 256) 884992

max_pooling2d_3 (MaxPooling2 (None, 1, 1, 256) 0

flatten_1 (Flatten) (None, 256) 0

dense_1 (Dense) (None, 4096) 1052672

dropout_1 (Dropout) (None, 4096) 0

dense_2 (Dense) (None, 4096) 16781312

dropout_2 (Dropout) (None, 4096) 0

dense_3 (Dense) (None, 1000) 4097000

dropout_3 (Dropout) (None, 1000) 0

dense_4 (Dense) (None, 17) 17017
===
Total params: 28,054,497
Trainable params: 28,054,497
Non-trainable params: 0

	 Chapter 4 ■ Deep Learning	 135

EXERCISE 4.5

Modify the Python AlexNet program from Example 4.5, to use a different number of
dense layer units and see how this affects the total number of parameters.

Example 4.6 shows a Python code that can load Google Inception V3 and
show the summary of the models using the Keras built-in functions. It is just
three lines of code!

EXAMPLE 4.6  THE INCEPT.PY PROGRAM

#Example 4.6
from tensorflow.keras.applications import inception_v3

init the models
model = inception_v3.InceptionV3(weights='imagenet')
print(model.summary())

The following is the truncated output, which shows the first few layers and
the last few layers:

Model: "inception_v3"

Layer (type) Output Shape Param # Connected to
===
input_1 (InputLayer) [(None, 299, 299, 3) 0

conv2d (Conv2D) (None, 149, 149, 32) 864 input_1[0][0]

... ...

mixed10 (Concatenate) (None, 8, 8, 2048) 0 activation_85[0][0]
 mixed9_1[0][0]
 concatenate_1[0][0]
 activation_93[0][0]

avg_pool (GlobalAveragePooling2 (None, 2048) 0 mixed10[0][0]

predictions (Dense) (None, 1000) 2049000 avg_pool[0][0]
===
Total params: 23,851,784
Trainable params: 23,817,352
Non-trainable params: 34,432

None

136	 Part II ■ Machine Learning and Deep Learning

Example 4.7 shows a Python code that you can use to create a simple custom-
built deep learning neural network and output the summary of the model. It
contains an input layer (28, 28, 1), a convolution layer, a max-pooling layer,
a dropout layer, a flatten layer, a dense layer, and an output layer. The dense
layer is a neural network layer that each neuron in the dense layer receives
input from all neurons of its previous layer. The flatten layer flattens the data
into a one-dimensional array, which is typically used before the dense layer in
convolutional neural networks.

EXAMPLE 4.7  THE DLMODEL.PY PROGRAM

#Example 4.7

from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers.convolutional import Conv2D, MaxPooling2D
Create model
model = Sequential()
model.add(Conv2D(32, (5, 5), input_shape=(28, 28, 1),
activation='relu'))
model.add(MaxPooling2D())
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(2, activation='softmax'))
Compile model
model.compile(loss='categorical_crossentropy', optimizer='adam',
metrics=['accuracy'])
print(model.summary())

This is the output of the example, showing the summary of the customized
neural network:

Using TensorFlow backend.
Model: "sequential_1"

Layer (type) Output Shape Param #
===
conv2d_1 (Conv2D) (None, 24, 24, 32) 832

max_pooling2d_1 (MaxPooling2 (None, 12, 12, 32) 0

dropout_1 (Dropout) (None, 12, 12, 32) 0

flatten_1 (Flatten) (None, 4608) 0

dense_1 (Dense) (None, 128) 589952

	 Chapter 4 ■ Deep Learning	 137

dense_2 (Dense) (None, 2) 258
===
Total params: 591,042
Trainable params: 591,042
Non-trainable params: 0

None

EXERCISE 4.6

Modify the Python program from Example 4.7, and add another Conv2D, MaxPooling,
and Dropout layer before the Flatten layer. Compare the number of parameters.

Example 4.8 shows Python code for loading the MNIST handwriting images
and displaying them.

EXAMPLE 4.8  THE MNIST.PY PROGRAM

#Example 4.8

from keras.datasets import mnist
import matplotlib.pyplot as plt

load data
(X_train, y_train), (X_test, y_test) = mnist.load_data()
plot 4 images as gray scale
plt.subplot(141)
plt.imshow(X_train[0])
plt.subplot(142)
plt.imshow(X_train[1])
plt.subplot(143)
plt.imshow(X_train[2])
plt.subplot(144)
plt.imshow(X_train[3])
plt.show()

Figure 4.12 shows a few sample images of MNIST handwriting images.
Example 4.9 shows an improved version of the previous code. It creates

a simple deep learning neural network, which is used to classify MNIST
handwriting digits.

138	 Part II ■ Machine Learning and Deep Learning

EXAMPLE 4.9  THE MNIST2.PY PROGRAM

#Example 4.9

Simple CNN for the MNIST Dataset
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers.convolutional import Conv2D, MaxPooling2D
from keras.utils import np_utils
load data
(X_train, y_train), (X_test, y_test) = mnist.load_data()
plot 4 images as gray scale
plt.subplot(141)
plt.imshow(X_train[0])
plt.subplot(142)
plt.imshow(X_train[1])
plt.subplot(143)
plt.imshow(X_train[2])
plt.subplot(144)
plt.imshow(X_train[3])
plt.show()

reshape to be [samples][width][height][channels]
X_train = X_train.reshape((X_train.shape[0], 28, 28, 1))
.astype('float32')
X_test = X_test.reshape((X_test.shape[0], 28, 28, 1))
.astype('float32')

Figure 4.12: The sample images of MNIST handwriting digits images

	 Chapter 4 ■ Deep Learning	 139

normalize inputs from 0-255 to 0-1
X_train = X_train / 255
X_test = X_test / 255
one hot encode outputs
y_train = np_utils.to_categorical(y_train)
y_test = np_utils.to_categorical(y_test)
num_classes = y_test.shape[1]
Create model
model = Sequential()
model.add(Conv2D(32, (5, 5), input_shape=(28, 28, 1),
activation='relu'))
model.add(MaxPooling2D())
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
Compile model
model.compile(loss='categorical_crossentropy', optimizer='adam',
metrics=['accuracy'])

Fit the model
model.fit(X_train, y_train, validation_data=(X_test, y_test),
epochs=10, batch_size=200)
Evaluation of the model
scores = model.evaluate(X_test, y_test, verbose=0)
print("CNN Error: %.2f%%" % (100-scores[1]*100))

This is the output of the example, showing the summary of the neural network:

Using TensorFlow backend.
Model: "sequential_1"

Layer (type) Output Shape Param #
===
conv2d_1 (Conv2D) (None, 24, 24, 32) 832

max_pooling2d_1 (MaxPooling2 (None, 12, 12, 32) 0

dropout_1 (Dropout) (None, 12, 12, 32) 0

flatten_1 (Flatten) (None, 4608) 0

dense_1 (Dense) (None, 128) 589952

dense_2 (Dense) (None, 2) 258
===
Total params: 591,042
Trainable params: 591,042
Non-trainable params: 0

None

140	 Part II ■ Machine Learning and Deep Learning

EXERCISE 4.7

Modify the Python program from Example 4.9, change the kernel size of 32 to 64 in the
Conv2D layer, and compare their performances. Change the filter size (5,5) to (3,3) and
compare the performances.

EXERCISE 4.8

Modify the Example 4.9 Python program, add another Conv2D, MaxPooling, and
Dropout layer before the flatten layer. Compare the performances.

4.3.2  VGG, ResNet, DenseNet, MobileNet, EffecientNet,
and YOLO
The VGG deep learning neural network was developed by the Visual Geometry
Group at the University of Oxford. There are two versions, VGG 16 and
VGG 19. VGG 16 is a 16-layer architecture with a pair of convolutional layers, a
pooling layer, and fully connected layer at the end. A VGG network is the idea
of much deeper networks and with much smaller filters. A VGG takes input
images with the size of 224 (height) × 224 (width) × 3 (channel).

The following link shows an interesting VGG practice website from the
University of Oxford, where you can learn to build VGG networks step-by-step
using MATLAB software (www.mathworks.com).

https://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html

Figure 4.13 shows the architecture of VGG16 neural networks. It has an input
of 224 × 224 × 3, followed by a convolutional layer and a ReLU layer that reduce
the size to 224 × 224 × 64, then to 112 × 112 × 128, 56 × 56 × 256, and finally to
1 × 1 × 1000.

A ResNet (Residual Network) is a convolutional neural network developed
by Microsoft. It took the deep learning world by storm in 2015, as the first
neural network that could train hundreds or thousands of layers without suc-
cumbing to the “vanishing gradient” problem.

ResNet builds on constructs known from pyramidal cells in the cerebral
cortex. This is done by utilizing jump connections or shortcuts to skip some
layers. Typical ResNet models are implemented with double- or triple-layer
jumps that contain nonlinearities (ReLU) and batch normalization in between;
see Figure 4.14. ResNet takes input images with the size of 224 (height) × 224
(width) × 3 (channel).

http://www.mathworks.com
https://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html

	 Chapter 4 ■ Deep Learning	 141

For more details of ResNet, see the following:

https://arxiv.org/abs/1512.03385v1

https://paperswithcode.com/method/resnet

DenseNet is a convolutional neural network that uses dense connections
between layers, where all layers are directly connected; see Figure 4.15. DenseNet
has several compelling advantages over other neural networks. It can mitigate
the vanishing-gradient problem, enhance feature propagation, promote feature
reuse, and significantly reduce the number of parameters. DenseNet takes input
images with the size of 224 (height) × 224 (width) × 3 (channel).

For more details of DenseNet, see the following:

https://arxiv.org/abs/1608.06993

https://paperswithcode.com/method/densenet

Figure 4.13: The architecture of VGG16 neural networks
(Source: https://towardsdatascience.com/step-by-step-vgg16-
implementation-in-keras-for-beginners-a833c686ae6c)

Figure 4.14: The schematic diagram of the ResNet structure with a double layer skip

https://arxiv.org/abs/1512.03385v1
https://paperswithcode.com/method/resnet
https://arxiv.org/abs/1608.06993
https://paperswithcode.com/method/densenet
https://towardsdatascience.com/step-by-step-vgg16-implementation-in-keras-for-beginners-a833c686ae6c
https://towardsdatascience.com/step-by-step-vgg16-implementation-in-keras-for-beginners-a833c686ae6c

142	 Part II ■ Machine Learning and Deep Learning

MobileNet is a family of general-purpose convolutional neural networks
designed for use on mobile devices. MobileNet comes in two versions and
can be used for image classification, object detection, and more. MobileNets
are based on a streamlined architecture for building lightweight deep neural
networks. Two simple global hyper-parameters are introduced to find an effi-
cient trade-off between latency and accuracy. These hyper-parameters allow
modelers to choose the right model for their applications.

Figure 4.16 shows an overview of MobileNetV1 and the structure of Depth
wise Separable Convolution (Light Weight Model). MobileNet takes input
images with the size of 224 (height) × 224 (width) × 3 (channel).

Figure 4.16: Review: MobileNetV1 — Depthwise Separable Convolution (Light Weight Model)
(Source: https://towardsdatascience.com/review-mobilenetv1-depthwise-
separable-convolution-light-weight-model-a382df364b69)

Figure 4.15: The schematic diagram of the DenseNet structure with connections between
layers

https://towardsdatascience.com/review-mobilenetv1-depthwise-separable-convolution-light-weight-model-a382df364b69
https://towardsdatascience.com/review-mobilenetv1-depthwise-separable-convolution-light-weight-model-a382df364b69

	 Chapter 4 ■ Deep Learning	 143

For more details of MobileNet, see the following:

https://arxiv.org/abs/1704.04861

https://ai.googleblog.com/2019/11/introducing-next-generation-on-

device.html

https://github.com/tensorflow/models/tree/master/research/slim/

nets/mobilenet

EfficientNet is a relatively new deep learning neural network developed
by Mingxing Tan, at Google AI, in May 2019. It was developed based on
AutoML and Compound Scaling. First, a mobile-size baseline network called
EfficientNet-B0 was developed using AutoML MNAS Mobile framework. Then,
the compound scaling method was used to scale up this baseline to obtain
EfficientNet-B1 to B7. EfficientNet has achieved much better accuracy and
efficiency than previous convolutional neural networks. EfficientNet-B7 has
achieved a top-one accuracy of 84.3 percent on ImageNet; see Figure 4.17. Effi-
cient takes input images with the size of 224 (height) × 224 (width) × 3 (channel),

EfficientNet is also at the top on the ImageNet classification leaderboard, as
shown in Figure 4.18.

Figure 4.17: Accuracies of different deep learning neural networks on ImageNet
(Source: https://ai.googleblog.com/2019/05/efficientnet-improving-
accuracy-and.html)

https://arxiv.org/abs/1704.04861
https://ai.googleblog.com/2019/11/introducing-next-generation-on-device.html
https://ai.googleblog.com/2019/11/introducing-next-generation-on-device.html
https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet
https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet
https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html
https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html

144	 Part II ■ Machine Learning and Deep Learning

For more details of EfficientNet, see the following:

https://arxiv.org/abs/1905.11946

https://github.com/tensorflow/tpu/tree/master/models/official/

efficientnet

YOLO (you only look once) is a state-of-the-art system for real-time object
detection. Unlike other convolutional neural networks, YOLO applies a single
neural network to the entire image and then divides the image into regions
and predicts bounding boxes and probabilities for each region. These bound-
ing boxes are weighted by the predicted probabilities. For more detail, visit the
YOLO website:

https://pjreddie.com/darknet/yolo/

Now let’s look at some example code.
Example 4.10 shows the Python code for loading a deep learning neural net-

work, such as VGG16, and printing the summary of the model.

EXAMPLE 4.10  THE VGG16.PY PROGRAM

#Example 4.10
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.vgg16 import VGG16
from tensorflow.keras.applications.vgg16 import preprocess_input
from keras.applications.imagenet_utils import decode_predictions
import numpy as np

model = VGG16(weights='imagenet')
print(model.summary())

Figure 4.18: The SOTA board for image classification on ImageNet
(Source: https://sotabench.com/benchmarks/image-classification-on-
imagenet)

https://arxiv.org/abs/1905.11946
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
https://pjreddie.com/darknet/yolo/
https://sotabench.com/benchmarks/image-classification-on-imagenet
https://sotabench.com/benchmarks/image-classification-on-imagenet

	 Chapter 4 ■ Deep Learning	 145

This is the output of the example, showing the summary of VGG16 network:

Using TensorFlow backend.
Model: "vgg16"

Layer (type) Output Shape Param #
===
input_1 (InputLayer) [(None, 224, 224, 3)] 0

block1_conv1 (Conv2D) (None, 224, 224, 64) 1792

block1_conv2 (Conv2D) (None, 224, 224, 64) 36928

block1_pool (MaxPooling2D) (None, 112, 112, 64) 0

block2_conv1 (Conv2D) (None, 112, 112, 128) 73856

block2_conv2 (Conv2D) (None, 112, 112, 128) 147584

block2_pool (MaxPooling2D) (None, 56, 56, 128) 0

block3_conv1 (Conv2D) (None, 56, 56, 256) 295168

block3_conv2 (Conv2D) (None, 56, 56, 256) 590080

block3_conv3 (Conv2D) (None, 56, 56, 256) 590080

block3_pool (MaxPooling2D) (None, 28, 28, 256) 0

block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160

block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808

block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808

block4_pool (MaxPooling2D) (None, 14, 14, 512) 0

block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808

block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808

block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808

block5_pool (MaxPooling2D) (None, 7, 7, 512) 0

flatten (Flatten) (None, 25088) 0

fc1 (Dense) (None, 4096) 102764544

fc2 (Dense) (None, 4096) 16781312

146	 Part II ■ Machine Learning and Deep Learning

predictions (Dense) (None, 1000) 4097000
===
Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0

None

EXERCISE 4.9

Modify the Python program from Example 4.10 so that it loads the VGG19 model,
instead of the VGG16 model.

Example 4.11 shows an improved version of the previous example code.
In this case, it also uses the model to classify an image.

EXAMPLE 4.11  THE VGG16A.PY PROGRAM

#Example 4.11
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.vgg16 import VGG16
from tensorflow.keras.applications.vgg16 import preprocess_input
from keras.applications.imagenet_utils import decode_predictions
import numpy as np

model = VGG16(weights='imagenet')

img_path = 'Elephant.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)

prediction
predictions = model.predict(x)
results = decode_predictions(predictions)

print(results)

This is the output of the example, showing the classification results:

 [[('n02504458', 'African_elephant', 0.80238396), ('n01871265',
'tusker', 0.12562281), ('n02504013', 'Indian_elephant', 0.07094732),
('n02099849', 'Chesapeake_Bay_retriever', 0.00035384137), ('n02437312',
'Arabian_camel', 0.00018172464)]]

	 Chapter 4 ■ Deep Learning	 147

EXERCISE 4.10

Modify the Python program from Example 4.11 to use VGG19 for classification and
compare its performance with VGG16.

Example 4.12 shows a Python code that can load a set of deep learning neural
network models, such as VGG16, ResNet50, MobileNet, and Inception V3,
display the summary of the models, and use the model to classify an image.

EXAMPLE 4.12  THE MULTICLASSIFY.PY PROGRAM

#Example 4.12
from tensorflow.keras.preprocessing import image
from keras.applications.imagenet_utils import decode_predictions
import numpy as np

from tensorflow.keras.applications import (
 vgg16,
 resnet50,
 mobilenet,
 inception_v3
)

init the models
#model = vgg16.VGG16(weights='imagenet')
#model = resnet50.ResNet50(weights='imagenet')
model = mobilenet.MobileNet(weights='imagenet')
#model = inception_v3.InceptionV3(weights='imagenet')
print(model.summary())

img_path = 'Elephant.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
#processed_image = vgg16.preprocess_input(x)
#processed_image = resnet50.preprocess_input(x)
processed_image = mobilenet.preprocess_input(x)
#processed_image = inception_v3.preprocess_input(x)

prediction
predictions = model.predict(x)
results = decode_predictions(predictions)
print(results)

A web camera, or webcam, is a useful tool to capture images to provide data
resource for image classification using deep learning. Example 4.13 shows a
Python code for image classification based on the image array from a web
camera (webcam), using VGG16 deep learning neural network.

148	 Part II ■ Machine Learning and Deep Learning

EXAMPLE 4.13  THE WEBCAMCLASSIFY.PY PROGRAM

#Example 4.13

import cv2
from tensorflow.keras.preprocessing.image import img_to_array
from keras.applications.imagenet_utils import decode_predictions
from tensorflow.keras.applications import vgg16
import numpy as np

image_size = 224
model = vgg16.VGG16(weights='imagenet')
print(model.summary())

camera = cv2.VideoCapture(0)

while camera.isOpened():
 ok, cam_frame = camera.read()

 frame= cv2.resize(cam_frame, (image_size, image_size))
 numpy_image = img_to_array(frame)
 image_batch = np.expand_dims(numpy_image, axis=0)
 processed_image = vgg16.preprocess_input(image_batch.copy())

 # get the predicted probabilities for each class
 predictions = model.predict(processed_image)
 label = decode_predictions(predictions)

 # format final image visualization to display the results of
experiments
 cv2.putText(cam_frame, "VGG16: {}, {:.1f}".format(label[0][0][1],
label[0][0][2]) , (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0),
2)

 cv2.imshow('video image', cam_frame)

 key = cv2.waitKey(30)
 if key == 27: # press 'ESC' to quit
 break

camera.release()
cv2.destroyAllWindows()

Figure 4.19 shows the output of the previous VGG16 classifier based on the
images from a webcam, which correctly identifies a computer mouse with
90 percent confidence.

	 Chapter 4 ■ Deep Learning	 149

EXERCISE 4.11

Modify the Python VGG16 webcam program to use VGG19 to classify webcam images.
Compare the performances.

Example 4.14 shows a Python code for image classification based on a
web camera using different deep learning neural networks such as VGG16,
ResNet50, MobileNet, and Google’s Inception V3.

EXAMPLE 4.14  THE WEBCAMCLASSIFY2.PY PROGRAM

Example 4.14
import cv2
from tensorflow.keras.preprocessing.image import img_to_array
from keras.applications.imagenet_utils import decode_predictions
from tensorflow.keras.applications import (
 vgg16,
 resnet50,
 mobilenet,
 inception_v3
)
import numpy as np

init the models
#model = vgg16.VGG16(weights='imagenet')
model = resnet50.ResNet50(weights='imagenet')
#model = mobilenet.MobileNet(weights='imagenet')
#model = inception_v3.InceptionV3(weights='imagenet')

Figure 4.19: The output of VGG16 webcam classification program

150	 Part II ■ Machine Learning and Deep Learning

print(model.summary())

camera = cv2.VideoCapture(0)
image_size = 224
#image_size = 299
while camera.isOpened():
 ok, cam_frame = camera.read()

 frame= cv2.resize(cam_frame, (image_size, image_size))
 numpy_image = img_to_array(frame)
 image_batch = np.expand_dims(numpy_image, axis=0)

 #processed_image = vgg16.preprocess_input(image_batch.copy())
 processed_image = resnet50.preprocess_input(image_batch.copy())
 #processed_image = mobilenet.preprocess_input(image_batch.copy())
 #processed_image = inception_v3.preprocess_input(image_batch
.copy())

 # get the predicted probabilities for each class
 predictions = model.predict(processed_image)
 label = decode_predictions(predictions)

 # format final image visualization to display the results of
experiments
 cv2.putText(cam_frame, "{}, {:.1f}".format(label[0][0][1],
label[0][0][2]) , (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0),
2)

 cv2.imshow('video image', cam_frame)

 key = cv2.waitKey(30)
 if key == 27: # press 'ESC' to quit
 break

EXERCISE 4.12

Modify the Python program from Example 4.14 and add DenseNet to the model to clas-
sify webcam images. Compare the performances.

The Image-Classifier library is a classification model zoo library that supports
13 different types of deep learning neural networks. It is based on Keras and
TensorFlow (https://pypi.org/project/image-classifiers/). To use the
library, you must first install it.

pip install image-classifiers

https://pypi.org/project/image-classifiers/

	 Chapter 4 ■ Deep Learning	 151

Example 4.15 shows a Python code for image classification based on a web
camera using Image-Classifier library, which supports a number of different
deep learning neural networks such as VGG, ResNet, MobileNet, and Google’s
Inception, etc.

EXAMPLE 4.15  THE WEBCLASSIFY3.PY PROGRAM

Example 4.15
#https://pypi.org/project/image-classifiers/

!pip install image-classifiers
from keras.applications.imagenet_utils import decode_predictions
from keras.applications.imagenet_utils import preprocess_input
from classification_models.keras import Classifiers

import numpy as np
import cv2

#Set up a model
clf, preprocess_input = Classifiers.get('vgg16')
#clf, preprocess_input = Classifiers.get('resnet50')
#clf, preprocess_input = Classifiers.get('mobilenetv2')
#clf, preprocess_input = Classifiers.get('densenet201')
sz = 224
#clf, preprocess_input = Classifiers.get('inceptionv3')
#sz = 299
model = clf(input_shape=(sz,sz,3), weights='imagenet', classes=1000)

model.summary()
while True:
 ret, cam_frame = camera.read()
 frame= cv2.resize(cam_frame, (image_size, image_size))
 image = np.asarray(frame)
 image = np.expand_dims(image, 0)
 image = preprocess_input(image)

 preds = model.predict(image)
 label = decode_predictions(preds)

 cv2.putText(cam_frame, "{}, {:.1f}".format(label[0][0][1],
label[0][0][2]),
 (10, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
 cv2.imshow("Classification", cam_frame)
 key = cv2.waitKey(30)
 if key == 27: # press 'ESC' to quit
 break

camera.release()
cv2.destroyAllWindows()

152	 Part II ■ Machine Learning and Deep Learning

EXERCISE 4.13

Modify the Python program from Example 4.15, uncomment the different models, and
compare the performances.

EXERCISE 4.14

Modify the Python program from Example 4.15 to use an if-else statement to select
the models for classification.

4.3.3  U-Net
U-Net is a convolutional neural network, developed for biomedical image
segmentation at the Computer Vision Group, Department of Computer Science,
the University of Freiburg, Germany. Figure 4.20 shows the U-Net website with
its architecture.

U-Net is based on a fully convolutional network and has an input size of
572 × 572. It uses three convolution layers and pooling layers to reduce the

Figure 4.20: The U-Net website at Computer Vision Group, Department of Computer Science,
the University of Freiburg, Germany
(Source: https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/)

https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/

	 Chapter 4 ■ Deep Learning	 153

input image to a 1,024-feature vector. It then uses three pooling and convolution
layers to bring the feature vector back to 382 × 382 as a segmented image. The
architecture looks like a U, which is where it gets its name.

To date, U-Net has been used in many applications in biomedical image
segmentation, such as brain image segmentation, liver image segmentation,
and medical image reconstruction

The easiest way to implement U-Net is to use the Keras-Unet library. See the
following links for more details:

https://pypi.org/project/keras-unet/

https://github.com/karolzak/keras-unet

To install the Keras-Unet library, do this:

pip install keras-unet

To create a simple vanilla U-Net model and display a summary of the model,
use the following code:

from keras_unet.models import vanilla_unet
model = vanilla_unet(input_shape=(512, 512, 3))
model.summary()

The following is the model summary of a vanilla U-Net. As you can see,
the U-Net has changed from the input size (512 × 512 × 3) gradually down to
(44 × 44 × 512) and then back up to (324 × 324 × 1).

Model: "model"
__
Layer (type) Output Shape Param # Connected to
==
input_1 (InputLayer) [(None, 512, 512, 3) 0
__
conv2d (Conv2D) (None, 510, 510, 64) 1792 input_1[0][0]
__
conv2d_1 (Conv2D) (None, 508, 508, 64) 36928 conv2d[0][0]
__
max_pooling2d (MaxPooling2D) (None, 254, 254, 64) 0 conv2d_1[0][0]
__
conv2d_2 (Conv2D) (None, 252, 252, 128 73856 max_pooling2d[0][0]
__
conv2d_3 (Conv2D) (None, 250, 250, 128 147584 conv2d_2[0][0]
__
max_pooling2d_1 (MaxPooling2D) (None, 125, 125, 128 0 conv2d_3[0][0]
__
conv2d_4 (Conv2D) (None, 123, 123, 256 295168 max_pooling2d_1[0][0]
__
conv2d_5 (Conv2D) (None, 121, 121, 256 590080 conv2d_4[0][0]
__
max_pooling2d_2 (MaxPooling2D) (None, 60, 60, 256) 0 conv2d_5[0][0]
__

https://pypi.org/project/keras-unet/
https://github.com/karolzak/keras-unet

154	 Part II ■ Machine Learning and Deep Learning

conv2d_6 (Conv2D) (None, 58, 58, 512) 1180160 max_pooling2d_2[0][0]
__
conv2d_7 (Conv2D) (None, 56, 56, 512) 2359808 conv2d_6[0][0]
__
max_pooling2d_3 (MaxPooling2D) (None, 28, 28, 512) 0 conv2d_7[0][0]
__
dropout (Dropout) (None, 28, 28, 512) 0 max_pooling2d_3[0][0]
__
conv2d_8 (Conv2D) (None, 26, 26, 1024) 4719616 dropout[0][0]
__
conv2d_9 (Conv2D) (None, 24, 24, 1024) 9438208 conv2d_8[0][0]
__
conv2d_transpose (Conv2DTranspo (None, 48, 48, 512) 2097664 conv2d_9[0][0]
__
cropping2d (Cropping2D) (None, 48, 48, 512) 0 conv2d_7[0][0]
__
concatenate (Concatenate) (None, 48, 48, 1024) 0 conv2d_transpose[0]
[0]
 cropping2d[0][0]
__
conv2d_10 (Conv2D) (None, 46, 46, 512) 4719104 concatenate[0][0]
__
conv2d_11 (Conv2D) (None, 44, 44, 512) 2359808 conv2d_10[0][0]
__
conv2d_transpose_1 (Conv2DTrans (None, 88, 88, 256) 524544 conv2d_11[0][0]
__
cropping2d_1 (Cropping2D) (None, 88, 88, 256) 0 conv2d_5[0][0]
__
concatenate_1 (Concatenate) (None, 88, 88, 512) 0 conv2d_transpose_1[0]
[0]
 cropping2d_1[0][0]
__
conv2d_12 (Conv2D) (None, 86, 86, 256) 1179904 concatenate_1[0][0]
__
conv2d_13 (Conv2D) (None, 84, 84, 256) 590080 conv2d_12[0][0]
__
conv2d_transpose_2 (Conv2DTrans (None, 168, 168, 128 131200 conv2d_13[0][0]
__
cropping2d_2 (Cropping2D) (None, 168, 168, 128 0 conv2d_3[0][0]
__
concatenate_2 (Concatenate) (None, 168, 168, 256 0 conv2d_transpose_2[0]
[0]
 cropping2d_2[0][0]
__
conv2d_14 (Conv2D) (None, 166, 166, 128 295040 concatenate_2[0][0]
__
conv2d_15 (Conv2D) (None, 164, 164, 128 147584 conv2d_14[0][0]
__
conv2d_transpose_3 (Conv2DTrans (None, 328, 328, 64) 32832 conv2d_15[0][0]
__

	 Chapter 4 ■ Deep Learning	 155

cropping2d_3 (Cropping2D) (None, 328, 328, 64) 0 conv2d_1[0][0]
__
concatenate_3 (Concatenate) (None, 328, 328, 128 0 conv2d_transpose_3[0]
[0]
 cropping2d_3[0][0]
__
conv2d_16 (Conv2D) (None, 326, 326, 64) 73792 concatenate_3[0][0]
__
conv2d_17 (Conv2D) (None, 324, 324, 64) 36928 conv2d_16[0][0]
__
conv2d_18 (Conv2D) (None, 324, 324, 1) 65 conv2d_17[0][0]
==
Total params: 31,031,745
Trainable params: 31,031,745
Non-trainable params: 0
__

The following code shows how to plot the U-Net model and save the model
into a Portable Network Graphics (PNG) file. Figure 4.21 shows the plot of the
U-Net.

from keras.utils import plot_model
plot_model(model, to_file='model.png')

You can also create a customized U-Net model and display the model sum-
mary using the following code:

from keras_unet.models import custom_unet

model = custom_unet(
input_shape=(512, 512, 3),
use_batch_norm=False,
num_classes=1,
filters=64,
dropout=0.2,
output_activation='sigmoid')
model.summary()

The quickest way to try image segmentation with the Keras-Unet library is
through its GitHub repository. It uses Keras U-Net to segment images from
a serial section Transmission Electron Microscopy (ssTEM) dataset of the
Drosophila first instar larva ventral nerve cord (VNC), as shown in Figure 4.22.

Just follow the code in this IPython Notebook:

https://github.com/karolzak/keras-unet/blob/master/notebooks/kz-

isbi-challenge.ipynb

https://github.com/karolzak/keras-unet/blob/master/notebooks/kz-isbi-challenge.ipynb
https://github.com/karolzak/keras-unet/blob/master/notebooks/kz-isbi-challenge.ipynb

156	 Part II ■ Machine Learning and Deep Learning

Figure 4.21: The plot of vanilla U-Net model

	 Chapter 4 ■ Deep Learning	 157

The following are more examples of U-Net projects:
https://github.com/zhixuhao/unet

https://github.com/Hsankesara/DeepResearch

https://github.com/devswha/keras-Unet

http://deeplearning.net/tutorial/unet.html

https://www.kaggle.com/phoenigs/u-net-dropout-augmentation-

stratification

https://www.kaggle.com/kmader/baseline-u-net-model-part-1

4.3.4  AutoEncoder
AutoEncoder is a neural network architecture, consisting of two connected
networks: Encoder and Decoder, as illustrated in Figure 4.23. The Encoder
receives the input image and encodes it into a latent spatial vector of a lower
dimension. The network is trained to ignore signal noise during this dimen-
sionality reduction. The Decoder takes this vector and decodes it to produce
an output that is as close as possible to the original input. Autoencoders are
developed with the goal of learning the low-dimensional feature representa-
tions of the input data.

Figure 4.22: The Keras-Unet library GitHub website with serial section Transmission Electron
Microscopy images
(Source: https://github.com/karolzak/keras-unet)

https://github.com/zhixuhao/unet
https://github.com/Hsankesara/DeepResearch
https://github.com/devswha/keras-Unet
http://deeplearning.net/tutorial/unet.html
https://www.kaggle.com/phoenigs/u-net-dropout-augmentation-stratification
https://www.kaggle.com/phoenigs/u-net-dropout-augmentation-stratification
https://www.kaggle.com/kmader/baseline-u-net-model-part-1
https://github.com/karolzak/keras-unet

158	 Part II ■ Machine Learning and Deep Learning

Example 4.16 shows a Python AutoEncoder example code. It was modified
based on the example code (https://stackabuse.com/autoencoders-for-image-
reconstruction-in-python-and-keras/). It first loads the MNIST handwritten
digital images and normalizes the pixel values to 1. Then it builds a simple
AutoEncoder that includes a simple encoder and a simple decoder. It then trains
the AutoEncoder and uses the trained AutoEncoder to reconstruct the digits.

EXAMPLE 4.16  THE AUTOENCODERKERAS.PY PROGRAM

Example 4.16 AutoencoderKeras.py
Modified from:
https://stackabuse.com/autoencoders-for-image-reconstruction-in-python-
and-keras/
#
Load the MNIST handwritten digital images =============================
from keras.datasets import mnist
import numpy as np
(x_train, _), (x_test, _) = mnist.load_data()
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
print(x_train.shape)
print(x_test.shape)

Build Autoencoder ===
from keras.layers import Dense, Flatten, Reshape, Input, InputLayer
from keras.models import Sequential, Model

def build_autoencoder(img_shape, code_size):
 # The encoder
 encoder = Sequential()
 encoder.add(InputLayer(img_shape))

Figure 4.23: The AutoEncoder architecture with two connected networks: Encoder and
Decoder

https://stackabuse.com/autoencoders-for-image-reconstruction-in-python-and-keras/
https://stackabuse.com/autoencoders-for-image-reconstruction-in-python-and-keras/

	 Chapter 4 ■ Deep Learning	 159

 encoder.add(Flatten())
 encoder.add(Dense(code_size))

 # The decoder
 decoder = Sequential()
 decoder.add(InputLayer((code_size,)))
 decoder.add(Dense(np.prod(img_shape)))
 decoder.add(Reshape(img_shape))

 return encoder, decoder

IMG_SHAPE = x_train[0].shape
encoder, decoder = build_autoencoder(IMG_SHAPE, 32)

inp = Input(IMG_SHAPE)
code = encoder(inp)
reconstruction = decoder(code)

autoencoder = Model(inp,reconstruction)
autoencoder.compile(optimizer='adamax', loss='mse')

print(autoencoder.summary())

Train Autoencoder ===
history = autoencoder.fit(x=x_train, y=x_train, epochs=20,
 validation_data=(x_test, x_test))

Plot the training results ===
import matplotlib.pyplot as plt

plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()

Plot the original, encoded and decoded images =========================
import matplotlib.pyplot as plt
def show_image(x):
 plt.imshow(np.clip(x + 0.5, 0, 1))

def visualize(img,encoder,decoder):
 """Draws original, encoded and decoded images"""
 # img[None] will have shape of (1, 32, 32, 3) which is the same as the
model input
 code = encoder.predict(img[None])[0]
 reco = decoder.predict(code[None])[0]

160	 Part II ■ Machine Learning and Deep Learning

 plt.subplot(1,3,1)
 plt.title("Original")
 show_image(img)

 plt.subplot(1,3,2)
 plt.title("Code")
 plt.imshow(code.reshape([code.shape[-1]//2,-1]))

 plt.subplot(1,3,3)
 plt.title("Reconstructed")
 show_image(reco)
 plt.show()

for i in range(5):
 img = x_test[i]
 visualize(img,encoder,decoder)

This is the output of the example, showing the structures of AutoEncoder:

(60000, 28, 28)
(10000, 28, 28)
Model: "model"

Layer (type) Output Shape Param #
===
input_3 (InputLayer) [(None, 28, 28)] 0

sequential (Sequential) (None, 32) 25120

sequential_1 (Sequential) (None, 28, 28) 25872
===
Total params: 50,992
Trainable params: 50,992
Non-trainable params: 0

None

Figure 4.24 shows the example outputs of the AutoEncoder program, which
includes the original digit images (left), the output of the encoder called code
(middle), and the reconstructed digit images by the decoder.

For more information about AutoEncoders, see the following:

https://blog.keras.io/building-autoencoders-in-keras.html

https://stackabuse.com/autoencoders-for-image-reconstruction-in-

python-and-keras/

https://blog.keras.io/building-autoencoders-in-keras.html
https://stackabuse.com/autoencoders-for-image-reconstruction-in-python-and-keras/
https://stackabuse.com/autoencoders-for-image-reconstruction-in-python-and-keras/

	 Chapter 4 ■ Deep Learning	 161

https://www.analyticsvidhya.com/blog/2020/02/what-is-autoencoder-

enhance-image-resolution/

https://www.kaggle.com/shivamb/how-autoencoders-work-intro-and-

usecases

https://theaisummer.com/Autoencoder/

4.3.5  Siamese Neural Networks
When I first started looking into deep learning, one thing always puzzled me.
Take image classification, for example. Deep learning neural networks require
a large amount of labeled training data to achieve high performance. However,
we humans are able to learn things with just a glance at the object. Even if we
have never seen passion fruits, we don’t need to see thousands and thousands
of images before we can recognize them.

Figure 4.24: The example output of AutoEncoder program, which includes the original digit
images (left), the output of the encoder called code (middle), and the reconstructed digit images
by decoder (right).

https://www.analyticsvidhya.com/blog/2020/02/what-is-autoencoder-enhance-image-resolution/
https://www.analyticsvidhya.com/blog/2020/02/what-is-autoencoder-enhance-image-resolution/
https://www.kaggle.com/shivamb/how-autoencoders-work-intro-and-usecases
https://www.kaggle.com/shivamb/how-autoencoders-work-intro-and-usecases
https://theaisummer.com/Autoencoder/

162	 Part II ■ Machine Learning and Deep Learning

Can deep learning neural networks learn the same way? The answer is
yes, this is called one-shot learning. In one-shot learning, we need only a single
training example for each class instead of training a large set of images. The
most commonly used one-shot learning neural network is the Siamese network.

Figure 4.25 shows an interesting introduction of one-shot learning and
Siamese networks in Keras. It describes a typical architecture of a convolutional Siamese
network as an example of classifying pairs of omniglot images (https://github
.com/brendenlake/omniglot). The omniglot data contains 1,623 different hand-
written characters from 50 different alphabets.

The Siamese network contains two convolutional neural networks, called
twin neural network. The two neural networks reduce the inputs to lower-
dimension tensors; finally, there is a fully connected layer with 4,096 units. The
absolute difference between the two vectors is used as input to a linear classifier.
A linear classifier performs a classification decision based on the value
of a linear combination of the characteristics. The network has 38,951,745
parameters, 96 percent of which belong to the fully connected layer. Training
Siamese networks in this way with comparative loss functions can give better
performances. Siamese networks have also been used for face recognition.

To try a Siamese network for classifying omniglot images, just follow this
interesting IPython notebook:

https://github.com/sorenbouma/keras-oneshot/blob/master/SiameseNet

.ipynb

Figure 4.25: One-shot learning and Siamese networks in Keras
(Source: https://sorenbouma.github.io/blog/oneshot/)

https://github.com/brendenlake/omniglot
https://github.com/brendenlake/omniglot
https://github.com/sorenbouma/keras-oneshot/blob/master/SiameseNet.ipynb
https://github.com/sorenbouma/keras-oneshot/blob/master/SiameseNet.ipynb
https://sorenbouma.github.io/blog/oneshot/

	 Chapter 4 ■ Deep Learning	 163

For more information about Siamese networks, visit the following websites:

https://github.com/tensorfreitas/Siamese-Networks-for-One-Shot-

Learning

https://towardsdatascience.com/one-shot-learning-with-siamese-

networks-using-keras-17f34e75bb3d

https://github.com/hlamba28/One-Shot-Learning-with-Siamese-Networks

https://github.com/akshaysharma096/Siamese-Networks

https://github.com/sorenbouma/keras-oneshot

https://github.com/aspamers/siamese

https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf

https://machinelearningmastery.com/one-shot-learning-with-siamese-

networks-contrastive-and-triplet-loss-for-face-recognition/

Apart from one-shot learning, there are also few-shot learning and zero-shot
learning. Few-shot learning means that the neural network is trained with a
few (one to five) images. Zero-shot learning means that the neural network is
trained with zero images. This is fascinating! Few-shot learning and zero-shot
learning are sometimes categorized as N-shot learning, which means that the
neural network is trained with N images.

The key concept of n-shot learning is the prototypical network. Unlike
typical deep learning neural networks, prototypical networks do not classify
the image directly; instead, they learn the mapping of images in the metric
space and group the images into different clusters, called prototypes. In metric
space, there is no distinguished “origin” point; instead, you just calculate
the distance from one point to another. Prototypical networks then use the
distances between prototypes and encoded query images to classify them.

N-shot learning is a learning algorithm that allows the network to learn
more with less data. It is typically used when it is hard to find training data, for
example, rare diseases, or when the cost of labeling data is too high.

For more details, check the following interesting blog and the GitHub code
to the blog:

https://blog.floydhub.com/n-shot-learning/

https://github.com/Hsankesara/Prototypical-Networks

4.3.6  Capsule Networks
Convolutional neural networks perform best when the image to be classified
is similar to the training image dataset. If the image to be classified is different
(e.g., rotated, tilted, or transitioned), then the performance drops. Take face
detection as an example; if the eyes, nose, and mouth are detected, the image
is classified as a face, even if they are in the wrong place. Because of this, there
are many shocking errors in image classification.

https://github.com/tensorfreitas/Siamese-Networks-for-One-Shot-Learning
https://github.com/tensorfreitas/Siamese-Networks-for-One-Shot-Learning
https://towardsdatascience.com/one-shot-learning-with-siamese-networks-using-keras-17f34e75bb3d
https://towardsdatascience.com/one-shot-learning-with-siamese-networks-using-keras-17f34e75bb3d
https://github.com/hlamba28/One-Shot-Learning-with-Siamese-Networks
https://github.com/akshaysharma096/Siamese-Networks
https://github.com/sorenbouma/keras-oneshot
https://github.com/aspamers/siamese
https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf
https://machinelearningmastery.com/one-shot-learning-with-siamese-networks-contrastive-and-triplet-loss-for-face-recognition/
https://machinelearningmastery.com/one-shot-learning-with-siamese-networks-contrastive-and-triplet-loss-for-face-recognition/
https://blog.floydhub.com/n-shot-learning/
https://github.com/Hsankesara/Prototypical-Networks

164	 Part II ■ Machine Learning and Deep Learning

How can this problem be solved? The answer is a capsule network. A cap-
sule network is a new deep learning network architecture proposed by Sara
Sabour, Nicholas Frost, and Geoffrey Hinton in their paper titled “Dynamic
Routing Between Capsules” in 2017. See Figure 4.26 for the original paper
and a simple three-layer capsule network architecture called CapsNet. In this
model, there are modules called capsules that are particularly good at handling
different types of visual stimuli such as position, size, orientation, deforma-
tion, texture, and so on. As a result, the performance is significantly improved.

The following website shows an interesting simple introduction of a capsule
network, which provides the full capsule network source code implemented
in TensorFlow.

https://hackernoon.com/what-is-a-capsnet-or-capsule-network-

2bfbe48769cc

This is the corresponding Github site for the source code.

https://github.com/debarko/CapsNet-Tensorflow

The following website shows the capsule network implementation in
TensorFlow.

https://github.com/debarko/CapsNet-Tensorflow

Figure 4.27 shows the PyTorch implementation of a capsule graph neural
network.

Figure 4.26: The original capsule network paper and a three-layer simple capsule network
architecture
(Source: https://arxiv.org/pdf/1710.09829.pdf)

https://hackernoon.com/what-is-a-capsnet-or-capsule-network-2bfbe48769cc
https://hackernoon.com/what-is-a-capsnet-or-capsule-network-2bfbe48769cc
https://github.com/debarko/CapsNet-Tensorflow
https://github.com/debarko/CapsNet-Tensorflow
https://arxiv.org/pdf/1710.09829.pdf

	 Chapter 4 ■ Deep Learning	 165

4.3.7  CNN Layers Visualization
During the development, you may want to see the output of each layer of a
convolutional neural network (CNN), whether for debugging purposes or just
out of curiosity.

The easiest way to do this is to visualize each layer individually. The follow-
ing example shows how you can visualize the output of the different convolutional
layers in the VGG19 model; it is modified based on an excellent article on visu-
alizing the filters and feature maps in convolutional neural networks (https://
machinelearningmastery.com/how-to-visualize-filters-and-feature-maps-

in-convolutional-neural-networks/).
We will show the code section by section. You can find the full code in a file

called CNN_Visualize_Filters.ipynb. We will run it by uploading it to Google
Colab.

Example 4.17 is the first section of the code that shows how to load a
VGG19 model and display the summary of the model.

EXAMPLE 4.17  THE CNN VISUALIZE FILTERS.IPYNB PROGRAM
(PART 1)

Example 4.17 CNN Visualize Filters.ipynb
#Modified from:
#https://machinelearningmastery.com/how-to-visualize-filters-and-
feature-maps-in-convolutional-neural-networks/

Figure 4.27: A PyTorch implementation of a capsule graph neural network
(Source: https://github.com/benedekrozemberczki/CapsGNN)

https://machinelearningmastery.com/how-to-visualize-filters-and-feature-maps-in-convolutional-neural-networks/
https://machinelearningmastery.com/how-to-visualize-filters-and-feature-maps-in-convolutional-neural-networks/
https://machinelearningmastery.com/how-to-visualize-filters-and-feature-maps-in-convolutional-neural-networks/
https://github.com/benedekrozemberczki/CapsGNN

166	 Part II ■ Machine Learning and Deep Learning

load vgg model
from keras.applications.vgg19 import VGG19
load the model
model = VGG19()
summarize the model
model.summary()

The following is the output that shows the summary of the model:

Model: "vgg19"

Layer (type) Output Shape Param #
===
input_31 (InputLayer) [(None, 224, 224, 3)] 0

block1_conv1 (Conv2D) (None, 224, 224, 64) 1792

block1_conv2 (Conv2D) (None, 224, 224, 64) 36928

block1_pool (MaxPooling2D) (None, 112, 112, 64) 0

block2_conv1 (Conv2D) (None, 112, 112, 128) 73856

block2_conv2 (Conv2D) (None, 112, 112, 128) 147584

block2_pool (MaxPooling2D) (None, 56, 56, 128) 0

block3_conv1 (Conv2D) (None, 56, 56, 256) 295168

block3_conv2 (Conv2D) (None, 56, 56, 256) 590080

block3_conv3 (Conv2D) (None, 56, 56, 256) 590080

block3_conv4 (Conv2D) (None, 56, 56, 256) 590080

block3_pool (MaxPooling2D) (None, 28, 28, 256) 0

block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160

block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808

block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808

block4_conv4 (Conv2D) (None, 28, 28, 512) 2359808

block4_pool (MaxPooling2D) (None, 14, 14, 512) 0

block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808

	 Chapter 4 ■ Deep Learning	 167

block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808

block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808

block5_conv4 (Conv2D) (None, 14, 14, 512) 2359808

block5_pool (MaxPooling2D) (None, 7, 7, 512) 0

flatten (Flatten) (None, 25088) 0

fc1 (Dense) (None, 4096) 102764544

fc2 (Dense) (None, 4096) 16781312

predictions (Dense) (None, 1000) 4097000
===
Total params: 143,667,240
Trainable params: 143,667,240
Non-trainable params: 0

Example 4.17 shows how to display all the layers in a VGG19 model and
show the layer numbers.

EXAMPLE 4.17  THE CNN VISUALIZE FILTERS.IPYNB PROGRAM
(PART 2)

n=0
for layer in model.layers:
 print(n,layer.name)
 n+=1

The following is the output, showing the layer number and the layer name
of all the 25 layers:

0 input_16
1 block1_conv1
2 block1_conv2
3 block1_pool
4 block2_conv1
5 block2_conv2
6 block2_pool
7 block3_conv1
8 block3_conv2
9 block3_conv3
10 block3_conv4
11 block3_pool
12 block4_conv1
13 block4_conv2
14 block4_conv3

168	 Part II ■ Machine Learning and Deep Learning

15 block4_conv4
16 block4_pool
17 block5_conv1
18 block5_conv2
19 block5_conv3
20 block5_conv4
21 block5_pool
22 flatten
23 fc1
24 fc2
25 predictions

The following section of the code shows the filter shape and bias shape for
the convolutional layers in the VGG16 model. It uses the function layer.get_
weights() to get the filter and bias parameters.

EXAMPLE 4.17  THE CNN VISUALIZE FILTERS.IPYNB PROGRAM
(PART 3)

n=0
for layer in model.layers:
 if 'conv' in layer.name:
 filters, biases = layer.get_weights()
 print(n,layer.name, filters.shape, biases.shape)
 n+=1

The following output shows all the convolutional layers, their layer number,
and their filter and bias parameters. There are 20 convolutional layers. For layer
1, there are 3 color channels; the filter kernel is (3,3), the total number of filters
is 64, and total number of bias is also 64.

1 block1_conv1 (3, 3, 3, 64) (64,)
2 block1_conv2 (3, 3, 64, 64) (64,)
4 block2_conv1 (3, 3, 64, 128) (128,)
5 block2_conv2 (3, 3, 128, 128) (128,)
7 block3_conv1 (3, 3, 128, 256) (256,)
8 block3_conv2 (3, 3, 256, 256) (256,)
9 block3_conv3 (3, 3, 256, 256) (256,)
10 block3_conv4 (3, 3, 256, 256) (256,)
12 block4_conv1 (3, 3, 256, 512) (512,)
13 block4_conv2 (3, 3, 512, 512) (512,)
14 block4_conv3 (3, 3, 512, 512) (512,)
15 block4_conv4 (3, 3, 512, 512) (512,)
17 block5_conv1 (3, 3, 512, 512) (512,)
18 block5_conv2 (3, 3, 512, 512) (512,)
19 block5_conv3 (3, 3, 512, 512) (512,)
20 block5_conv4 (3, 3, 512, 512) (512,)

	 Chapter 4 ■ Deep Learning	 169

The following section of the code shows the filters in the first convolutional
layers (n = 1) in VGG19 model. Again, the function layer.get_weights()
is used to get the filter and bias parameters. Also, the filter is normalized to
0–1 for the purpose of visualization. Then, the first four filters (n_filters,
ix = 4, 1) of the total 64 filters are displayed in the first layer.

EXAMPLE 4.17  THE CNN VISUALIZE FILTERS.IPYNB PROGRAM
(PART 4)

from matplotlib import pyplot
retrieve weights from the first hidden layer
n = 1
filters, biases = model.layers[n].get_weights()
s = filters.shape
print("Color channels: ", s[0])
print("Filter size: ", s[1],s[2])

print("Total number of filters : ", s[3])
normalize filter values to 0-1 so we can visualize them
f_min, f_max = filters.min(), filters.max()
filters = (filters - f_min) / (f_max - f_min)
plot first few filters
#n_filters, ix = s[3], 1
n_filters, ix = 4, 1

pyplot.figure(figsize=(10,10))
for i in range(n_filters):
 # get the filter
 f = filters[:, :, :, i]

 # plot each channel separately
 for j in range(s[0]):
 ax = pyplot.subplot(n_filters, s[0], ix)
 ax.set_xticks([])
 ax.set_yticks([])
 pyplot.imshow(f[j,:, :], cmap='gray')
 ix += 1
show the figure
pyplot.show()

Figure 4.28 shows the output of the previous code, which shows there are 3
color channels, (3,3) filter size, and total 64 filters in layer 1. It also displays the
(3,3) filters in layer 1.

EXERCISE 4.15

Modify the Python code from the previous example, select the second convolutional
layer to visualize by changing n = 1 to n = 2, and comment on the results.

170	 Part II ■ Machine Learning and Deep Learning

EXERCISE 4.16

Modify the Python code from the previous example, display all the filters by changing
n_filters, ix = 4, 1 to n_filters, ix = s[3], 1, and comment on the
results.

The following shows a simple function to draw feature maps in a subplot with
multiple rows and columns. The number of columns is set to eight, col = 8.

EXAMPLE 4.17  THE CNN VISUALIZE FILTERS.IPYNB PROGRAM
(PART 5)

def plot_feature_maps(feature_maps):
 # plot all feature maps
 col = 8
 row = int(feature_maps.shape[3]/col)
 ix = 1
 plt.figure(figsize=(20,20))
 for _ in range(row):
 for _ in range(col):
 # specify subplot and turn of axis
 ax = plt.subplot(row, col, ix)
 ax.set_xticks([])
 ax.set_yticks([])
 # plot filter channel in grayscale
 plt.imshow(feature_maps[0, :, :, ix-1], cmap='gray')
 ix += 1
 # show the figure
 plt.show()

Figure 4.28: The output of the previous example code that displays the filters in layer 1

	 Chapter 4 ■ Deep Learning	 171

You can visualize the output of the first layer of the VGG19 model by setting
the output of layer 1 (n = 1) as the model output; see Model(inputs=model
.inputs, outputs=model.layers[n].output) in the following section of the
code. Then feature_maps = model.predict(img) is used to get the output
of layer 1. We call this layer 1 output as feature maps. Then, it calls plot_
feature_maps(feature_maps) to display feature maps. The feature maps basi-
cally show what the image looks like after applying all the layer 1 filters. You
can change to other layers by changing n = 1.

EXAMPLE 4.17  THE CNN VISUALIZE FILTERS.IPYNB PROGRAM
(PART 6)

from keras.applications.vgg19 import VGG19
from keras.applications.vgg19 import preprocess_input
from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array
from keras.models import Model
import matplotlib.pyplot as plt
from numpy import expand_dims
load the model
model = VGG19()
#Select the hidde layer to visualize
n = 1
redefine model to output right after the hidden layer
model = Model(inputs=model.inputs, outputs=model.layers[n].output)
model.summary()

load the image with the required shape
img = load_img('Elephant.jpg', target_size=(224, 224))
convert the image to an array
img = img_to_array(img)
expand dimensions so that it represents a single 'sample'
img = expand_dims(img, axis=0)
prepare the image (e.g. scale pixel values for the vgg)
img = preprocess_input(img)
get feature map for first hidden layer
feature_maps = model.predict(img)
print("Feature maps: ", feature_maps.shape)
#plot all the feature maps
plot_feature_maps(feature_maps)

Figure 4.29 shows the output of the previous code, which shows the structure
of the VGG19 model with the first layer as the output. It also shows the feature
maps (the output) of layer 1.

172	 Part II ■ Machine Learning and Deep Learning

EXERCISE 4.17

Modify the previous example Python code, select the second or third or fourth convo-
lutional layer for visualization by changing n = 1 to n = 2 and so on, and comment
on the results.

Another way to visualize each layer is to use the Keras Visualization Toolkit,
see the following link for details.

https://raghakot.github.io/keras-vis/

Figure 4.30 shows the examples of convolution filter visualization, dense
layer visualization, and attention maps in Keras Visualization Toolkit.

The following are a few more examples on the visualization of intermediate
layers in convolutional neural networks:

https://keras.io/examples/conv_filter_visualization/

https://www.analyticsvidhya.com/blog/2018/03/essentials-of-deep-

learning-visualizing-convolutional-neural-networks/

https://github.com/JGuillaumin/DeepLearning-NoBlaBla/blob/master/

KerasViz.ipynb

https://towardsdatascience.com/visualizing-intermediate-activation-

in-convolutional-neural-networks-with-keras-260b36d60d0

https://github.com/gabrielpierobon/cnnshapes/blob/master/README.md

https://www.kaggle.com/amarjeet007/visualize-cnn-with-keras

Figure 4.29: The output of the previous code, which shows the structure of the VGG19 model
with the first layer as the output. It also shows the feature maps (the output) of layer 1.

https://raghakot.github.io/keras-vis/
https://keras.io/examples/conv_filter_visualization/
https://www.analyticsvidhya.com/blog/2018/03/essentials-of-deep-learning-visualizing-convolutional-neural-networks/
https://www.analyticsvidhya.com/blog/2018/03/essentials-of-deep-learning-visualizing-convolutional-neural-networks/
https://github.com/JGuillaumin/DeepLearning-NoBlaBla/blob/master/KerasViz.ipynb
https://github.com/JGuillaumin/DeepLearning-NoBlaBla/blob/master/KerasViz.ipynb
https://towardsdatascience.com/visualizing-intermediate-activation-in-convolutional-neural-networks-with-keras-260b36d60d0
https://towardsdatascience.com/visualizing-intermediate-activation-in-convolutional-neural-networks-with-keras-260b36d60d0
https://github.com/gabrielpierobon/cnnshapes/blob/master/README.md
https://www.kaggle.com/amarjeet007/visualize-cnn-with-keras

	 Chapter 4 ■ Deep Learning	 173

4.4  Recurrent Neural Networks

Recurrent neural networks (RNNs) are another popular deep learning neural
network, along with convolutional neural networks. Convolutional neural
networks specialize in processing images, while RNNs specialize in processing
sequences. RNNs are derived from feedforward neural networks and can use
their internal state (memory) to process variable-length sequences of inputs.
RNNs have been applied in sequence prediction, text analysis, and speech
recognition.

Figure 4.31 shows the schematic diagram of a recurrent neural network and
its unfolded structure. X is the sequential input data, O is the sequential output

Figure 4.30: The convolutional filter visualization (top), the dense layer visualization, and the
attention maps (bottom) in the Keras Visualization Toolkit
(Source: https://raghakot.github.io/keras-vis/)

https://raghakot.github.io/keras-vis/

174	 Part II ■ Machine Learning and Deep Learning

data, h is the recurrent unit (also called cell), and v is the feedback loop. As
shown in Figure 4.31, the recurrent structure occurs repeatedly in the network.
The h recurrent unit can be implemented as long short-term memory k (LSTM)
network unit and a gated recurrent unit (GRU).

Figure 4.32 shows an interesting article that explains the differences of RNN,
LSTM, and GRU.

Figure 4.33 shows the four types of recurrent neural networks.

■■ One to one: One input and one output

■■ One to many: One input and multiple outputs

■■ Many to one: Multiple inputs and one output

■■ Many to many: Multiple inputs and multiple outputs

Figure 4.31: The schematic diagram of recurrent neural network and its unfolded structure
(Source: https://en.wikipedia.org/wiki/Recurrent_neural_network)

Figure 4.32: The schematic diagram of RNN, LSTM, and GRU
(Source: http://dprogrammer.org/rnn-lstm-gru)

https://en.wikipedia.org/wiki/Recurrent_neural_network
http://dprogrammer.org/rnn-lstm-gru

	 Chapter 4 ■ Deep Learning	 175

For more details about recursive neural networks, see the following:

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-

neural-networks

https://www.simplilearn.com/tutorials/deep-learning-tutorial/rnn

4.4.1  Vanilla RNNs
A vanilla RNN is the simplest recurrent neural network that has an input vector,
an output vector, and a recurrent unit or cell, as shown in Figure 4.34. Within
the recurrent unit, there is an activation function, called tanh. You can also use
a different activation function.

Figure 4.33: The different types of vanilla RNN
(Source: https://calvinfeng.gitbook.io/machine-learning-notebook/
supervised-learning/recurrent-neural-network/recurrent_neural_
networks)

Figure 4.34: The vanilla RNN structure
(Source: https://subscription.packtpub.com/book/data/9781789340990/5/
ch05lvl1sec21/vanilla-rnns)

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://www.simplilearn.com/tutorials/deep-learning-tutorial/rnn
https://calvinfeng.gitbook.io/machine-learning-notebook/supervised-learning/recurrent-neural-network/recurrent_neural_networks
https://calvinfeng.gitbook.io/machine-learning-notebook/supervised-learning/recurrent-neural-network/recurrent_neural_networks
https://calvinfeng.gitbook.io/machine-learning-notebook/supervised-learning/recurrent-neural-network/recurrent_neural_networks
https://subscription.packtpub.com/book/data/9781789340990/5/ch05lvl1sec21/vanilla-rnns
https://subscription.packtpub.com/book/data/9781789340990/5/ch05lvl1sec21/vanilla-rnns

176	 Part II ■ Machine Learning and Deep Learning

The easiest way to implement vanilla RNN is to use the Keras function called
SimpleRNN; see the following links for more details:

https://www.tensorflow.org/api_docs/python/tf/keras/layers/SimpleRNN

https://keras.io/api/layers/recurrent_layers/simple_rnn/

The following is another example of vanilla RNNs using Keras SimpleRNN.
It comes from an impressive website called Easy-deep-learning-with-Keras,
which contains many illustrative example codes on deep learning neural net-
works; see Figure 4.35.

https://github.com/buomsoo-kim/Easy-deep-learning-with-Keras/blob/

master/3.%20RNN/1-Basic-RNN/1-1-vanilla-rnn.py

4.4.2  Long-Short Term Memory
Long short-term memory (LSTM) is the most popular recurrent neural network
architecture. Unlike conventional feedforward neural networks, LSTM has
feedback connections. It can process both single input data (e.g., an image) and
a sequence of data (e.g., sequences of images in a video). LSTM networks were
developed to deal with the vanishing gradient problem and are well-suited for
classification and prediction based on time-series data.

Figure 4.35: The Easy-deep-learning-with-Keras website
(Source: https://github.com/buomsoo-kim/Easy-deep-learning-with-Keras)

https://www.tensorflow.org/api_docs/python/tf/keras/layers/SimpleRNN
https://keras.io/api/layers/recurrent_layers/simple_rnn/
https://github.com/buomsoo-kim/Easy-deep-learning-with-Keras/blob/master/3. RNN/1-Basic-RNN/1-1-vanilla-rnn.py
https://github.com/buomsoo-kim/Easy-deep-learning-with-Keras/blob/master/3. RNN/1-Basic-RNN/1-1-vanilla-rnn.py
https://github.com/buomsoo-kim/Easy-deep-learning-with-Keras

	 Chapter 4 ■ Deep Learning	 177

Figure 4.36 shows an ordinary LSTM unit, consisting of a cell, an input gate,
an output gate, and a forgetting gate. The cell remembers values over arbitrary
time intervals, and the three gates regulate the flow of information in and out
of the cell.

LSTM has been commonly used in the following:

■■ Time-series prediction

■■ Time-series anomaly detection

■■ Speech recognition

■■ Language translation

■■ Music composition

■■ Text generation

■■ Handwriting recognition

■■ Human action recognition

■■ Robot control

There are five types of LSTM networks:

■■ LSTM classic

■■ Peephole connections

■■ Gated recurrent unit

■■ Multiplicative LSTM (2017)

■■ LSTMs with attention

Figure 4.36: The long short memory unit structure
(Source: https://en.wikipedia.org/wiki/Long_short-term_memory)

https://en.wikipedia.org/wiki/Long_short-term_memory

178	 Part II ■ Machine Learning and Deep Learning

See the following website about the five types of LSTM networks:

https://blog.exxactcorp.com/5-types-lstm-recurrent-neural-network/

Now, let’s look at some RNN Python example code. Example 4.18 shows a
simple Keras SimpleRNN example.

EXAMPLE 4.18  THE SIMPLERNN.PY PROGRAM

#Example 4.18 SimpleRNN.py
#https://www.tensorflow.org/api_docs/python/tf/keras/layers/SimpleRNN
import tensorflow as tf
import numpy as np

i = 4
s = 5
n = 1
inputs = np.random.random([i, s, n]).astype(np.float32)
simple_rnn = tf.keras.layers.SimpleRNN(i)
print(inputs)

output = simple_rnn(inputs) # The output has shape `[32, 4]`.
print(output)

This is the output of the example, showing the inputs and the outputs of the
SimpleRNN:

[[[0.62100476]
 [0.6268874]
 [0.29603383]
 [0.7806354]
 [0.2677117]]

 [[0.07438648]
 [0.4314253]
 [0.8583106]
 [0.37769878]
 [0.6659656]]

 [[0.7893332]
 [0.52695924]
 [0.7091379]
 [0.7229491]
 [0.4395296]]

 [[0.7297753]
 [0.9190028]
 [0.16167772]
 [0.24619947]
 [0.00972256]]]

https://blog.exxactcorp.com/5-types-lstm-recurrent-neural-network/

	 Chapter 4 ■ Deep Learning	 179

tf.Tensor(
[[0.74350387 0.14273308 -0.606336 0.03686696]
 [0.9149856 -0.29274157 -0.41164276 -0.18939926]
 [0.86783993 -0.00522089 -0.5399761 -0.09883117]
 [0.2526757 0.2733288 -0.5457421 0.54237866]], shape=(4, 4),
dtype=float32)

Example 4.19 is another example of Keras SimpleRNN, showing how to cre-
ate an RNN model and show the model summary.

EXAMPLE 4.19  THE SIMPLERNN2.PY PROGRAM

#Example 4.19 SimpleRNN2.py
from keras.models import Sequential
from keras.layers import Dense, SimpleRNN, Activation
from keras import optimizers

model = Sequential()
model.add(SimpleRNN(50, input_shape = (49,1), return_sequences =
False))
model.add(Dense(46))
model.add(Activation('softmax'))

adam = optimizers.Adam(lr = 0.001)
model.compile(loss = 'categorical_crossentropy', optimizer = adam,
metrics = ['accuracy'])
print(model.summary())

This is the output of the previous example, showing the inputs and the out-
puts of the SimpleRNN:

Model: "sequential_1"

Layer (type) Output Shape Param #
===
simple_rnn_1 (SimpleRNN) (None, 50) 2600

dense_1 (Dense) (None, 46) 2346

activation_1 (Activation) (None, 46) 0
===
Total params: 4,946
Trainable params: 4,946
Non-trainable params: 0

None
 [0.2677117]]

180	 Part II ■ Machine Learning and Deep Learning

The following is another Keras SimpleRNN example, predicting the airline
passenger numbers, which is modified based on the example code at https://
www.datatechnotes.com/2018/12/rnn-example-with-keras-simplernn-in.html.

First, the airline passenger numbers are retrieved from a website:

df = pd.read_csv('https://raw.githubusercontent.com/jbrownlee/

Datasets/master/airline-passengers.csv', usecols=[1], engine='python')

Then put the first 80 percent of the data as training data and use the remain-
ing 20 percent for prediction.

Tp = int(df.shape[0]*0.8)

Then build a simple RNN model, train the model with the training data (first
80 percent of the total data), predict the data, and finally plot the results.

EXAMPLE 4.20  THE SIMPLERNN3A.PY PROGRAM

#Example 4.20
#Modified based on:
#https://www.datatechnotes.com/2018/12/rnn-example-with-keras-
simplernn-in.html
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Dense, SimpleRNN

convert into dataset matrix
def convertToMatrix(data, step):
 X, Y =[], []
 for i in range(len(data)-step):
 d=i+step
 X.append(data[i:d,])
 Y.append(data[d,])
 return np.array(X), np.array(Y)

https://www.kaggle.com/rakannimer/air-passengers
#df = pd.read_csv('AirPassengers.csv', usecols=[1], engine='python')
df = pd.read_csv('https://raw.githubusercontent.com/jbrownlee/
Datasets/master/airline-passengers.csv', usecols=[1], engine='python')
df.head()
plt.plot(df)
plt.show()

step = 4
N = df.shape[0]
Tp = int(df.shape[0]*0.8)

https://www.datatechnotes.com/2018/12/rnn-example-with-keras-simplernn-in.html
https://www.datatechnotes.com/2018/12/rnn-example-with-keras-simplernn-in.html
https://raw.githubusercontent.com/jbrownlee/Datasets/master/airline-passengers.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/airline-passengers.csv

	 Chapter 4 ■ Deep Learning	 181

values=df.values
train,test = values[0:Tp,:], values[Tp:N,:]

add step elements into train and test
test = np.append(test,np.repeat(test[-1,],step))
train = np.append(train,np.repeat(train[-1,],step))

trainX,trainY =convertToMatrix(train,step)
testX,testY =convertToMatrix(test,step)
trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))
testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1]))

model = Sequential()
model.add(SimpleRNN(units=32, input_shape=(1,step),
activation="relu"))
model.add(Dense(8, activation="relu"))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='rmsprop')
model.summary()

model.fit(trainX,trainY, epochs=10, batch_size=16, verbose=2)
trainPredict = model.predict(trainX)
testPredict= model.predict(testX)
predicted=np.concatenate((trainPredict,testPredict),axis=0)

trainScore = model.evaluate(trainX, trainY, verbose=0)
print(trainScore)

index = df.index.values

plt.plot(df,label='Data')
plt.plot(predicted,label='Prediction')
plt.axvline(df.index[Tp], c="r")
plt.legend()
plt.show()

This is the output of the example, showing the inputs and the outputs of
SimpleRNN:

Model: "sequential_1"

Layer (type) Output Shape Param #
===
simple_rnn_1 (SimpleRNN) (None, 32) 1184

dense_1 (Dense) (None, 8) 264

dense_2 (Dense) (None, 1) 9
===

182	 Part II ■ Machine Learning and Deep Learning

Total params: 1,457
Trainable params: 1,457
Non-trainable params: 0

Epoch 1/10
 - 0s - loss: 41144.4444
Epoch 2/10
 - 0s - loss: 17512.6174
Epoch 3/10
 - 0s - loss: 8119.1773
Epoch 4/10
 - 0s - loss: 4370.8642
Epoch 5/10
 - 0s - loss: 2613.2462
Epoch 6/10
 - 0s - loss: 2054.8084
Epoch 7/10
 - 0s - loss: 1925.8166
Epoch 8/10
 - 0s - loss: 1789.0628
Epoch 9/10
 - 0s - loss: 1733.9799
Epoch 10/10
 - 0s - loss: 1731.7953
1606.9956946331522

Figure 4.37 shows the output of Example 4.20, showing the original data,
the predictions, and the vertical red line representing the 80 percent predic-
tion point. The x-axis consists of data points at different time, and the y-axis
consists of the number of air passengers. The predicted result after the 80 per-
cent prediction point agrees well with the original data, even though the model
has never seen the data before.

Example 4.21 shows how to create a simple Keras LSTM network. It was
modified based on the TensorFlow RNN website (https://www.tensorflow
.org/guide/keras/rnn).

EXAMPLE 4.21  THE SIMPLELSTM.PY PROGRAM

#Example 4.21 SimpleLSTM.py
#Based on
#https://www.tensorflow.org/guide/keras/rnn
from tensorflow import keras
from tensorflow.keras import layers
model = keras.Sequential()
model.add(layers.Embedding(input_dim=100, output_dim=32))
model.add(layers.LSTM(64))
model.add(layers.Dense(1))
model.summary()

https://www.tensorflow.org/guide/keras/rnn
https://www.tensorflow.org/guide/keras/rnn

	 Chapter 4 ■ Deep Learning	 183

This is the output of the example, showing the summary of the LSTM
network:

Model: "sequential"

Layer (type) Output Shape Param #
===
embedding (Embedding) (None, None, 32) 3200

lstm (LSTM) (None, 64) 24832

dense (Dense) (None, 1) 65
===
Total params: 28,097
Trainable params: 28,097
Non-trainable params: 0

4.4.3  Natural Language Processing and Python Natural
Language Toolkit
Natural language processing (NLP) is a form of artificial intelligence that deals
with human (natural) languages, in particular with the processing and anal-
ysis of large amounts of natural language data. The main challenges in NPL
are speech recognition, natural language understanding, and natural language
generation.

Figure 4.37: The plot output of the Example 4.17

184	 Part II ■ Machine Learning and Deep Learning

The Python Natural Language Toolkit (NLKT) is a leading open source
library for natural language processing. It has easy-to-use interfaces with more
than 50 corpora lexical resources (such as WordNet). In linguistics, a corpus
is a language resource consisting of a large and structured set of texts. NLKT
has a number of libraries for classification, tokenization, stemming, tagging,
parsing, semantic reasoning, and more.

For more details about NLKT, see the following:

https://www.nltk.org/

Example 4.22 shows a Python example code for using the NLTK library for
text analysis. The text in the code is from the Wikipedia page “Artificial Intelli-
gence” (https://en.wikipedia.org/wiki/Artificial_intelligence).

EXAMPLE 4.22  THE NLTK.PY PROGRAM

Example 4.22 The NLTK.py Program
https://www.nltk.org/
pip install nltk
import nltk
nltk.download('maxent_ne_chunker')
nltk.download('words')

sentence = """
Artificial intelligence (AI), is intelligence demonstrated by
machines,
 unlike the natural intelligence displayed by humans and animals.
 Leading AI textbooks define the field as the study of "intelligent
agents":
 any device that perceives its environment and takes actions that
maximize its
 chance of successfully achieving its goals.[3] Colloquially, the
term
 "artificial intelligence" is often used to describe machines (or
computers)
 that mimic "cognitive" functions that humans associate with the
human mind,
 such as "learning" and "problem solving".[4]
"""
tokens = nltk.word_tokenize(sentence)
print(tokens)
tagged = nltk.pos_tag(tokens)
print(tagged)
entities = nltk.chunk.ne_chunk(tagged)
print(entities)

The following are the outputs of the example, showing the tokens, tags, and
entities of the text. This block shows the token entities of the text.

https://www.nltk.org/
https://en.wikipedia.org/wiki/Artificial_intelligence

	 Chapter 4 ■ Deep Learning	 185

 ['Artificial', 'intelligence', '(', 'AI', ')', ',', 'is',
'intelligence', 'demonstrated', 'by', 'machines', ',', 'unlike',
'the', 'natural', 'intelligence', 'displayed', 'by', 'humans', 'and',
'animals', '.', 'Leading', 'AI', 'textbooks', 'define', 'the', 'field',
'as', 'the', 'study', 'of', '``', 'intelligent', 'agents', "''",
':', 'any', 'device', 'that', 'perceives', 'its', 'environment',
'and', 'takes', 'actions', 'that', 'maximize', 'its', 'chance', 'of',
'successfully', 'achieving', 'its', 'goals', '.', '[', '3', ']',
'Colloquially', ',', 'the', 'term', '``', 'artificial', 'intelligence',
"''", 'is', 'often', 'used', 'to', 'describe', 'machines', '(', 'or',
'computers', ')', 'that', 'mimic', '``', 'cognitive', "''", 'functions',
'that', 'humans', 'associate', 'with', 'the', 'human', 'mind', ',',
'such', 'as', '``', 'learning', "''", 'and', '``', 'problem', 'solving',
"''", '.', '[', '4', ']']

The following block shows the tags entities of the text:

 [('Artificial', 'JJ'), ('intelligence', 'NN'), ('(', '('), ('AI',
'NNP'), (')', ')'), (',', ','), ('is', 'VBZ'), ('intelligence',
'NN'), ('demonstrated', 'VBN'), ('by', 'IN'), ('machines', 'NNS'),
(',', ','), ('unlike', 'IN'), ('the', 'DT'), ('natural', 'JJ'),
('intelligence', 'NN'), ('displayed', 'VBN'), ('by', 'IN'), ('humans',
'NNS'), ('and', 'CC'), ('animals', 'NNS'), ('.', '.'), ('Leading',
'VBG'), ('AI', 'NNP'), ('textbooks', 'NNS'), ('define', 'VBP'),
('the', 'DT'), ('field', 'NN'), ('as', 'IN'), ('the', 'DT'), ('study',
'NN'), ('of', 'IN'), ('``', '``'), ('intelligent', 'JJ'), ('agents',
'NNS'), ("''", "''"), (':', ':'), ('any', 'DT'), ('device', 'NN'),
('that', 'WDT'), ('perceives', 'VBZ'), ('its', 'PRP$'), ('environment',
'NN'), ('and', 'CC'), ('takes', 'VBZ'), ('actions', 'NNS'), ('that',
'IN'), ('maximize', 'VB'), ('its', 'PRP$'), ('chance', 'NN'), ('of',
'IN'), ('successfully', 'RB'), ('achieving', 'VBG'), ('its', 'PRP$'),
('goals', 'NNS'), ('.', '.'), ('[', '$'), ('3', 'CD'), (']', 'NNP'),
('Colloquially', 'NNP'), (',', ','), ('the', 'DT'), ('term', 'NN'),
('``', '``'), ('artificial', 'JJ'), ('intelligence', 'NN'), ("''",
"''"), ('is', 'VBZ'), ('often', 'RB'), ('used', 'VBN'), ('to', 'TO'),
('describe', 'VB'), ('machines', 'NNS'), ('(', '('), ('or', 'CC'),
('computers', 'NNS'), (')', ')'), ('that', 'IN'), ('mimic', 'JJ'),
('``', '``'), ('cognitive', 'JJ'), ("''", "''"), ('functions', 'NNS'),
('that', 'WDT'), ('humans', 'NNS'), ('associate', 'VBP'), ('with',
'IN'), ('the', 'DT'), ('human', 'JJ'), ('mind', 'NN'), (',', ','),
('such', 'JJ'), ('as', 'IN'), ('``', '``'), ('learning', 'VBG'), ("''",
"''"), ('and', 'CC'), ('``', '``'), ('problem', 'NN'), ('solving',
'NN'), ("''", "''"), ('.', '.'), ('[', 'VB'), ('4', 'CD'), (']', 'NN')]

The following block shows the sections of entities of the text:

 (S
 (GPE Artificial/JJ)
 intelligence/NN
 (/(
 AI/NNP
)/)
 ,/,

186	 Part II ■ Machine Learning and Deep Learning

 is/VBZ
 intelligence/NN
 demonstrated/VBN
 by/IN
 machines/NNS
 ,/,
 unlike/IN
 the/DT
 natural/JJ
 intelligence/NN
 displayed/VBN
 by/IN
 humans/NNS
 and/CC
 animals/NNS
 ./.
 Leading/VBG

... ...

 functions/NNS
 that/WDT
 humans/NNS
 associate/VBP
 with/IN
 the/DT
 human/JJ
 mind/NN
 ,/,
 such/JJ
 as/IN
 ``/``
 learning/VBG
 ''/''
 and/CC
 ``/``
 problem/NN
 solving/NN
 ''/''
 ./.
 [/VB
 4/CD
]/NN)

EXERCISE 4.18

Modify the previous example Python code and choose a different piece of text for text
analysis. Comment on the results.

	 Chapter 4 ■ Deep Learning	 187

More examples about natural language processing will be available in
Chapter 10.

4.5  Transformers

Transformers are new deep learning neural networks introduced by Hugging
Face in 2017, mainly used in the field of natural language processing. Transformers
are based on a concept called attention, a mechanism for weighting different
parts of the input based on their importance. The creation and development of
transformers has demonstrated the effectiveness of large pre-trained models
for tackling NLP tasks such as machine translation and question answering.
Transformers are starting to make recurrent neural networks obsolete.

Transformers consist of a number of stacked encoders that form the encoder
layer, a number of stacked decoders that form the decoder layer, and a bunch
of attention layers that form self-attentions and encoder-decoder attentions.

Like recurrent neural networks, transformers are designed to handle sequen-
tial data. But, unlike RNNs, transformers do not need to process sequential
data in the correct order. For example, if the input data is a natural language
sentence, the transformer does not need to process the beginning before the
end. Because of this, transformers allow for much more parallelization and
thus shorter training time.

The following are the three main types of transformers:

■■ BERT: Bidirectional Encoder Representations from Transformers

■■ ALBERT: A Lite BERT

■■ GPT: Generative Pre-trained Transformer

Transformers have been implemented in both TensorFlow and PyTorch. See
the following Transformers GitHub site for details:

https://github.com/huggingface/transformers

4.5.1  BERT and ALBERT
BERT (Bidirectional Encoder Representations from Transformers) is a library
for natural language processing. BERT was created and published in 2018 by
Jacob Devlin and his colleagues at Google. Google uses BERT to better under-
stand user search queries. The original English-language BERT model used two
corpora in pre-training: BookCorpus and English Wikipedia, which together
contain around 16GB of uncompressed text.

ALBERT is a “lite” version of BERT. ALBERT uses two parameter-reduc
tion techniques to reduce memory requirements and increase training speed.

https://github.com/huggingface/transformers

188	 Part II ■ Machine Learning and Deep Learning

Google’s ALBERT has achieved top scores on three popular benchmark tests
for natural language understanding: GLUE, RACE, and SQuAD 2.0. Google has
introduced three outstanding innovations with ALBERT: factorized embedding
parameterization, cross-layer parameter sharing, and inter-sentence coherence
loss. As a result, the large ALBERT model has about 18x fewer parameters com-
pared to BERT-large.

Figure 4.38 shows the performance of the machine on the RACE challenge,
where ALBERT has outperformed other models.

Example 4.23 shows a Python example code of using transformers for text
sentiment analysis.

EXAMPLE 4.23  THE TRANSFORMERS.PY PROGRAM

Example 4.23
https://github.com/huggingface/transformers
pip install transformers
https://aka.ms/vs/16/release/vc_redist.x64.exe

from transformers import pipeline
classifier = pipeline('sentiment-analysis')
classifier('This is a good movie.')

Figure 4.38: The machine performance on the RACE challenge
(Source: https://ai.googleblog.com/2019/12/albert-lite-bert-for-self-
supervised.html?m=1)

https://ai.googleblog.com/2019/12/albert-lite-bert-for-self-supervised.html?m=1
https://ai.googleblog.com/2019/12/albert-lite-bert-for-self-supervised.html?m=1

	 Chapter 4 ■ Deep Learning	 189

This is the output of the example, showing the classification result as positive:

[{'label': 'POSITIVE', 'score': 0.9998612999916077}]

EXERCISE 4.19

Modify the previous example Python code, choose some different sentences, and make
sure some are positive and some are negative. Comment on the results.

Example 4.24 shows a Python example code for using transformers for
question answering.

EXAMPLE 4.24  THE TRANSFORMERS2.PY PROGRAM

#Example 4.24
from transformers import pipeline
question_answerer = pipeline('question-answering')
question_answerer({
 'question': 'What is the name of the company?',
 'context': 'We created Biox Systems Ltd company back in the year of
2000.'
})

This is the output of the example, showing the answer to the question:

{'answer': 'Biox Systems Ltd',
 'end': 27,
 'score': 0.7553602457046509,
 'start': 11}

EXERCISE 4.20

Modify the previous example Python code, choose a different piece of text, and ask dif-
ferent questions. Comment on the results.

4.5.2  GPT-3
Generative Pre-trained Transformer (GPT) is an autoregressive natural lan-
guage processing model that uses deep learning neural networks to produce
human-like text. GPT was created by OpenAI, a San Francisco–based artificial
intelligence research laboratory. There are three versions so far:

■■ GPT

■■ GPT-2

■■ GPT-3

190	 Part II ■ Machine Learning and Deep Learning

The latest GPT-3 has 175 billion machine learning parameters and has caught
the attention of the world in July 2020 with its amazing capabilities. Here is an
impressive YouTube video about the GPT-3 demo:

https://www.youtube.com/watch?v=8V20HkoiNtc&t=502s

Before GPT-3, the largest language model was Microsoft’s Turing-NLG with
17 billion parameters, released in February 2020.

There are already startups using GPT-3 to provide cool services.
Dover.io allows users to create job descriptions based on simple key words.

See the following for more details about the Job Descriptions Creator - Dover.io.

https://www.dover.io/tools/job-description-rewriter

Fitness AI is an iPhone app that uses artificial intelligence to generate
personalized workouts. Ask GPT-3 health-related or fitness-related questions
for free.

https://www.fitnessai.com/

OthersideAI allows users to generate email messages with a list of a few
bullet points.

https://www.othersideai.com/

Philosopher AI allows users to ask philosophical questions. You need to pay
for the service.

https://philosopherai.com/

CopyAI helps users to automatically generate professional marketing copy
based on your input. It claims to be able to automate the tedious and often
frustrating aspects of copy creation.

https://www.copy.ai/

4.5.3  Switch Transformers
In early 2021, researchers at Google Brain developed a new, open source AI
model for NLP, called Switch Transformer, which has a whopping 1.6T param-
eters, nearly ten times that of GPT-3. The training speed of Switch Transformer
has also been improved by seven times compared to previous architectures.

Switch Transformer uses a switch feed-forward neural network (FFN) layer
to replace the standard FFN layer in the transformer architecture. Instead of
a single FFN, each switch layer contains multiple FFNs, called experts. The
Switch Transformer architecture is based on the concept of Mixture of Experts
(MoE). This approach simplifies the computations and reduces the commu-
nication cost.

https://www.youtube.com/watch?v=8V20HkoiNtc&t=502s
https://www.dover.io/tools/job-description-rewriter
https://www.fitnessai.com/
https://www.othersideai.com/
https://philosopherai.com/
https://www.copy.ai/

	 Chapter 4 ■ Deep Learning	 191

At the time of writing this book, Google has not released the pretrained
model weights for Switch Transformer; for more details about Switch Trans-
former, visit the following:

https://arxiv.org/abs/2101.03961

https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/

transformer/

4.6  Graph Neural Networks

Although recurrent neural networks have been superseded by transformers
in natural language processing, they are still useful in many areas that require
sequential decision-making and in reinforcement learning. Recurrent neural
networks typically take input data in a sequence, such as time-series data or
language text. A graph neural network (GNN) is a special type of recurrent
neural network that can take graphs as input data. GNN has been used in
many applications such as analyzing social media data, and molecular struc-
tures. There is also the quantum graph neural networks (QGNNs) for quantum
chemistry analysis. QGNNs have been applied to learning quantum dynamics,
graph clustering, and graph isomorphism classification.

Convolutional neural networks work well on data with a regular grid struc-
ture, such as images, but not on graphs because they are arbitrarily large and
have a complex topology.

The following website shows a friendly introduction to the GNN. It also
covers the future of GNN including Quantum Graph Neural Networks
(QGNNs).

https://www.kdnuggets.com/2020/11/friendly-introduction-graph-

neural-networks.html

The following website shows the introduction to a GNN and its applications,
such as modeling real-world physical systems, molecular fingerprints, protein
interface prediction, modeling social interactions, and so on.

https://neptune.ai/blog/graph-neural-network-and-some-of-gnn-

applications

The following is a GNN implementation by Google’s DeepMind:

https://github.com/deepmind/graph_nets

The following is a GNN implementation by Facebook’s PyTorch:

https://github.com/rusty1s/pytorch_geometric

For more details about GNNs, visit the following website:

https://theaisummer.com/Graph_Neural_Networks/

https://www.dgl.ai/

https://arxiv.org/abs/2101.03961
https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/
https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/
https://www.kdnuggets.com/2020/11/friendly-introduction-graph-neural-networks.html
https://www.kdnuggets.com/2020/11/friendly-introduction-graph-neural-networks.html
https://neptune.ai/blog/graph-neural-network-and-some-of-gnn-applications
https://neptune.ai/blog/graph-neural-network-and-some-of-gnn-applications
https://github.com/deepmind/graph_nets
https://github.com/rusty1s/pytorch_geometric
https://theaisummer.com/Graph_Neural_Networks/
https://www.dgl.ai/

192	 Part II ■ Machine Learning and Deep Learning

4.6.1  SuperGLUE
SuperGlue is a CVPR 2020 research project, being conducted at Magic Leap.
CVPR (Conference on Computer Vision and Pattern Recognition) is the premier
annual event on computer vision, including several co-located workshops and
short courses in addition to the main conference. The SuperGlue network is a
GNN combined with an optimal matching layer that is trained to match two
sets of sparse image features. This repo includes PyTorch code and pre-trained
weights for running the SuperGlue matching network based on SuperPoint key
points and descriptors. Given a pair of images, you can use this repo to extract
matching features for the image pair. See the following links for details.

https://github.com/magicleap/SuperGluePretrainedNetwork

https://psarlin.com/superglue/

4.7  Bayesian Neural Networks

Traditional deep learning neural networks have a fixed value for their parameters;
hence, they are also called deterministic neural networks. Traditional deep learning
neural networks have been successful in many applications. However, they
also have some drawbacks. For example, mere knowledge of the input-output
mapping is inadequate when it comes to generating predictive uncertainty in
their predictions. This can be important when the available data is limited or
the data does not span the whole space of interest.

Bayesian neural networks (BNNs) have been developed to address these
issues. Bayesian neural networks are neural networks whose weights or param-
eters are expressed as a distribution rather than a deterministic value and are
learned using Bayesian inference. The output of Bayesian neural networks is
also a distribution rather than a fixed value.

Figure 4.39 shows the differences between traditional neural networks and
Bayesian neural networks.

The following is the Keras website on probabilistic Bayesian neural networks,
providing a detailed introduction and a Google Colab IPython Notebook with
the source code. You can access the code by clicking the View in Colab link.

https://keras.io/examples/keras_recipes/bayesian_neural_networks/

Figure 4.39: The traditional neural networks and Bayesian neural networks

https://github.com/magicleap/SuperGluePretrainedNetwork
https://psarlin.com/superglue/
https://keras.io/examples/keras_recipes/bayesian_neural_networks/

	 Chapter 4 ■ Deep Learning	 193

Figure 4.40 shows the modified version of the Google Colab code. You can
access the modified code by using the following link or by uploading a file
named Copy_of_bayesian_neural_networks_wine.ipynb to your Google
Colab.

The modified code performs three experiments to predict wine quality.

Experiment 1: standard neural network  In this experiment, the basic deter-
ministic model is used to predict the wine quality. From the following
outputs, you can see that only one fixed value is predicted for each input:

Predicted: 5.8 - Actual: 6.0
Predicted: 5.6 - Actual: 6.0
Predicted: 6.1 - Actual: 6.0
Predicted: 5.4 - Actual: 6.0
Predicted: 5.5 - Actual: 5.0
Predicted: 5.5 - Actual: 6.0
Predicted: 5.8 - Actual: 5.0
Predicted: 5.6 - Actual: 8.0
Predicted: 6.6 - Actual: 6.0
Predicted: 6.1 - Actual: 7.0

Experiment 2: Bayesian neural network (BNN)  In this experiment,
the Bayesian neural network model is used to predict wine quality.

Figure 4.40: The corresponding Google Colab code for the Keras website on probabilistic
Bayesian neural networks
(Source: https://colab.research.google.com/drive/1hs_3acGOq5NHoJ7l7t
Obri-uMTJE20q0#scrollTo=13ypK49LNsHo)

https://colab.research.google.com/drive/1hs_3acGOq5NHoJ7l7tObri-uMTJE20q0#scrollTo=13ypK49LNsHo
https://colab.research.google.com/drive/1hs_3acGOq5NHoJ7l7tObri-uMTJE20q0#scrollTo=13ypK49LNsHo

194	 Part II ■ Machine Learning and Deep Learning

The following outputs show that for each input a mean value, a minimum
value, and a maximum value are predicted:

Predictions mean: 6.08, min: 5.47, max: 6.34, range: 0.86 - Actual: 6.0
Predictions mean: 5.46, min: 4.78, max: 5.96, range: 1.17 - Actual: 6.0
Predictions mean: 6.11, min: 5.75, max: 6.38, range: 0.63 - Actual: 6.0
Predictions mean: 5.19, min: 4.58, max: 5.81, range: 1.23 - Actual: 6.0
Predictions mean: 5.25, min: 4.76, max: 5.84, range: 1.08 - Actual: 5.0
Predictions mean: 5.15, min: 4.49, max: 5.79, range: 1.29 - Actual: 6.0
Predictions mean: 5.89, min: 5.23, max: 6.26, range: 1.03 - Actual: 5.0
Predictions mean: 5.53, min: 4.7, max: 6.15, range: 1.46 - Actual: 8.0
Predictions mean: 6.36, min: 6.12, max: 6.52, range: 0.4 - Actual: 6.0
Predictions mean: 6.02, min: 5.57, max: 6.31, range: 0.74 - Actual: 7.0

Experiment 3: Probabilistic Bayesian neural network  This experiment
uses the probabilistic Bayesian neural network model to predict wine
quality. The following is the output. As you can see, the output is now a
distribution, including the mean, the variance, and the confidence inter-
vals (CI) of the prediction.

Prediction mean: 5.99, stddev: 0.75, 95% CI: [7.47 - 4.52] - Actual: 6.0
Prediction mean: 5.3, stddev: 0.7, 95% CI: [6.68 - 3.93] - Actual: 6.0
Prediction mean: 6.05, stddev: 0.77, 95% CI: [7.57 - 4.54] - Actual: 6.0
Prediction mean: 5.22, stddev: 0.69, 95% CI: [6.58 - 3.86] - Actual: 6.0
Prediction mean: 5.2, stddev: 0.69, 95% CI: [6.56 - 3.85] - Actual: 5.0
Prediction mean: 5.15, stddev: 0.69, 95% CI: [6.5 - 3.8] - Actual: 6.0
Prediction mean: 6.02, stddev: 0.75, 95% CI: [7.5 - 4.55] - Actual: 5.0
Prediction mean: 5.93, stddev: 0.74, 95% CI: [7.38 - 4.47] - Actual: 8.0
Prediction mean: 6.61, stddev: 0.87, 95% CI: [8.32 - 4.9] - Actual: 6.0
Prediction mean: 5.77, stddev: 0.75, 95% CI: [7.24 - 4.29] - Actual: 7.0

You can also plot the mean, the maximum, and the minimum on a graph.
Figure 4.41 shows the code for plotting the mean, the maximum, and the minimum
of the predictions (top), and the corresponding plot (bottom).

The following is a list of interesting tutorials and projects about Bayesian
neural networks:

https://github.com/JavierAntoran/Bayesian-Neural-Networks

https://davidstutz.de/a-short-introduction-to-bayesian-neural-

networks/

https://sanjaykthakur.com/2018/12/05/the-very-basics-of-bayesian-

neural-networks/

http://edwardlib.org/tutorials/bayesian-neural-network

http://krasserm.github.io/2019/03/14/bayesian-neural-networks/

https://nbviewer.jupyter.org/github/krasserm/bayesian-machine-

learning/blob/dev/bayesian-neural-networks/bayesian_neural_networks

.ipynb

https://github.com/krasserm/bayesian-machine-learning

https://inferpy.readthedocs.io/en/0.0.3/notes/guidebayesian.html

https://github.com/JavierAntoran/Bayesian-Neural-Networks
https://davidstutz.de/a-short-introduction-to-bayesian-neural-networks/
https://davidstutz.de/a-short-introduction-to-bayesian-neural-networks/
https://sanjaykthakur.com/2018/12/05/the-very-basics-of-bayesian-neural-networks/
https://sanjaykthakur.com/2018/12/05/the-very-basics-of-bayesian-neural-networks/
http://edwardlib.org/tutorials/bayesian-neural-network
http://krasserm.github.io/2019/03/14/bayesian-neural-networks/
https://nbviewer.jupyter.org/github/krasserm/bayesian-machine-learning/blob/dev/bayesian-neural-networks/bayesian_neural_networks.ipynb
https://nbviewer.jupyter.org/github/krasserm/bayesian-machine-learning/blob/dev/bayesian-neural-networks/bayesian_neural_networks.ipynb
https://nbviewer.jupyter.org/github/krasserm/bayesian-machine-learning/blob/dev/bayesian-neural-networks/bayesian_neural_networks.ipynb
https://github.com/krasserm/bayesian-machine-learning
https://inferpy.readthedocs.io/en/0.0.3/notes/guidebayesian.html

	 Chapter 4 ■ Deep Learning	 195

4.8  Meta Learning

Meta learning is another approach in AI that has become popular in recent
years. Meta is a Greek word meaning “after” or “beyond.” When used as a
prefix, meta means “about.” So, meta learning is “learning about learning” or
“learn to learn.”

Figure 4.41: The code for plotting the mean, the maximum, and the minimum of the predic-
tions (top), and the corresponding plot (bottom)
(Source: https://colab.research.google.com/drive/1hs_3acGOq5NHoJ7l7
tObri-uMTJE20q0#scrollTo=13ypK49LNsHo)

https://colab.research.google.com/drive/1hs_3acGOq5NHoJ7l7tObri-uMTJE20q0#scrollTo=13ypK49LNsHo
https://colab.research.google.com/drive/1hs_3acGOq5NHoJ7l7tObri-uMTJE20q0#scrollTo=13ypK49LNsHo

196	 Part II ■ Machine Learning and Deep Learning

The term meta learning was coined by Donald Maudsley in 1979, where he
described a mechanism by which people are becoming “increasingly in charge
of the patterns of perception, inquiry, learning, and development that they have
internalized.” Later in 1985, John Biggs used the concept of meta learning to
describe the state of “being conscious of one’s learning and taking control of
it.” You can describe meta learning as an awareness and understanding of the
process of learning itself, like thinking about thinking.

Meta learning in AI is essentially about using high-level or meta-level AI to
optimize lower-level AI, so that it can learn to learn effectively and quickly, as
illustrated in Figure 4.42.

The following are two interesting articles that give a comprehensive intro-
duction to the meta learning, including all the mathematics behind it:

https://jameskle.com/writes/meta-learning-is-all-you-need

https://lilianweng.github.io/lil-log/2018/11/30/meta-learning.html

The following two GitHub sites give a curated list of meta learning papers,
codes, books, blogs, videos, datasets, and other resources.

https://github.com/sudharsan13296/Awesome-Meta-Learning

https://github.com/dragen1860/awesome-meta-learning

The following GitHub site gives all the code examples for the book:

https://github.com/sudharsan13296/Hands-On-Meta-Learning-With-Python

The following two GitHub sites are meta learning projects implemented by
PyTorch.

https://github.com/learnables/learn2learn

https://github.com/yaoyao-liu/meta-transfer-learning

https://github.com/facebookresearch/LearningToLearn/tree/main/ml3

Figure 4.42: The schematic architecture of meta learning

https://jameskle.com/writes/meta-learning-is-all-you-need
https://lilianweng.github.io/lil-log/2018/11/30/meta-learning.html
https://github.com/sudharsan13296/Awesome-Meta-Learning
https://github.com/dragen1860/awesome-meta-learning
https://github.com/sudharsan13296/Hands-On-Meta-Learning-With-Python
https://github.com/learnables/learn2learn
https://github.com/yaoyao-liu/meta-transfer-learning
https://github.com/facebookresearch/LearningToLearn/tree/main/ml3

	 Chapter 4 ■ Deep Learning	 197

4.9  Summary

This chapter gave a comprehensive overview of deep learning. Deep learning
is the most important aspect of AI and a subset of machine learning. Deep
learning is the hottest research topic in AI.

Deep learning neural networks are built on traditional neural networks,
which are also called artificial neural networks. Deep learning neural net-
works can be generally divided into two types: convolutional neural networks
and recurrent neural networks. Convolutional neural networks are the most
popular deep learning neural networks, which include networks such as
LeNet, AlexNet, GoogLeNet (Inception), VGG, ResNet, DenseNet, MobileNet,
YOLO, and so on.

Apart from traditional convolutional neural networks, there are also new
types of networks, such as U-Net, AutoEncoder, siamese neural networks, and
capsule networks.

Recurrent neural networks are another popular deep learning neural net-
work. Convolutional neural networks are specialized in processing images,
while recurrent neural networks are specialized in processing sequences.

Transformers are new deep learning neural networks that are mainly used
in the field of natural language processing. Transformers are gradually making
recurrent neural networks obsolete.

Graph neural networks are a special type of recurrent neural network that
can take graphs as input data.

Bayesian neural networks are neural networks whose weights or parameters
are expressed as a distribution rather than a deterministic value. The learning
of Bayesian neural networks is done by Bayesian inference.

4.10  Chapter Review Questions

Q4.1.	� What is the difference between machine learning and deep
learning?

Q4.2.	� What is an artificial neural network?

Q4.3.	 What is a convolutional neural network?

Q4.4.	� Explain the terms of convolutional layer, pooling layer, activation
layer, dropout layer, and fully connected layer, in the context of
convolutional neural networks.

Q4.5.	� Compare the features of three commonly used activation functions:
REctified Linear Unit (ReLU), hyperbolic tangent, and the sigmoid
function.

198	 Part II ■ Machine Learning and Deep Learning

Q4.6.	� Use a table to compare the characteristic features of AlexNet,
Inception, VGG, ResNet, DenseNet, MobileNet, and EffecientNet.

Q4.7.	 What is U-Net, and what is it best used for?

Q4.8.	 What is AutoEncoder?

Q4.9.	� What is a Siamese neural network? Draw a schematic diagram of a
Siamese neural network.

Q4.10.	� What are differences between zero-shot learning, one-shot learning,
few-shot learning, and n-shot learning?

Q4.11.	� What is a capsule network, and how does it differ from a convolu-
tional neural network?

Q4.12.	 What is a recurrent neural network?

Q4.13.	 What is a long-short term memory (LSTM) network?

Q4.14.	 What is a transformer?

Q4.15.	 What is BERT and ALBERT?

Q4.16.	 What is GPT-3?

Q4.17.	 What is a graph neural network?

Q4.18.	 What is a Bayesian neural network?

AI Applications

In This Part:

Chapter 5: Image Classification
Chapter 6: Face Detection and Face Recognition
Chapter 7: Object Detection and Image Segmentation
Chapter 8: Pose Detections
Chapter 9: GAN and Neural-Style Transfer
Chapter 10: Natural Language Processing
Chapter 11: Data Analysis
Chapter 12: Cloud Computing and Edge Computing

This part covers popular AI applications, including some of the latest develop-
ments. This part aims to give you a snapshot of what we can do with AI today.

Par t

III

C H A P T E R

201

5

C H A P T E R O U T L I N E

5.1.	 Introduction
5.2.	 Classifications with Pre-trained Models
5.3.	 Classifications with Custom Trained Models: Transfer Learning
5.4.	 Cancer/Disease Detections
5.5.	 Federated Learning for Image Classification
5.6.	 Web-Based Image Classification
5.7.	 Image Processing
5.8.	 Summary
5.9.	 Chapter Review Questions

5.1  Introduction

Image analysis or image processing is the most researched topic in deep
learning. Image processing simply means extracting information from images
and learning from images. This is an important aspect of computer vision. In
deep learning, image processing is largely done using convolutional neural
networks (CNNs) and can be generally divided into image classification, object
detection, image segmentation, and so on.

Image Classification
“If our era is the next Industrial Revolution, as many claim, AI is

surely one of its driving forces.”

—Fei-Fei Li (American computer scientist)

202	 Part III ■ AI Applications

Figure 5.1 illustrates the differences between image classification, object
detection, and image segmentation. Image classification is about identifying
the image or classifying the image. Image classification can be typically done
by using deep learning neural networks such as AlexNet, GoogLeNet, VGG,
ResNet, MobileNet, and so on. Object detection is about identifying a particular
object in the image. Object detection can be typically done by using deep
learning neural networks such as region-based convolutional neural net-
works (R-CNNs), you only look once (YOLO), and so on. Image segmentation
means dividing the image into different segments according to the content.
Image segmentation can be typically done by using Detectron, Gluon, PixelLib
libraries, and so on. Chapter 7 contains more details about object detection
and image segmentation.

Image classification is the simplest and most commonly used image process
ing technique. Image classification allows you to identify the content of an
image, for example, whether an image is a dog or a cat, a type of flower, can-
cer or noncancer, and so on. Image classification is done by two steps called
training and inference, as shown in Figure 5.2. During training, you feed the
deep learning neural networks with training images and targets (also called
labels) and adjust the weights of the neural network until it maximizes the rec-
ognition rate, called accuracy. The more training images and the more complex
the neural networks, the higher the training accuracy. After training, you can
feed a query image to the network, and it will predict the result. The process
of using a trained deep learning model to make predictions against previously
unseen data is called inference.

For image classification, you can either use pre-trained models or custom
trained models. Pre-trained models are trained on a data source such as the
ImageNet dataset (http://www.image-net.org/) or the CIFAR-10 dataset (https://
www.cs.toronto.edu/~kriz/cifar.html). ImageNet has 1,000 classes, and
CIFAR-10 consists of 10 classes; the pre-trained model will therefore only
recognize the 1,000 classes or 10 classes. You can also re-train the pre-trained
models with your own datasets, which is called transfer learning. You can find
more details on transfer learning in section 5.3.

Figure 5.1: The differences between image classification, object detection, and image
segmentation

http://www.image-net.org/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

	 Chapter 5 ■ Image Classification	 203

Image classification has countless real-life applications. For example, take a
picture of a skin mole; image classification can tell you whether it is benign or
malignant. Or, take a picture of a flower or a plant; it can tell you what type of
flower or plant it is. For tourists, it can tell you what building or what attraction
is in your photo. For fashionistas, it can tell what brand of cloth or shoes the
photo is about. In healthcare, it can also classify X-ray images, CT images, and
MRI images. The potential is really endless!

In this chapter, we will first look at image classifications with pre-trained
models, then at image classifications with custom trained models, and at some
applications for image classification in medical imaging. We will also look at
federated learning for image classification, and finally, we will look at how to
develop web-based image classification applications.

5.2  Classification with Pre-trained Models

As shown in Chapter 4, there are a number of deep learning neural networks
available. The easiest way to use them for image classification is through the
TensorFlow and Keras libraries.

Example 5.1 shows some Python code that can load deep learning neural
network models, such as VGG16, ResNet50, MobileNet, Inception V3, and Effi-
cientNet, and show the summary of the models. These models are pre-trained
on the ImageNet dataset with 1,000 classes.

Figure 5.2: Training and inference in image classification

204	 Part III ■ AI Applications

EXAMPLE 5.1:  THE KERASMODEL.PY PROGRAM

#Example 5.1
#https://www.tensorflow.org/api_docs/python/tf/keras/applications

from tensorflow.keras.preprocessing import image
from keras.applications.imagenet_utils import decode_predictions
import numpy as np

from tensorflow.keras.applications import (
 vgg16,
 resnet50,
 mobilenet_v2,
 inception_v3,
 efficientnet
)

init the models
#model = vgg16.VGG16(weights='imagenet')
#model = resnet50.ResNet50(weights='imagenet')
#model = mobilenet_v2.MobileNetV2(weights='imagenet')
#model = inception_v3.InceptionV3(weights='imagenet')
model = efficientnet.EfficientNetB0(weights='imagenet')
print(model.summary())

You will need the latest TensorFlow version 2.4 to view EfficientNet. So it is
best to run the previous code in Google Colab, as shown in Figure 5.3. Just go
to the Google Colab website (https://colab.research.google.com/), sign in
with your Google account, create a new notebook, copy and paste the previous
code, and run it. You can comment out each model individually to see the sum-
mary of each model’s structure.

EXERCISE 5.1

Modify the Python program from Example 5.1 to use an if-else structure to select
which model to display.

You can find more predefined models on the Keras application website, as shown
in the following link. If you are interested, you can find more details about each model
here.

https://keras.io/api/applications/

EXERCISE 5.2

Continue with the previous exercise, based on the models shown in Keras application
website, and add a few more models, such as VGG19, DenseNet201, and EfficientNetB7,
to the Python program.

https://colab.research.google.com/
https://keras.io/api/applications/

	 Chapter 5 ■ Image Classification	 205

Example 5.2 shows a revised version of the previous Python code. It selects
a deep learning neural network model, shows the summary of the model, and
uses the model to classify an image file named elephant.jpg. Again, you can
comment out each model individually to see how each model performs.

EXAMPLE 5.2:  THE KERASMODEL2.PY PROGRAM

#Example 5.2
from tensorflow.keras.preprocessing import image
from keras.applications.imagenet_utils import decode_predictions
import numpy as np

from tensorflow.keras.applications import (
 vgg16,
 resnet50,
 mobilenet,
 inception_v3
)

init the models
#model = vgg16.VGG16(weights='imagenet')
#model = resnet50.ResNet50(weights='imagenet')
model = mobilenet.MobileNet(weights='imagenet')
#model = inception_v3.InceptionV3(weights='imagenet')
print(model.summary())

Figure 5.3: The previous program on Google Colab

206	 Part III ■ AI Applications

img_path = 'Elephant.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
#processed_image = vgg16.preprocess_input(x)
#processed_image = resnet50.preprocess_input(x)
processed_image = mobilenet.preprocess_input(x)
#processed_image = inception_v3.preprocess_input(x)

prediction
predictions = model.predict(x)
results = decode_predictions(predictions)
print(results)

EXERCISE 5.3

Go to the Internet, find some more animal pictures, and download them. Try to identify
them using Example 5.2, and comment on the performance of the different models.

In Google Colab, you do not have to download the images to your com-
puter and then upload them to Colab; you can use the wget command to load
the images directly from the Internet into Colab using their uniform resource
locators (URLs). Since wget is an external command, you must prefix it with an
exclamation mark, i.e., !wget. The following is an example to get a cat image
from the Internet and save it as cat.jpg in Colab:

!wget -O cat.jpg
'https://upload.wikimedia.org/wikipedia/commons/thumb/b/bb/Kittyply_
edit1.jpg/1024px-Kittyply_edit1.jpg'
img_path = 'cat.jpg'

The following commands show how to load and view the cat.jpg file in
Colab:

import cv2
from google.colab.patches import cv2_imshow
image = cv2.imread(img_path)
cv2_imshow(image)

For many computer users, a web camera, or webcam, is a useful tool
for working with images. Example 5.3 shows how to scan and open all
available webcams on your computer. It goes through the first five possible
webcams in a for loop, creates a webcam object in each loop using the
cv2.VideoCapture() function, and then checks to see if it can be opened.
If you have more than five webcams, just increase the number 5 to the
appropriate value. You must run this program on your local computer.

https://upload.wikimedia.org/wikipedia/commons/thumb/b/bb/Kittyply_edit1.jpg/1024px-Kittyply_edit1.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/b/bb/Kittyply_edit1.jpg/1024px-Kittyply_edit1.jpg

	 Chapter 5 ■ Image Classification	 207

EXAMPLE 5.3:  THE WEBCAMSCAN.PY PROGRAM

Example 5.3
import cv2
for i in range(5):
 print ("Checking camera #{0}...".format(i))
 cap = cv2.VideoCapture(i)
 if cap.isOpened():
 print ("Camera found!")
 if not cap.isOpened():
 print ("Camera not found!")

Once you know which webcam is available on your computer, you can use
the code in Example 5.4 to open the webcam and show live images. First, use
the cv2.VideoCapture() function to create a webcam object. id = 0 means the
first webcam on your computer. Then, it uses a while loop to continuously read
images from the webcam, as long as the webcam is open. Inside the while loop,
it first uses the camera.read() function to read an image from the webcam. If
the reading was successful, it continues; otherwise, it stops. Then, it uses the
cv2.imshow() function to display the image frame. After displaying the image,
it uses the cv2.waitKey() function to wait for 30ms to see if a key was pressed;
if the Esc key was pressed, the while loop is stopped. After the while loop is
stopped, the webcam object is released, and all windows are closed.

EXAMPLE 5.4:  THE WEBCAM.PY PROGRAM

Example 5.4
import cv2
id = 0
camera = cv2.VideoCapture(id)
image_size = 224

while camera.isOpened():
 ok, cam_frame = camera.read()
 if not ok:
 break
 #cam_frame= cv2.resize(cam_frame, (image_size, image_size))
 cv2.imshow('video image', cam_frame)
 key = cv2.waitKey(30)
 if key == 27: # press 'ESC' to quit
 break

camera.release()
cv2.destroyAllWindows()

Example 5.5 is the webcam version of the image classification code. It first
uses a web camera (webcam) to get the image and then uses a deep learning

208	 Part III ■ AI Applications

neural network to classify the webcam image. You can comment out each model
separately to see how each model performs.

EXAMPLE 5.5:  THE KERASMODEL3.PY PROGRAM

Example 5.5
import cv2
from tensorflow.keras.preprocessing.image import img_to_array
from keras.applications.imagenet_utils import decode_predictions
from tensorflow.keras.applications import (
 vgg16,
 resnet50,
 mobilenet,
 inception_v3
)
import numpy as np

init the models
#model = vgg16.VGG16(weights='imagenet')
model = resnet50.ResNet50(weights='imagenet')
#model = mobilenet.MobileNet(weights='imagenet')
#model = inception_v3.InceptionV3(weights='imagenet')
print(model.summary())

camera = cv2.VideoCapture(0)
image_size = 224
#image_size = 299
while camera.isOpened():
 ok, cam_frame = camera.read()
 frame= cv2.resize(cam_frame, (image_size, image_size))
 numpy_image = img_to_array(frame)
 image_batch = np.expand_dims(numpy_image, axis=0)
 #processed_image = vgg16.preprocess_input(image_batch.copy())
 processed_image = resnet50.preprocess_input(image_batch.copy())
 #processed_image = mobilenet.preprocess_input(image_batch.copy())
 #processed_image = inception_v3.preprocess_input(image_batch.copy())
 # get the predicted probabilities for each class
 predictions = model.predict(processed_image)
 label = decode_predictions(predictions)
 # format final image visualization to display the results of
experiments
 cv2.putText(cam_frame, "{}, {:.1f}".format(label[0][0][1],
label[0][0][2]) , (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0),
2)

 cv2.imshow('video image', cam_frame)
 key = cv2.waitKey(30)
 if key == 27: # press 'ESC' to quit
 break

	 Chapter 5 ■ Image Classification	 209

EXERCISE 5.4

Modify the Python program from Example 5.5, choose a different model each time, run
the program, and compare the results. Instead of reading images from the webcam,
you can also modify the code to read images from a video file. Hint: modify the
cv2.VideoCapture(0) function and replace 0 with the name of the video file.

5.3  Classification with Custom Trained Models:
Transfer Learning

Although classifying images with a pre-trained model is useful, it can only clas-
sify the images that have been previously specified. For example, if a model has
been trained on ImageNet, then the model can classify only the 1,000 types of
images defined by ImageNet. If a model has been trained on CIFAR-10, then it
can classify only 10 classes of images defined by CIFAR-10.

Therefore, if you want to classify new types of images, you can use the pre-
trained deep learning neural network model as the starting point for a model on
the second task of interest, for example, on your own image data. This is called
transfer learning. Transfer learning is popular because it can train deep learning
neural networks with comparatively little data. The potential of transfer learn
ing is enormous and can really bring image classification to life.

Example 5.6 shows how to create a customized deep learning neural network
for training your own image datasets. In this example, all the training images
are stored in a folder, and the different classes are stored in different subfolders,
which are named by class names. It is a long program, so we will go through
it section by section.

Example 5.6a contains the first section and shows how to load all the libraries
needed. Note that the preferred version of the H5PY library is 2.10.0. You can
install it by typing pip install h5py==2.10.0.

EXAMPLE 5.6A:  THE TRANSFERLEARNINGKERAS.IPYNB PROGRAM (PART 1)

Example 5.6a
Load all the libraries
===
pip install h5py==2.10.0
import matplotlib
from sklearn.model_selection import train_test_split
from keras.preprocessing.image import img_to_array
from keras.utils import to_categorical
from imutils import paths
import matplotlib.pyplot as plt

210	 Part III ■ AI Applications

import numpy as np
import argparse
import random
import cv2
import os

Example 5.6b shows how to specify the folder for the training images and
create the appropriate class labels and class names. In this example, all the
training images are stored in a folder named SkinArea. Within the folder, skin
images from six different skin areas, namely, Face, Forearm, Forehead, Lower
Leg, Neck, and Palm, are stored in six subfolders. The folders are named by
the class names.

EXAMPLE 5.6B:  THE TRANSFERLEARNINGKERAS.IPYNB PROGRAM (PART 2)

Select the image folder
===
datapath=os.getcwd() + "\SkinArea"

grab the image paths and randomly shuffle them
imagePaths = sorted(list(paths.list_images(datapath)))
random.seed()
random.shuffle(imagePaths)

initialize the number of epochs to train for, initia learning rate,
and batch size
batch_size=32
epochs=50
lr = 1e-3 # Initial Learning rate

image_size = 224 # For Inception use 299
num_classes=0 #number of classes for classification

initialize the data and labels
data = []
labels = []
classNum=[]
classNames=[]

#Get a list of subfolders as labels
subfolders = [f.path for f in os.scandir(datapath) if f.is_dir()]
i=0
for folder in subfolders:
 s = folder.split("\\")[-1]
 #print(s)
 classNum.append(i)
 classNames.append(s)

	 Chapter 5 ■ Image Classification	 211

 i=i+1

num_classes=len(classNum)
print(classNum)
print(classNames)
print(num_classes)

The following is the output of the previous code, showing the numerical
values of the classes, the names of the classes, and the total number of classes
(six).

[0, 1, 2, 3, 4, 5]
['Face', 'Forearm', 'Forehead', 'LowerLeg', 'Neck', 'Palm']
6

Example 5.6c shows how to go through all the images in the training image
folder including the subfolders, read in the images, get the class names, and
map the class names into numerical values. This is essential as deep learning
models can use numeric values only as targets during training.

EXAMPLE 5.6C:  THE TRANSFERLEARNINGKERAS.IPYNB PROGRAM (PART 3)

Create training data and labels
===
for imagePath in imagePaths:
 # load the image, pre-process it, and store it in the data list
 image = cv2.imread(imagePath)
 image = cv2.resize(image, (image_size, image_size))
 image = img_to_array(image)
 data.append(image)

 # extract the class label from the image path and update the
 # labels list
 label = imagePath.split(os.path.sep)[-2]

 i=0
 for name in classNames:
 if label == name:
 label = classNum[i]
 #print(name)
 break
 i = i+1
 labels.append(label)
 #print(label)

print(labels[0:20])

212	 Part III ■ AI Applications

The following output shows the first 20 numeric values of class labels:

[1, 0, 3, 3, 0, 2, 1, 2, 4, 2, 1, 4, 4, 0, 2, 4, 3, 0, 2, 0]

Example 5.6d shows how to split the image data into X training data, Y
training data, X test data, and Y test data. X is the input for the model, and Y is
the output of the model. Here, all images are randomly divided into training
data (75 percent) and test data (25 percent).

EXAMPLE 5.6D:  THE TRANSFERLEARNINGKERAS.IPYNB PROGRAM (PART 4)

data = np.array(data, dtype="float") / 255.0
labels = np.array(labels)
print(labels[0:30])

#Split the data into training (75%) and testing (25%)
(trainX, testX, trainY, testY) = train_test_split(data, labels,
test_size=0.25, random_state=42)

convert the labels from integers to vectors
trainY = to_categorical(trainY, num_classes=len(classNum))
testY = to_categorical(testY, num_classes=len(classNum))

Example 5.6e shows how to create and train a model with X and Y data.
It uses a pre-trained VGG16 model as the base model and then adds Flatten,
Dense, and final output layers. By using a pre-trained base model, re-training
can be more efficient and faster. There are a number of pre-trained deep
learning neural networks, such as VGG16, ResNet50, DenseNet, MobileNet
V2, Inception V3 (GoogLeNet), and EfficientNet. For EfficientNet you need
TensorFlow 2.4.

EXAMPLE 5.6E:  THE TRANSFERLEARNINGKERAS.IPYNB PROGRAM (PART 5)

#Create and train the model
===
from keras.models import Model, load_model, Sequential
from keras.layers import Activation, Dropout, Flatten, Dense

from keras.applications import (
 vgg16,
 resnet50,
 densenet,
 mobilenet_v2,
 inception_v3,
efficientnet
)

#Keras Models: https://keras.io/api/applications/
base_model = vgg16.VGG16(weights='imagenet', include_top=False,
input_shape=(image_size, image_size, 3))

	 Chapter 5 ■ Image Classification	 213

#base_model = mobilenet_v2.MobileNetV2(weights='imagenet', include_
top=False, input_shape=(image_size, image_size, 3))
#base_model = densenet.DenseNet201(weights='imagenet', include_
top=False, input_shape=(image_size, image_size, 3))
#base_model = resnet50.ResNet50(weights='imagenet', include_
top=False, input_shape=(image_size, image_size, 3))
#base_model = inception_v3.InceptionV3(weights='imagenet', include_
top=False, input_shape=(image_size, image_size, 3))
#base_model = efficientnet.EfficientNetB0(weights='imagenet',
include_top=False, input_shape=(image_size, image_size, 3))
#print(base_model.summary())

 # Freeze the layers
for layer in base_model.layers:
 layer.trainable = False
Create the model
model = Sequential()

Add the convolutional base model
model.add(base_model)

Add new layers
model.add(Flatten())
model.add(Dense(1024, activation='relu'))
model.add(Dense(1024, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
print(model.summary())

Compile the model
model.compile(optimizer= 'adam' , loss= keras.losses.categorical_
crossentropy, metrics=['accuracy'])
#model.compile(optimizer= 'sgd' , loss= keras.losses.categorical_
crossentropy, metrics=['accuracy'])
#from keras.optimizers import SGD
#model.compile(loss='categorical_crossentropy',
optimizer=SGD(lr=1e-3),
metrics=['accuracy'])

Start the training process
model.fit(trainX, trainY, validation_split=0.30, batch_size=32,
epochs=50, verbose=2)
Verbosity mode. 0 = silent, 1 = progress bar, 2 = one line per
epoch.

#save the model
model.save('model.h5')

The following is the output of the previous example program. It first shows
the summary of the VGG16 base model and the layers added to the base model,

214	 Part III ■ AI Applications

and then it trains the model on X and Y training data. Depending on your com-
puter and the number of training images, this training can take a long time.

Model: "sequential_6"

Layer (type) Output Shape Param #
===
vgg16 (Model) (None, 7, 7, 512) 14714688

flatten_5 (Flatten) (None, 25088) 0

dense_13 (Dense) (None, 1024) 25691136

dense_14 (Dense) (None, 1024) 1049600

dense_15 (Dense) (None, 6) 6150
===
Total params: 41,461,574
Trainable params: 26,746,886
Non-trainable params: 14,714,688

None
Train on 46 samples, validate on 21 samples
Epoch 1/50
 - 25s - loss: 4.6965 - accuracy: 0.1957 - val_loss: 4.2004 - val_accuracy: 0.3333
Epoch 2/50
 - 27s - loss: 5.0228 - accuracy: 0.3043 - val_loss: 5.6886 - val_accuracy: 0.1905
Epoch 3/50
 - 29s - loss: 4.2033 - accuracy: 0.4348 - val_loss: 3.1784 - val_accuracy: 0.3810
Epoch 4/50
 - 31s - loss: 1.7474 - accuracy: 0.5652 - val_loss: 1.7178 - val_accuracy: 0.3810
Epoch 5/50
 - 31s - loss: 1.0725 - accuracy: 0.5435 - val_loss: 0.3896 - val_accuracy: 0.9048

... ...

 - 33s - loss: 1.7668e-04 - accuracy: 1.0000 - val_loss: 0.1156 - val_accuracy: 0.9048
Epoch 49/50
 - 34s - loss: 1.6812e-04 - accuracy: 1.0000 - val_loss: 0.1155 - val_accuracy: 0.9048
Epoch 50/50
 - 35s - loss: 1.6058e-04 - accuracy: 1.0000 - val_loss: 0.1147 - val_accuracy: 0.9048

After training, you would be able to classify your own images using the
trained neural network model. Example 5.6f shows how to load the newly
trained model and evaluate its performances using X and Y test images:

	 Chapter 5 ■ Image Classification	 215

EXAMPLE 5.6F:  THE TRANSFERLEARNINGKERAS.IPYNB PROGRAM (PART 6)

model = load_model('model.h5')
score = model.evaluate(testX, testY, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

The following is the output, showing the loss and accuracy. The accuracy is
39 percent in this case. You can improve the accuracy by increasing the sample
size or having more epochs, that is, more rounds of trainings.

Test loss: 2.6502907276153564
Test accuracy: 0.39130434

Example 5.6g is the code for predictions on X test image data.

EXAMPLE 5.6G:  THE TRANSFERLEARNINGKERAS.IPYNB PROGRAM (PART 7)

names = model.predict(testX)
print(len(testX))
print((trainX[0,:].shape))
print(name)
print(testY)

The following is the output:

23
(224, 224, 3)
Forearm
[[0. 0. 1. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0.]
 [0. 0. 0. 0. 1. 0.]
 [1. 0. 0. 0. 0. 0.]
 [1. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 1. 0.]
 [1. 0. 0. 0. 0. 0.]
 [0. 1. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0.]
 [0. 0. 0. 1. 0. 0.]
 [0. 0. 0. 0. 0. 1.]
 [0. 0. 0. 1. 0. 0.]
 [0. 1. 0. 0. 0. 0.]
 [1. 0. 0. 0. 0. 0.]
 [0. 0. 0. 1. 0. 0.]
 [0. 0. 0. 0. 0. 1.]
 [0. 0. 1. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0.]
 [1. 0. 0. 0. 0. 0.]

216	 Part III ■ AI Applications

 [0. 1. 0. 0. 0. 0.]
 [0. 0. 0. 0. 1. 0.]
 [1. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0.]]

Example 5.6h is the code for predictions on a particular image file:

EXAMPLE 5.6H:  THE TRANSFERLEARNINGKERAS.IPYNB PROGRAM (PART 8)

import numpy as np
from keras.preprocessing import image
base_dir = datapath
testfile = base_dir +'\Face\elen_f4-r02-03.jpg'
image_size = 224
test_image = image.load_img(testfile , target_size=(image_size,
image_size))
test_image = image.img_to_array(test_image)
test_image = np.expand_dims(test_image, axis=0)
results = model.predict(test_image)
print(results)
i=0
prediction="Unknown"
for name in classNames:
 if results[0][i]>0.4:
 prediction=name
 break
 i += 1
print(prediction)

plt.figure()
plt.title(str(testfile))
plt.imshow(image.load_img(testfile))
plt.show()

The following is the output, and Figure 5.4 is the image that is used for pre-
diction:

[[0.0000000e+00 1.4933567e-10 0.0000000e+00 0.0000000e+00 1.0000000e+00
 0.0000000e+00]]
Neck

The complete code for the example can be found in the Jupyter Notebook
file, TransferLearningKeras.ipynb, in the Chapter 6 folder of the example code
that accompanies this book. You can edit and run the file from a web browser,
as shown in Figure 5.5.

	 Chapter 5 ■ Image Classification	 217

EXERCISE 5.5

Run the previous Python program with different pre-trained models, and comment
on the performances, i.e., the time required for training and the accuracy that can be
achieved.

EXERCISE 5.6

Add more base models to the previous Python program, and comment on the
performances.

Figure 5.4: The test image for classification

Figure 5.5: The TransferLearningKeras.ipynb file in a web browser

218	 Part III ■ AI Applications

Model optimizers are one of the key factors for transfer learning. For more
details, see the following:

https://keras.io/api/optimizers/

Example 5.7 shows another version of the transfer learning for skin cancer
image classification. In this case, the function ImageDataGenerator() is used
to store the images, and the function model.fit_generator() is used to train
the models. Again, we will show the code section by section. The full code is
available in an IPython Jupyter Notebook file, named TransferLearningKeras2
.ipynb, as shown in Figure 5.6.

The first section, shown in Example 5.7a, shows how to load all the libraries
you need.

EXAMPLE 5.7A:  THE TRANSFERLEARNINGKERAS2.IPYNB PROGRAM
(PART 1)

from keras.preprocessing.image import ImageDataGenerator
import numpy as np
import matplotlib.pyplot as plt
import os

Figure 5.6: The TransferLearningKeras2.ipynb file in a web browser

https://keras.io/api/optimizers/

	 Chapter 5 ■ Image Classification	 219

The second section, shown in Example 5.7b, shows how to specify the folder
for the training images and the folder for the test images, in this case, SkinArea.
Then the function ImageDataGenerator() is used to generate the training image
data.

EXAMPLE 5.7B:  THE TRANSFERLEARNINGKERAS2.IPYNB PROGRAM
(PART 2)

train_path = os.getcwd() + "\SkinArea"
test_path = os.getcwd() + "\SkinArea"

batch_size = 16
image_size = 224 # For Inception use 299

train_datagen = ImageDataGenerator(validation_split=0.3,
 shear_range=0.2,
 zoom_range=0.2,
 horizontal_flip=True)

train_generator = train_datagen.flow_from_directory(
 directory=train_path,
 target_size=(image_size,image_size),
 batch_size=batch_size,
 class_mode='categorical',
 color_mode='rgb',
 shuffle=True)

x_batch, y_batch = train_generator.next()

it = train_generator.class_indices
print(it.items())
print(train_generator.n)
print(np.unique(train_generator.classes))
num_classes = len(np.unique(train_generator.classes))

fig=plt.figure(figsize=(15,6))
columns = 4
rows = 4
for i in range(1, columns*rows):
 num = np.random.randint(batch_size)
 image = x_batch[num].astype(np.int)
 fig.add_subplot(rows, columns, i)
 plt.title(y_batch[num])
 plt.imshow(image)
plt.show()

220	 Part III ■ AI Applications

Figure 5.7 shows the plot of some sample training images.

The third section, in Example 5.7c, shows how to create the customized deep
learning model based on VGG16, ResNet50, and so on; train the model; and
store it.

EXAMPLE 5.7C:  THE TRANSFERLEARNINGKERAS2.IPYNB PROGRAM
(PART 3)

from tensorflow.keras.models import Model, load_model,Sequential
from tensorflow.keras.layers import Activation, Dropout, Flatten,
Dense

from tensorflow.keras.applications import (
 vgg16,
 resnet50,
 densenet,
 mobilenet_v2,
 inception_v3,
 inception_resnet_v2,
efficientnet
)

#Keras Models: https://keras.io/api/applications/
base_model = vgg16.VGG16(weights='imagenet', include_top=False,
input_shape=(image_size, image_size, 3))

Figure 5.7: The sample training images

	 Chapter 5 ■ Image Classification	 221

#base_model = mobilenet_v2.MobileNetV2(weights='imagenet', include_
top=False, input_shape=(image_size, image_size, 3))
#base_model = densenet.DenseNet201(weights='imagenet', include_
top=False, input_shape=(image_size, image_size, 3))
#base_model = resnet50.ResNet50(weights='imagenet', include_
top=False, input_shape=(image_size, image_size, 3))
#base_model = inception_v3.InceptionV3(weights='imagenet', include_
top=False, input_shape=(image_size, image_size, 3))
#base_model = inception_resnet_v2.InceptionResNetV2(weights='image
net', include_top=False, input_shape=(image_size, image_size, 3))
#base_model = efficientnet.EfficientNetB0(weights='imagenet',
include_top=False, input_shape=(image_size, image_size, 3))
#print(base_model.summary())

Freeze the layers
for layer in base_model.layers:
 layer.trainable = False

Create the model
model = Sequential()

Add the vgg convolutional base model
model.add(base_model)

Add new layers
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(128, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
print(model.summary())

Compile the model
model.compile(optimizer= 'adam' , loss= keras.losses.categorical_
crossentropy, metrics=['accuracy'])
#model.compile(optimizer= 'sgd' , loss= keras.losses.categorical_
crossentropy, metrics=['accuracy'])
#from keras.optimizers import SGD
#model.compile(loss='categorical_crossentropy',
optimizer=SGD(lr=1e-3),
metrics=['accuracy'])

history = model.fit_generator(
 train_generator,
 steps_per_epoch=train_generator.n/batch_size,
 epochs=3)

model.save('fine_tune.h5')

summarize history for accuracy
import matplotlib.pyplot as plt

222	 Part III ■ AI Applications

plt.plot(history.history['loss'])
plt.title('loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['loss'], loc='upper right')
plt.show()

Figure 5.8 shows the model structure and the model training output.

The fourth section, in Example 5.7d, shows how to predict the test images.
Again, the function ImageDataGenerator() is used to generate test image data,
and the predictions are made on the test data generator. Finally, some test
images are plotted in a 4 × 4 grid.

EXAMPLE 5.7D:  THE TRANSFERLEARNINGKERAS2.IPYNB PROGRAM
(PART 4)

import keras
from keras.models import Model, load_model
from keras.layers import Activation, Dropout, Flatten, Dense
from keras.preprocessing.image import ImageDataGenerator

Figure 5.8: The model structure and the model training output

	 Chapter 5 ■ Image Classification	 223

#test image classified
#model = load_model('fine_tune.h5')

test_datagen = ImageDataGenerator()
test_generator = test_datagen.flow_from_directory(
 directory=test_path,
 target_size=(image_size, image_size),
 color_mode='rgb',
 shuffle=False,
 class_mode='categorical',
 batch_size=1)

filenames = test_generator.filenames
nb_samples = len(filenames)
test_generator.reset()

fig=plt.figure(figsize=(15,6))
columns = 4
rows = 4
for i in range(1, columns*rows -1):
 x_batch, y_batch = test_generator.next()

 name = model.predict(x_batch)
 name = np.argmax(name, axis=-1)
 true_name = y_batch
 true_name = np.argmax(true_name, axis=-1)

 label_map = (test_generator.class_indices)
 label_map = dict((v,k) for k,v in label_map.items()) #flip k,v
 predictions = [label_map[k] for k in name]
 true_value = [label_map[k] for k in true_name]

 image = x_batch[0].astype(np.int)
 fig.add_subplot(rows, columns, i)
 plt.title(str(predictions[0]) + ':' + str(true_value[0]))
 plt.imshow(image)
plt.show()

Figure 5.9 shows the plot of some test sample images. It also displays the
predicted results compared to the ground truth at the top of the images.

The fifth section, Example 5.7e, shows how to calculate the accuracy of the
model. See Figure 5.10.

EXAMPLE 5.7E:  THE TRANSFERLEARNINGKERAS2.IPYNB PROGRAM (PART 5)

score = model.evaluate_generator(test_generator, STEP_SIZE_TEST,
workers=12)
print("Loss: ", score[0], "Accuracy: ", score[1])

224	 Part III ■ AI Applications

Figure 5.9: The sample test images and the predicted results against the ground truth

Figure 5.10: The code and the output accuracy of the previous section of code

	 Chapter 5 ■ Image Classification	 225

You can also build deep learning models yourself. Example 5.8 shows how
to build a customized deep learning model layer by layer. The rest of the
code is similar to the previous example TransferLearningKeras2.ipynb. The
full code is available in an IPython Jupyter Notebook file named Transfer-
LearningKeras3.ipynb, as shown in Figure 5.11.

EXAMPLE 5.8:  THE TRANSFERLEARNINGKERAS3.IPYNB PROGRAM

Example 5.8
from tensorflow.keras.models import Model, load_model, Sequential
from tensorflow.keras.layers import Activation, Dropout, Flatten,
Dense,Conv2D,MaxPooling2D

model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=(image_size, image_size,
3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('sigmoid'))
print(model.summary())

Compile the model
model.compile(optimizer= 'adam' , loss= keras.losses.categorical_
crossentropy, metrics=['accuracy'])
#model.compile(optimizer= 'sgd' , loss= keras.losses.categorical_
crossentropy, metrics=['accuracy'])

history = model.fit_generator(
 train_generator,
 steps_per_epoch=train_generator.n/batch_size,
 epochs=1)

model.save('fine_tune.h5')

summarize history for accuracy

226	 Part III ■ AI Applications

import matplotlib.pyplot as plt

plt.plot(history.history['loss'])
plt.title('loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['loss'], loc='upper right')
plt.show()

If you do not like programming, many web services also offer transfer learn
ing on image classification without having to write any code.

The following link shows an impressive website called Vize.ai that allows
users to perform image classification in three simple steps:

1.	 Define: This is where you define your problem and upload your own
image data.

2.	 Train: This allows you to train the model using your data.
3.	 Recognize: This allows you to perform image classification using your

trained model.

https://vize.ai

Figure 5.11: The TransferLearningKeras3.ipynb file in a web browser

https://vize.ai/

	 Chapter 5 ■ Image Classification	 227

For more details, check out this interesting article, titled How to train custom
image classifier in 5 minutes, which shows you step-by-step how to use Vize.
ai for gender classification.

https://towardsdatascience.com/how-to-train-custom-image-classifier-

in-5-minutes-4efa61255fc7

5.4  Cancer/Disease Detection

In this section, we will show some examples classifying medical images. In
healthcare, there are many different imaging modalities, such as X-ray images,
computerized tomography (CT) scan images, magnetic resonance imaging
(MRI) images, retinal images, and so on. Examining these images manually is
slow and requires years of experience. Using deep learning neural networks
to classify these images is much easier and faster. In January 2020, Google and
Imperial College London have already demonstrated that their algorithm can
outperform six human radiologists in reading mammograms to detect breast
cancer. Image classification is probably the best example of how AI can be used
in healthcare.

5.4.1  Skin Cancer Image Classification
Skin cancer affects millions of people around the world. The effectiveness of
treatment depends largely on early detection. Image classification is a very
effective method to improve early detection as there are many digital images
of skin cancer. There have already been several skin diagnostic apps for this
purpose.

■■ UMSkinCheck

https://www.uofmhealth.org/patient%20and%20visitor%20guide/my-

skin-check-app

■■ SkinVision

www.skinvision.com/

■■ MoleCare

https://www.nhs.uk/apps-library/molecare/

So, how can you develop your own skin disease/cancer classification soft-
ware? First you will need skin disease/cancer images, and lots of them. The
most commonly cited source of skin disease/cancer images is the International
Skin Imaging Collaboration (ISIC); see the following link. There are tons of skin

https://towardsdatascience.com/how-to-train-custom-image-classifier-in-5-minutes-4efa61255fc7
https://towardsdatascience.com/how-to-train-custom-image-classifier-in-5-minutes-4efa61255fc7
https://www.uofmhealth.org/patient and visitor guide/my-skin-check-app
https://www.uofmhealth.org/patient and visitor guide/my-skin-check-app
http://www.skinvision.com/
https://www.nhs.uk/apps-library/molecare/

228	 Part III ■ AI Applications

disease/cancer images, and annual ISIC challenges are held on skin lesion anal-
ysis for melanoma detection.

https://www.isic-archive.com/

You can also find skin images from various other places, such as the
following:

https://www.cancer.org/cancer/skin-cancer/skin-cancer-image-gallery

.html

https://www.skincancer.org/

https://www.medicinenet.com/image-collection/skin_cancer_picture/

picture.htm

Once you get your skin disease/cancer images, you can basically use the
transfer learning examples from the previous section to train the models and
classify the images.

If you want to learn from other people’s projects for skin disease/cancer
image classification, the best place is Kaggle, where you can get both the data-
set (skin images) and other people’s projects (also called a repository) that you
can copy and edit. You can create an account by using your Google account.

The following shows a skin cancer dataset on Kaggle that contains 2.7GB of
skin pigmented images. From the Code menu, you can see there are 176 pro-
jects based on this dataset. You can sort the projects by Hotness, Most Votes,
Recently Run, and so on. Once you find a project you like, you have the choice
to copy it and edit it on Kaggle in your own account, download a copy, or open
it in the Google Cloud.

https://www.kaggle.com/kmader/skin-cancer-mnist-ham10000

The following are two interesting example projects based on the skin cancer
dataset:

https://www.kaggle.com/ingbiodanielh/skin-cancer-classification-

with-resnet-50-fastai

https://www.kaggle.com/mikeleske/2-stage-densenet201-fine-tuning-

98-4-accuracy

EXERCISE 5.7

Log in to your Kaggle account via a web browser, find one of the previous Kaggle pro-
jects, make a copy of the project, and then modify the code to use VGG16 as the base
model. Compare the performances.

https://www.isic-archive.com/
https://www.cancer.org/cancer/skin-cancer/skin-cancer-image-gallery.html
https://www.cancer.org/cancer/skin-cancer/skin-cancer-image-gallery.html
https://www.skincancer.org/
https://www.medicinenet.com/image-collection/skin_cancer_picture/picture.htm
https://www.medicinenet.com/image-collection/skin_cancer_picture/picture.htm
https://www.kaggle.com/kmader/skin-cancer-mnist-ham10000
https://www.kaggle.com/ingbiodanielh/skin-cancer-classification-with-resnet-50-fastai
https://www.kaggle.com/ingbiodanielh/skin-cancer-classification-with-resnet-50-fastai
https://www.kaggle.com/mikeleske/2-stage-densenet201-fine-tuning-98-4-accuracy
https://www.kaggle.com/mikeleske/2-stage-densenet201-fine-tuning-98-4-accuracy

	 Chapter 5 ■ Image Classification	 229

5.4.2  Retinopathy Classification
Retinal imaging is commonly used to examine eye health, especially in diabetic
patients. Retinal imaging takes a digital image of the back of the eye, showing
the retina, the optic disk, and the blood vessels. The retina is the tissue that is
sensitive to light, and the optic disk is a dark spot on the retina that contains
the optic nerve, which sends information to the brain.

Figure 5.12 shows an image database of diabetic retinopathy on Kaggle. It
has 3,663 retinal images divided into five categories: Mild, Moderate, No_DR
(no diabetic retinopathy), Proliferate_ DR, and Severe.

EXERCISE 5.8

Log in to your Kaggle account via a web browser, locate the previous Kaggle dataset,
choose an appropriate project, make a copy of the project, and modify the code to use
VGG16 as the base model. Comment on the results.

The following are three interesting example projects based on the previous
diabetic retinopathy image dataset:

https://www.kaggle.com/mattmcfee/retinopathy-classification-with-

vgg16

https://www.kaggle.com/akshat0007/diabetic-retinopathy-detection-

and-classification

https://www.kaggle.com/huseyinefe/diabetic-retinopathy-with-cnn-

by-keras

Figure 5.12: The image dataset of diabetic retinopathy on Kaggle and some sample images
(Source:  https://www.kaggle.com/sovitrath/diabetic-retinopathy-
224x224-gaussian-filtered)

https://www.kaggle.com/mattmcfee/retinopathy-classification-with-vgg16
https://www.kaggle.com/mattmcfee/retinopathy-classification-with-vgg16
https://www.kaggle.com/akshat0007/diabetic-retinopathy-detection-and-classification
https://www.kaggle.com/akshat0007/diabetic-retinopathy-detection-and-classification
https://www.kaggle.com/huseyinefe/diabetic-retinopathy-with-cnn-by-keras
https://www.kaggle.com/huseyinefe/diabetic-retinopathy-with-cnn-by-keras
https://www.kaggle.com/sovitrath/diabetic-retinopathy-224x224-gaussian-filtered
https://www.kaggle.com/sovitrath/diabetic-retinopathy-224x224-gaussian-filtered

230	 Part III ■ AI Applications

5.4.3  Chest X-Ray Classification
X-ray images are commonly used in hospitals to detect broken bones and
pneumonia. When X-rays pass through our bodies, they produce an image on
a metal film. Soft tissues, such as skin and organs, absorb very few X-rays, while
dense tissues, like the bones, absorb the radiation. Similar to camera film, X-ray
film develops depending on which areas have been exposed to the X-rays. Black
areas on an X-ray image represent soft tissues, where X-rays are not absorbed.
White areas represent the bones, where X-rays are absorbed.

The following shows a dataset of chest X-ray images on Kaggle. There are
nearly 6,000 images divided into three subfolders: test, train, and val (for
“validate”). In each subfolder, the images are divided into two categories:
normal and pneumonia. There are more than 900 projects based on this dataset.

https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia

The following two projects based on the previous datasets have the highest
number of votes:

https://www.kaggle.com/aakashnain/beating-everything-with-depthwise-

convolution

https://www.kaggle.com/amyjang/tensorflow-pneumonia-classification-

on-x-rays

During the COVID-19 pandemic, there was a lot of interest in applying deep
learning for COVID-19 detection. The following shows the COVID-19 Chest
X-ray Image dataset on Kaggle.

https://www.kaggle.com/alifrahman/covid19-chest-xray-image-dataset

The following shows a simple transfer learning project on an X-ray image
classification by using the previous two datasets on Kaggle. It uses a customized
mode, based on VGG16, similar to what we did in section 5.3, and uses X-ray
images for the customized model.

https://www.kaggle.com/alifrahman/covid-19-detection-using-transfer-

learning

EXERCISE 5.9

From a web browser, log in to your Kaggle account, locate the previous Kaggle project,
make a copy of the project, and finally modify the code so that it uses MobileNet as the
base model, instead of VGG16. Compare the performances.

https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/aakashnain/beating-everything-with-depthwise-convolution
https://www.kaggle.com/aakashnain/beating-everything-with-depthwise-convolution
https://www.kaggle.com/amyjang/tensorflow-pneumonia-classification-on-x-rays
https://www.kaggle.com/amyjang/tensorflow-pneumonia-classification-on-x-rays
https://www.kaggle.com/alifrahman/covid19-chest-xray-image-dataset
https://www.kaggle.com/alifrahman/covid-19-detection-using-transfer-learning
https://www.kaggle.com/alifrahman/covid-19-detection-using-transfer-learning

	 Chapter 5 ■ Image Classification	 231

5.4.5  Brain Tumor MRI Image Classification
Magnetic resonance imaging (MRI) is a medical imaging technique that uses
strong magnetic fields and radio waves to produce detailed images of the inside
of the body. As we know, the human body is mostly made up of water, and the
water molecule is composed of hydrogen and oxygen atoms. At the heart of the
hydrogen atom is a positively charged particle called a proton. A proton is like
a tiny magnet and is sensitive to magnetic fields. When the human body is in
a strong magnetic field, such as an MRI scanner, all the protons align with the
magnetic field. During the MRI scan, a series of short radio wave pulses is sent
to specific areas of the body, causing the protons out of alignment. When the
radio wave pulses disappear, the protons realign themselves in their original
positions. This sends out radio signals that are picked up by the MRI receiver
coils. These signals provide information not only about the exact location of
the protons in the body but also about the different types of tissue (such as
fat and water) in the body, as the protons align at different rates in different
types of tissue and can be identified separately. Different from X-rays, which
are mainly used to image bones, an MRI is mainly used to image soft tissues,
such as the brain.

The following shows a dataset of brain MRI images for brain tumor detection
on Kaggle. There are 98 brain MRI images, labeled as no, i.e., without tumor,
and 155 images, labeled as yes, i.e., with tumor.

https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-

detection

The following are some interesting projects for brain MRI tumor detection:

https://www.kaggle.com/ruslankl/brain-tumor-detection-v1-0-cnn-

vgg-16

https://www.kaggle.com/ethernext/brain-tumour-detection-with-cnn-

96-accuracy

https://www.kaggle.com/monkira/brain-mri-segmentation-using-unet-

keras

5.4.5  RSNA Intracranial Hemorrhage Detection
CT is another medical imaging technique that uses X-rays to take a series of
images of the body from different angles and combines the images with the help
of computing technology to create detailed images of the structures inside the
body. During a CT scan, the X-ray tube rotates around the patient and shoots
narrow beams of X-rays through the body. The X-rays are then picked up by

https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection
https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection
https://www.kaggle.com/ruslankl/brain-tumor-detection-v1-0-cnn-vgg-16
https://www.kaggle.com/ruslankl/brain-tumor-detection-v1-0-cnn-vgg-16
https://www.kaggle.com/ethernext/brain-tumour-detection-with-cnn-96-accuracy
https://www.kaggle.com/ethernext/brain-tumour-detection-with-cnn-96-accuracy
https://www.kaggle.com/monkira/brain-mri-segmentation-using-unet-keras
https://www.kaggle.com/monkira/brain-mri-segmentation-using-unet-keras

232	 Part III ■ AI Applications

special X-ray detectors. When the X-rays leave the patient, they are picked up
by the X-ray detectors, which are located directly opposite the X-ray tube, and
transmitted to a computer. The computer will use complicated mathematical
algorithms to construct 2D slice images of the patient, including the internal
organs, blood vessels, and bones. Compared to MRI imaging, CT is cheaper
and quicker. But an MRI can provide soft tissue images with higher image res-
olution than CT.

The following shows the Radiological Society of North America (RSNA)
Intracranial Hemorrhage Detection dataset on Kaggle. It has an impressive
427GB of brain CT images.

https://www.kaggle.com/c/rsna-intracranial-hemorrhage-detection/data

The following are two highly voted projects based on the previous dataset:

https://www.kaggle.com/marcovasquez/basic-eda-data-visualization

https://www.kaggle.com/akensert/rsna-inceptionv3-keras-tf1-14-0

EXERCISE 5.10

Log in to your Kaggle account using a web browser, find one of the previous Kaggle
projects, make a copy of the project, and then modify the code to use VGG16 as the
base model. Compare the performances.

5.5  Federated Learning for Image Classification

Conventional deep learning requires all the data to be uploaded to the com-
puter doing the computation, whether it is a server in the cloud or your local
computer. In the case of mobile users, there could be millions of mobile phones,
generating tons of data every day and making it impractical to upload all the
data to perform the computation. This is where federated learning comes into
play.

Federated learning is a new technique for model training that enables mo-
bile devices to train and learn collaboratively from a shared model. A central
server is used to create and train a shared model using proxy data, and then it
distributes the shared model to the mobile devices. Each mobile device trains
the shared model using its own data and sends the updates back. The server is
then able to improve the shared model, as illustrated in Figure 5.13. This pro-
cess is called federated learning, because the server uses federated data—mobile
data—to improve its model. Federated learning can be used for both image
classification and regression.

This approach presents several benefits. First, it does not require a large
amount of bandwidth to transfer the data. Second, a large storage space is not
required on the server. Last but not the least, users’ privacy is protected, as the
data never leaves the mobile devices.

https://www.kaggle.com/c/rsna-intracranial-hemorrhage-detection/data
https://www.kaggle.com/marcovasquez/basic-eda-data-visualization
https://www.kaggle.com/akensert/rsna-inceptionv3-keras-tf1-14-0

	 Chapter 5 ■ Image Classification	 233

The following shows how you can use TensorFlow to perform federated
learning for image classification. You can find both the GitHub site for the full
source code and a Google Colab online example to try.

https://www.tensorflow.org/federated/tutorials/federated_learning_

for_image_classification

EXERCISE 5.11

In a web browser, find the Google Colab Notebook of the previous website. Make a
copy of the notebook in your own Google Colab account. Run the code and comment
on the results.

The following shows another example of federated learning by using Baidu’s
PaddlePaddle. You can also find the GitHub site for the full source code there.

https://github.com/PaddlePaddle/PaddleFL

5.6  Web-Based Image Classification

Web-based applications, or web apps, have gained popularity in recent years.
Different from mobile apps, which you have to download and install on your
mobile phone, web apps are accessed via the Internet browser, so you don’t
have to download and install them. Mobile apps are run on mobile phones,
while web apps are run on a remote server. Different types of mobile phones,
such as Android and iPhones, require different mobile apps, while web apps
adapt to whichever device you’re viewing them on.

Figure 5.13: The federated learning architecture

https://www.tensorflow.org/federated/tutorials/federated_learning_for_image_classification
https://www.tensorflow.org/federated/tutorials/federated_learning_for_image_classification
https://github.com/PaddlePaddle/PaddleFL

234	 Part III ■ AI Applications

There are several ways to develop web-based apps with Python; see
Chapter 12 for more details. The quickest way is to use the Streamlit library (https://
docs.streamlit.io/en/stable/).

To use the Streamlit library, you need to install it first. Simply type the
following command in a terminal window:

pip install --upgrade protobuf
pip install streamlit

5.6.1  Streamlit Image File Classification
Example 5.9 shows how to create a web app for image classification by using
the Streamlit library. The following are the key steps.

Load the Streamlit library.

import streamlit as st

Define a function to use VGG16 for image classification and run the function
in the Streamlit cache.

@st.cache(allow_output_mutation=True)
def vgg16_predict(cam_frame, image_size):
... ...

Create a VGG16 model and specify the image size.

model = vgg16.VGG16(weights='imagenet')
image_size = 224

Create an empty Streamlit web app that defaults to a main page and a left
sidebar, and specify the title and sidebar.

frameST = st.empty()

Specify the title of the main page and the Markdown of the left sidebar. Mark-
down is a lightweight markup language designed to make formatting plaintext
easier for a web page. Markdown claims to be one of the most popular markup
languages in the world (https://www.markdownguide.org/).

st.title("Image Classification")
st.sidebar.markdown("# Image Classification")

Allow users to upload a file for classification. If the file does not exist, an
error message is displayed; if it is successful, image classification is performed.

file_image = st.sidebar.file_uploader("Upload your Images", type=['jpeg',
'jpg','png','gif'])
if file_image is None:

https://docs.streamlit.io/en/stable/
https://docs.streamlit.io/en/stable/
https://www.markdownguide.org/

	 Chapter 5 ■ Image Classification	 235

 st.write("No image file!")
else:
... ...

Create a Download button that, when clicked, saves the image to a file named
output.jpg.

 if st.button("Download"):

Example 5.9 shows the complete code.

EXAMPLE 5.9:  THE STREAMLITIMAGECLASSIFICATION0.PY PROGRAM

#Example 5.9
#pip install --upgrade protobuf
#pip install streamlit

import streamlit as st
import cv2
import numpy as np
import pandas as pd
from PIL import Image
from tensorflow.keras.preprocessing.image import load_img
from tensorflow.keras.preprocessing.image import img_to_array
from keras.applications.imagenet_utils import decode_predictions
import time
import matplotlib.pyplot as plt
import random
import os

import the models for further classification experiments
from tensorflow.keras.applications import vgg16

@st.cache(allow_output_mutation=True)
def vgg16_predict(cam_frame, image_size):
 frame= cv2.resize(cam_frame, (image_size, image_size))
 numpy_image = img_to_array(frame)
 image_batch = np.expand_dims(numpy_image, axis=0)
 processed_image = vgg16.preprocess_input(image_batch.copy())

 # get the predicted probabilities for each class
 predictions = model.predict(processed_image)
 label_vgg = decode_predictions(predictions)
 cv2.putText(cam_frame, "VGG16: {}, {:.2f}".format(label_vgg[0][0]
[1], label_vgg[0][0][2]) , (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7,
(255, 0, 0), 1)
 return cam_frame

model = vgg16.VGG16(weights='imagenet')
image_size = 224

236	 Part III ■ AI Applications

frameST = st.empty()
st.title("Image Classification")
st.sidebar.markdown("# Image Classification")

file_image = st.sidebar.file_uploader("Upload your Images", type=['jp
eg','jpg','png','gif'])
if file_image is None:
 st.write("No image file!")
else:
 img = Image.open(file_image)
 img = np.asarray(img)[:,:,::-1].copy()
 #imcv = cv2.cvtColor(np.asarray(im), cv2.COLOR_RGB2BGR)
 st.write("Image")

 img = vgg16_predict(img, image_size)
 img = img[:,:,::-1]
 st.image(img, use_column_width=True)
 if st.button("Download"):
 im_pil = Image.fromarray(img)
 im_pil.save('output.jpg')
 st.write('Download completed')

To run it, simply type the following command in a terminal window:

streamlit run StreamlitImageClassification0.py

Figure 5.14 shows the output results. As you can see, the apple is not only
correctly identified but also identified as a Granny Smith. The image file apple
.jpeg and other image files used in this chapter are royalty-free images from
the Pexels.com website (https://www.pexels.com/search/apple/). When you
run the program for the first time, it may take a while, as it needs to download
the VGG16 model first.

Example 5.9a shows an improved version of the previous image classification
web app, allowing you to select different models to classify images. The follow-
ing are the main differences.

It loads four different deep learning models: VGG16, ResNet50, MobileNet,
and Inception V3.

from tensorflow.keras.applications import (
 vgg16,
 resnet50,
 mobilenet,
 inception_v3
)

Create four functions to use the four models for image classification and run
the functions in the Streamlit cache.

http://pexels.com
https://www.pexels.com/search/apple/

	 Chapter 5 ■ Image Classification	 237

@st.cache(allow_output_mutation=True)
def vgg16_predict(cam_frame, image_size):
... ...

@st.cache(allow_output_mutation=True)
def resnet50_predict(cam_frame, image_size):
... ...

@st.cache(allow_output_mutation=True)
def mobilenet_predict(cam_frame, image_size):
... ...
@st.cache(allow_output_mutation=True)
def inception_v3_predict(cam_frame, image_size):
... ...

Create an empty web app and specify the main page title and sidebar Mark-
down.

frameST = st.empty()
st.title("Image Classification")
st.sidebar.markdown("# Image Classification")

Create a drop-down list to allow users to select and create different models
and specify image sizes. It uses K.clear_session() to clear the session for each
model so that each model runs from a clean start. It also uses the mode variable
to distinguish between models.

Figure 5.14: The Streamlit Image Classification web page using VGG16 to classify an apple
image

238	 Part III ■ AI Applications

option = st.sidebar.selectbox(
 'Select a Deep Learning Model:',
 ["VGG16","RESNET50","MOBILENET","INCEPTION_V3"], index=0)
st.sidebar.write('You selected:', option)
if option == "VGG16":
 K.clear_session()
 model = vgg16.VGG16(weights='imagenet')
 image_size = 224
 mode = 1
elif option == "RESNET50":
 K.clear_session()
 model = resnet50.ResNet50(weights='imagenet')
 image_size = 224
 mode = 2
elif option == "MOBILENET":
... ...
elif option == "INCEPTION_V3":
... ...

Once an image file is uploaded, various functions are called to classify the
image, depending on the value of the mode variable.

 if mode == 1:
 img = vgg16_predict(img, image_size)
 elif mode == 2:
 img = resnet50_predict(img, image_size)
 elif mode == 3:
 img = mobilenet_predict(img, image_size)
 elif mode == 4:
 img = inception_v3_predict(img, image_size)

Example 5.9a shows the complete code of the program.

EXAMPLE 5.9A:  THE STREAMLITIMAGECLASSIFICATION.PY PROGRAM

#Example 5.9a
#https://github.com/streamlit/streamlit/issues/511
#pip install --upgrade protobuf
#pip install streamlit

import streamlit as st
import cv2
import numpy as np
import pandas as pd
from PIL import Image
from tensorflow.keras.preprocessing.image import load_img
from tensorflow.keras.preprocessing.image import img_to_array
from keras.applications.imagenet_utils import decode_predictions
import time
import matplotlib.pyplot as plt

	 Chapter 5 ■ Image Classification	 239

import random
import os
imports for reproducibility
from keras import backend as K

import the models for further classification experiments
from tensorflow.keras.applications import (
 vgg16,
 resnet50,
 mobilenet,
 inception_v3
)

@st.cache(allow_output_mutation=True)
def vgg16_predict(cam_frame, image_size):
 frame= cv2.resize(cam_frame, (image_size, image_size))
 numpy_image = img_to_array(frame)
 image_batch = np.expand_dims(numpy_image, axis=0)
 # prepare the image for the VGG16 model
 processed_image = vgg16.preprocess_input(image_batch.copy())
 predictions = model.predict(processed_image)
 label_vgg = decode_predictions(predictions)
 cv2.putText(cam_frame, "VGG16: {}, {:.2f}".format(label_vgg[0][0]
[1], label_vgg[0][0][2]) , (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7,
(255, 0, 0), 1)
 return cam_frame

@st.cache(allow_output_mutation=True)
def resnet50_predict(cam_frame, image_size):
 frame= cv2.resize(cam_frame, (image_size, image_size))
 numpy_image = img_to_array(frame)
 image_batch = np.expand_dims(numpy_image, axis=0)
 # prepare the image for the ResNet50 model
 processed_image = resnet50.preprocess_input(image_batch.copy())
 predictions = model.predict(processed_image)
 label_resnet = decode_predictions(predictions, top=3)
 cv2.putText(cam_frame, "ResNet50: {}, {:.2f}".format(label_
resnet[0][0][1], label_resnet[0][0][2]) , (10, 30), cv2.FONT_HERSHEY_
SIMPLEX, 0.7, (255, 0, 0), 1)
 return cam_frame

@st.cache(allow_output_mutation=True)
def mobilenet_predict(cam_frame, image_size):
 frame= cv2.resize(cam_frame, (image_size, image_size))
 numpy_image = img_to_array(frame)
 image_batch = np.expand_dims(numpy_image, axis=0)
 # prepare the image for the MobileNet model
 processed_image = mobilenet.preprocess_input(image_batch.copy())
 predictions = model.predict(processed_image)
 label_mobilenet = decode_predictions(predictions)

240	 Part III ■ AI Applications

 cv2.putText(cam_frame, "MobileNet: {}, {:.2f}".format(label_
mobilenet[0][0][1], label_mobilenet[0][0][2]) , (10, 30), cv2.FONT_
HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 1)
 return cam_frame
@st.cache(allow_output_mutation=True)
def inception_v3_predict(cam_frame, image_size):
 frame= cv2.resize(cam_frame, (image_size, image_size))
 numpy_image = img_to_array(frame)
 image_batch = np.expand_dims(numpy_image, axis=0)
 # prepare the image for the Inception model
 processed_image = inception_v3.preprocess_input(image_batch
.copy())
 predictions = model.predict(processed_image)
 label_inception = decode_predictions(predictions)
 cv2.putText(cam_frame, "Inception: {}, {:.2f}".format(label_
inception[0][0][1], label_inception[0][0][2]) , (10, 30), cv2.FONT_
HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 1)
 return cam_frame

mode = 1
#model = vgg16.VGG16(weights='imagenet')
#image_size = 224

frameST = st.empty()
st.title("Image Classification")
st.sidebar.markdown("# Image Classification")
option = st.sidebar.selectbox(
 'Select a deep learning Model:',
 ["VGG16","RESNET50","MOBILENET","INCEPTION_V3"], index=0)
st.sidebar.write('You selected:', option)
if option == "VGG16":
 K.clear_session()
 model = vgg16.VGG16(weights='imagenet')
 image_size = 224
 mode = 1
elif option == "RESNET50":
 K.clear_session()
 model = resnet50.ResNet50(weights='imagenet')
 image_size = 224
 mode = 2
elif option == "MOBILENET":
 K.clear_session()
 model = mobilenet.MobileNet(weights='imagenet')
 image_size = 224
 mode = 3
elif option == "INCEPTION_V3":
 K.clear_session()
 model = inception_v3.InceptionV3(weights='imagenet')

	 Chapter 5 ■ Image Classification	 241

 image_size = 299
 mode = 4

file_image = st.sidebar.file_uploader("Upload your Images",
type=['jpeg','jpg','png','gif'])

if file_image is None:
 st.write("No image file!")

else:
 img = Image.open(file_image)
 img = np.asarray(img)[:,:,::-1].copy()
 #imcv = cv2.cvtColor(np.asarray(im), cv2.COLOR_RGB2BGR)
 st.write("Image")

 if mode == 1:
 img = vgg16_predict(img, image_size)
 elif mode == 2:
 img = resnet50_predict(img, image_size)
 elif mode == 3:
 img = mobilenet_predict(img, image_size)
 elif mode == 4:
 img = inception_v3_predict(img, image_size)

 img = img[:,:,::-1]
 st.image(img, use_column_width=True)
 if st.button("Download"):
 im_pil = Image.fromarray(img)
 im_pil.save('output.jpg')
 st.write('Download completed')

Again, just type the following command in a terminal window to run it:

streamlit run StreamlitImageClassification.py

Figure 5.15 shows the output results using MobileNet. As you can see, it
correctly identifies the orange. When you run the program using the differ-
ent models for the first time, it may take a while, as it needs to download the
model first.

EXERCISE 5.12

Modify the previous Python program, and add another deep learning model, such as
VGG19. Run the code and comment on the results.

242	 Part III ■ AI Applications

5.6.2  Streamlit Webcam Image Classification
One of the coolest things you can do with the Streamlit library is to access the
webcam from the web app. Example 5.10 shows how to create a web app to
perform image classification on live images from a webcam. The following are
the key steps.

Create a function for a webcam and run the function in the Streamlit cache
for optimal performance.

@st.cache(allow_output_mutation=True)
def get_cap():
 return cv2.VideoCapture(0)

Create an empty web app and create two sliders in the left sidebar to control
the contrast and brightness of the webcam image.

frameST = st.empty()
contrast=st.sidebar.slider('Contrast')/50.0
brightness=st.sidebar.slider('Brightness')

Use a while loop to read the webcam image.

while True:
 ret, frame = cap.read()

Figure 5.15: The image classification results by using MobileNet on an orange image

	 Chapter 5 ■ Image Classification	 243

Convert the image to the HSV color space, adjust the contrast and brightness,
and convert the image back to the RGB color space.

 frame = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
 frame[:,:,2] = np.clip(contrast * frame[:,:,2] + brightness, 0, 255)
 frame = cv2.cvtColor(frame, cv2.COLOR_HSV2BGR)

Example 5.10 shows the complete code of the program.

EXAMPLE 5.10:  THE STREAMLITWENCAM.PY PROGRAM

#Example 5.10
#pip install --upgrade protobuf
#pip install streamlit

import streamlit as st
import cv2
import numpy as np

@st.cache(allow_output_mutation=True)
def get_cap():
 return cv2.VideoCapture(0)

cap = get_cap()

frameST = st.empty()
contrast=st.sidebar.slider('Contrast')/50.0
brightness=st.sidebar.slider('Brightness')

while True:
 ret, frame = cap.read()
 frame = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
 frame[:,:,2] = np.clip(contrast * frame[:,:,2] + brightness, 0,
255)
 frame = cv2.cvtColor(frame, cv2.COLOR_HSV2BGR)
 # Stop the program if reached end of video
 if not ret:
 print("Done processing !!!")
 cv2.waitKey(3000)
 # Release device
 cap.release()
 break

 frameST.image(frame, channels="BGR")

Figure 5.16 shows the output of the program from Example 5.10, which has
live images from a webcam and two sliders for contrast and brightness control.

244	 Part III ■ AI Applications

EXERCISE 5.13

Modify the previous Python program to read images from a video file, instead of
reading images from the webcam. Hint: modify cv2.VideoCapture(0) and replace
0 with the name of the video file.

Example 5.10a shows how to create a web app that performs image classifi
cation for live images from a webcam.

EXAMPLE 5.10A:  THE STREAMLITWEBCAMIMAGECLASSIFICATION.PY
PROGRAM

#Example 5.10a
#pip install --upgrade protobuf
#pip install streamlit

import streamlit as st
import cv2
import numpy as np
import pandas as pd

from tensorflow.keras.preprocessing.image import load_img
from tensorflow.keras.preprocessing.image import img_to_array
from keras.applications.imagenet_utils import decode_predictions
import time

Figure 5.16: The output of the Example 5.10 program, which shows live images from a webcam
and two sliders for contrast and brightness control

	 Chapter 5 ■ Image Classification	 245

import the models for further classification experiments
from tensorflow.keras.applications import (
 vgg16,
 resnet50,
 mobilenet,
 inception_v3
)

import matplotlib.pyplot as plt

imports for reproducibility
import tensorflow as tf
import random
import os
from keras import backend as K

@st.cache(allow_output_mutation=True)
def get_cap():
 return cv2.VideoCapture(0)

@st.cache(allow_output_mutation=True)
def vgg16_predict(cam_frame, image_size):
 frame= cv2.resize(cam_frame, (image_size, image_size))
 numpy_image = img_to_array(frame)
 image_batch = np.expand_dims(numpy_image, axis=0)
 processed_image = vgg16.preprocess_input(image_batch.copy())
 predictions = model.predict(processed_image)
 label_vgg = decode_predictions(predictions)
 cv2.putText(cam_frame, "VGG16: {}, {:.2f}".format(label_vgg[0][0]
[1], label_vgg[0][0][2]) , (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7,
(255, 0, 0), 1)
 return cam_frame

@st.cache(allow_output_mutation=True)
def resnet50_predict(cam_frame, image_size):
 frame= cv2.resize(cam_frame, (image_size, image_size))
 numpy_image = img_to_array(frame)
 image_batch = np.expand_dims(numpy_image, axis=0)
 processed_image = resnet50.preprocess_input(image_batch.copy())
 predictions = model.predict(processed_image)
 label_resnet = decode_predictions(predictions, top=3)
 cv2.putText(cam_frame, "ResNet50: {}, {:.2f}".format(label_
resnet[0][0][1], label_resnet[0][0][2]) , (10, 30), cv2.FONT_HERSHEY_
SIMPLEX, 0.7, (255, 0, 0), 1)
 return cam_frame

@st.cache(allow_output_mutation=True)
def mobilenet_predict(cam_frame, image_size):
 frame= cv2.resize(cam_frame, (image_size, image_size))
 numpy_image = img_to_array(frame)

246	 Part III ■ AI Applications

 image_batch = np.expand_dims(numpy_image, axis=0)
 processed_image = mobilenet.preprocess_input(image_batch.copy())
 predictions = model.predict(processed_image)
 label_mobilenet = decode_predictions(predictions)
 cv2.putText(cam_frame, "MobileNet: {}, {:.2f}".format(label_
mobilenet[0][0][1], label_mobilenet[0][0][2]) , (10, 30), cv2.FONT_
HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 1)
 return cam_frame
@st.cache(allow_output_mutation=True)
def inception_v3_predict(cam_frame, image_size):
 frame= cv2.resize(cam_frame, (image_size, image_size))
 numpy_image = img_to_array(frame)
 image_batch = np.expand_dims(numpy_image, axis=0)
 processed_image = inception_v3.preprocess_input(image_batch
.copy())
 predictions = model.predict(processed_image)
 label_inception = decode_predictions(predictions)
 cv2.putText(cam_frame, "Inception: {}, {:.2f}".format(label_
inception[0][0][1], label_inception[0][0][2]) , (10, 30), cv2.FONT_
HERSHEY_SIMPLEX, 0.7, (255, 0, 0), 1)
 return cam_frame

cap = get_cap()

mode = 1
frameST = st.empty()
st.title("Image Classification")
st.sidebar.markdown("# Image Classification")
option = st.sidebar.selectbox(
 'Select a Deep Learning Model:',
 ["VGG16","RESNET50","MOBILENET","INCEPTION_V3"], index=0)
st.sidebar.write('You selected:', option)
if option == "VGG16":
 K.clear_session()
 model = vgg16.VGG16(weights='imagenet')
 image_size = 224
 mode = 1
elif option == "RESNET50":
 K.clear_session()
 model = resnet50.ResNet50(weights='imagenet')
 image_size = 224
 mode = 2
elif option == "MOBILENET":
 K.clear_session()
 model = mobilenet.MobileNet(weights='imagenet')
 image_size = 224
 mode = 3
elif option == "INCEPTION_V3":
 K.clear_session()
 model = inception_v3.InceptionV3(weights='imagenet')

	 Chapter 5 ■ Image Classification	 247

 image_size = 299
 mode = 4

while True:
 ret, frame = cap.read()
 if mode == 1:
 frame = vgg16_predict(frame, image_size)
 elif mode == 2:
 frame = resnet50_predict(frame, image_size)
 elif mode == 3:
 frame = mobilenet_predict(frame, image_size)
 elif mode == 4:
 frame = inception_v3_predict(frame, image_size)

 # Stop the program if reached end of video
 if not ret:
 cv2.waitKey(3000)
 # Release device
 cap.release()
 break

 frameST.image(frame, channels="BGR")

To run it, simply type the following command in a terminal window:

streamlit run StreamlitWebcamImageClassification.py

Figure 5.17 shows the output results.

Figure 5.17: Image classification through a webcam by using the VGG16 model

248	 Part III ■ AI Applications

EXERCISE 5.14

Modify the previous Python program, and add another deep learning model, such as
VGG19. Run the code and comment on the results.

5.6.3  Streamlit from GitHub
GitHub (https://github.com/) is an online platform that is popular among
software developers. With GitHub, you can easily create, share, and collabo-
rate on projects. You can also run your Streamlit program directly from your
GitHub site.

To create your own project on GitHub, simply log in to GitHub, and follow
the instructions to create your project. The project on GitHub is also called a
repository. Figure 5.18 shows my GitHub site for the streamlit-file-image-
classification repository.

After creating your GitHub repository, you can run Streamlit directly from
your GitHub site. The following is an example of how to run the code on your
GitHub site:

streamlit run https://raw.githubusercontent.com/PerryXiao2015/streamlit-
file-image-classification/main/StreamlitFileImageClassification.py

Figure 5.18: My GitHub site for the streamlit-file-image-classification
repository
(Source: https://github.com/PerryXiao2015/streamlit-file-image-
classification)

https://github.com/
https://github.com/PerryXiao2015/streamlit-file-image-classification
https://github.com/PerryXiao2015/streamlit-file-image-classification

	 Chapter 5 ■ Image Classification	 249

EXERCISE 5.15

Based on the previous steps, create your own GitHub account, create a new
project named streamlit-file-image-classification, add the file
StreamlitFileImageClassification.py into your repository, and run the
program.

5.6.4  Streamlit Deployment
You can also deploy your GitHub repository through https://share
.streamlit.io.

Just go to the website, log in using your GitHub account, and input the name
of your GitHub directory, in this case, PerryXiao2015/streamlit-file-image-
classification, and input the Python Streamlit file, in this case, Streamlit
FileImageClassification.py. Then click the Deploy button. It will take quite
a while; see Figure 5.19.

After deployment, you will see your project on the website, as shown in
Figure 5.20. Now you can share the web link to your friends so that they can
also run your program online.

EXERCISE 5.16

Based on the previous steps, deploy your GitHub repository through (https://
share.streamlit.io), and comment on the results.

Figure 5.19: Project Deployment through the Streamlit website

https://share.streamlit.io
https://share.streamlit.io
https://share.streamlit.io
https://share.streamlit.io

250	 Part III ■ AI Applications

For more details, examples, and documents, please visit the following:
https://docs.streamlit.io/en/stable/

5.7  Image Processing

In this section we will introduce some commonly used image processing tech-
niques, such as image stitching, template matching, photo inpaint, de-oldify
photos, and black-and-white photo colorization.

5.7.1  Image Stitching
Image stitching allows you to stitch multiple images into a single image.
Example 5.11 shows the Python code for image stitching. This allows you to
specify multiple image files and stitch them together. The two image files London_
left.jpg and London_right.jpg are from the website www.pexels.com/.

EXAMPLE 5.11:  THE IMAGESTITCHING.PY PROGRAM

#Example 5.11 Image Stitching
import numpy as np
import cv2 as cv
import sys

modes = (cv.Stitcher_PANORAMA, cv.Stitcher_SCANS)
names=['London_left.jpg','London_right.jpg']
imgs = []
for img_name in names:
 img = cv.imread(cv.samples.findFile(img_name))
 cv.imshow(img_name,img)

Figure 5.20: My projects on the Streamlit website

https://docs.streamlit.io/en/stable/
http://www.pexels.com/

	 Chapter 5 ■ Image Classification	 251

 if img is None:
 print("can't read image " + img_name)
 sys.exit(-1)
 imgs.append(img)

stitcher = cv.Stitcher.create(modes[0])
status, pano = stitcher.stitch(imgs)

if status != cv.Stitcher_OK:
 print("Can't stitch images, error code = %d" % status)
 sys.exit(-1)

cv.imwrite('result.jpg', pano)
cv.imshow('result', pano)

Figure 5.21 shows the image of the file London_left.jpg. Figure 5.22 shows
the image of the file London_right.jpg. Figure 5.23 shows the final composite
result image.

Figure 5.21: The image London_left.jpg

252	 Part III ■ AI Applications

EXERCISE 5.17

Modify the previous Python program so that it can stitch three images together.
Comment on the results.

Figure 5.22: The image London_right.jpg

Figure 5.23: The final stitched result image

	 Chapter 5 ■ Image Classification	 253

5.7.2  Image Inpainting
Image inpainting is a process to repair and restore the damaged, deteriorated,
or missing parts of the image. Example 5.12 shows the Python code to allow
you to select a region of interest (ROI) in an image and remove it from the
image using image inpainting. The file church.jpeg is again from the website
www.pexels.com/.

EXAMPLE 5.12:  THE IMAGEINPAINTING.PY PROGRAM

#Example 5.12 Photo Inpaint Example
import numpy as np
import cv2

img = cv2.imread('church.jpeg')
rows,cols,channels = img.shape
print(rows, cols)
cv2.imshow('Orignial',img)

height,width,depth = img.shape
mask = np.zeros(shape=img.shape, dtype="uint8")
r = cv2.selectROI(img)
left = int(r[0])
top = int(r[1])
right= int(r[0]+r[2])
bottom= int(r[1]+r[3])

cv2.rectangle(img=mask,
 pt1=(left, top), pt2=(right, bottom),
 color=(255, 255, 255),
 thickness=-1)
Apply the mask and display the result
maskedImg = cv2.bitwise_and(src1=img, src2=mask)
cv2.imshow("Masked", maskedImg)
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
(thresh, mask) = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)
cv2.imshow('Mask',mask)

dst = cv2.inpaint(img,mask,3,cv2.INPAINT_TELEA)
cv2.imshow('Result',dst)
cv2.waitKey(0)
cv2.destroyAllWindows()

Figure 5.24 shows the original image file church.jpeg. Figure 5.25 shows the
ROI selected on the church.jpeg image. Figure 5.26 shows the image inpainting
effect. As you can see, the top part of the church has magically disappeared!

http://www.pexels.com/

254	 Part III ■ AI Applications

Figure 5.24: The original church.jpeg image file

Figure 5.25: The ROI selected on the church.jpeg image

Figure 5.26: The image inpainting effect

	 Chapter 5 ■ Image Classification	 255

EXERCISE 5.18

Run the previous Python program, try different photos, select different ROIs, and
comment on the results.

5.7.3  Image Coloring
Adding colors to old black-and-white photos has become popular recently.
Figure 5.27 shows an impressive GitHub project for old photo coloring with
Python. It uses PySimpleGUI to create a graphical user interface and select old
black-and-white photos to convert them into color ones.

EXERCISE 5.19

Connect to the GitHub website via a web browser, locate the previous project, and run
the program on some old photos.

Figure 5.27: The GitHub site for the PySimpleGUI-Photo-Colorizer repository
(Source: https://github.com/PySimpleGUI/PySimpleGUI-Photo-Colorizer)

https://github.com/PySimpleGUI/PySimpleGUI-Photo-Colorizer

256	 Part III ■ AI Applications

5.7.4  Image Super Resolution
With a deep learning neural network, you can also improve the image resolu-
tion. This process is called image super resolution. This is important if you want
to improve image quality before performing image classification.

Example 5.13 shows the Python code for image super resolution. It has been
modified from https://www.pyimagesearch.com/2020/11/09/opencv-super-
resolution-with-deep-learning/. It reads an image from the webcam and
enlarges the image using the model LapSRN_x8.pb, which enlarges the image
eight times.

EXAMPLE 5.13:  THE IMAGESUPERRESOLUTION.PY PROGRAM

#Example 5.13 Image Super Resolution
#Modified from:
#https://www.pyimagesearch.com/2020/11/09/opencv-super-resolution-
with-deep-learning/
pip install opencv-contrib-python
from imutils.video import VideoStream
import imutils
import time
import cv2
import os

modelfile = 'LapSRN_x8.pb'
modelName = modelfile.split(os.path.sep)[-1].split("_")[0].lower()
modelScale = modelfile.split("_x")[-1]
modelScale = int(modelScale[:modelScale.find(".")])

sr = cv2.dnn_superres.DnnSuperResImpl_create()
sr.readModel(modelfile)
sr.setModel(modelName, modelScale)

vs = VideoStream(src=0).start()
time.sleep(2.0)
while True:
 frame = vs.read()
 frame = imutils.resize(frame, width=100)

 upscaled = sr.upsample(frame)
 bicubic = cv2.resize(frame,
 (upscaled.shape[1], upscaled.shape[0]),
 interpolation=cv2.INTER_CUBIC)

 cv2.imshow("Original", frame)
 cv2.imshow("Bicubic", bicubic)
 cv2.imshow("Super Resolution", upscaled)
 key = cv2.waitKey(1) & 0xFF
 # if the `q` key was pressed, break from the loop

https://www.pyimagesearch.com/2020/11/09/opencv-super-resolution-with-deep-learning/
https://www.pyimagesearch.com/2020/11/09/opencv-super-resolution-with-deep-learning/

	 Chapter 5 ■ Image Classification	 257

 if key == ord("q"):
 break

cv2.destroyAllWindows()
vs.stop()

You can also download the following different models:

■■ EDSR_x4.pb EDSR: Enhanced Deep Residual Networks for Single Image
Super-Resolution (https://github.com/Saafke/EDSR_Tensorflow)

■■ ESPCN_x4.pb ESPCN: Real-Time Single Image and Video Super-
Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
(https://github.com/fannymonori/TF-ESPCN)

■■ FSRCNN_x3.pb FSRCNN: Accelerating the Super-Resolution Convolu
tional Neural Network (https://github.com/Saafke/FSRCNN_Tensor
flow)

■■ LapSRN_x8.pb LapSRN: Fast and Accurate Image Super-Resolution
with Deep Laplacian Pyramid Networks (https://github.com/fanny-
monori/TF-LAPSRN)

EXERCISE 5.20

Modify the previous Python program, use different deep learning models, run the
program, and comment on the results.

5.7.5  Gabor Filter
The Gabor filter is a linear filter that is commonly used for image texture anal-
ysis. It is named after Dennis Gabor, a Hungarian-British electrical engineer
and physicist. The Gabor filter uses the concept of frequency (or wavelength)
and orientation of a wavelet (small wave) to analyze image texture. Frequency
and orientation in Gabor filters are similar to those of the human visual system.
The Gabor filter has been found to be particularly useful for texture representa-
tion and discrimination. Visit the following links for more details on the Gabor
filter and wavelet:

https://en.wikipedia.org/wiki/Gabor_filter

https://en.wikipedia.org/wiki/Gabor_transform

https://en.wikipedia.org/wiki/Wavelet

https://github.com/Saafke/EDSR_Tensorflow
https://github.com/fannymonori/TF-ESPCN
https://github.com/Saafke/FSRCNN_Tensorflow
https://github.com/Saafke/FSRCNN_Tensorflow
https://github.com/fannymonori/TF-LAPSRN
https://github.com/fannymonori/TF-LAPSRN
https://en.wikipedia.org/wiki/Gabor_filter
https://en.wikipedia.org/wiki/Gabor_transform
https://en.wikipedia.org/wiki/Wavelet

258	 Part III ■ AI Applications

Example 5.14 shows a Python code displaying Gabor filters with four differ-
ent wavelengths (or frequencies) and four different orientations.

Wavelengths: 4, 8, 12, 16

Orientation: 0, π/4, π/2, 3π/4

EXAMPLE 5.14:  THE GABORFILTER.PY PROGRAM

#Example 5.14
import math
import cv2
import numpy as np
import matplotlib.pyplot as plt

cv2.getGaborKernel(ksize, sigma, theta, lambda, gamma, psi, ktype)
ksize - size of gabor filter (n, n)
sigma - standard deviation of the gaussian function
theta - orientation of the normal to the parallel stripes
lambda - wavelength of the sunusoidal factor
gamma - spatial aspect ratio
psi - phase offset
ktype - type and range of values that each pixel in the gabor
kernel can hold

No = 4
Nw = 4
N = No*Nw
n = 0
plt.figure(figsize=(20,20))
for j in range(Nw): #wavelength
 for i in range(No): #Orientation
 kernel = cv2.getGaborKernel((21, 21), 5, np.pi/4*i, 4*(j+1),
1, 0, cv2.CV_32F)
 kernel /= math.sqrt((kernel * kernel).sum())

 n = n + 1
 plt.subplot(Nw,No,n)
 plt.imshow(kernel, cmap='rainbow')
plt.show()

Figure 5.28 shows the wavelets of the Gabor filters at four different wave-
lengths (rows) and four different orientations (columns).

	 Chapter 5 ■ Image Classification	 259

EXERCISE 5.21

Modify the previous Python program, use six different wavelengths (4, 8, 12, 16, 20, 24)
and 6 different orientations (0, π/6, 2π/6, 3π/6, 4π/6, 5π/6), run the program, and com-
ment on the results.

Example 5.15 shows a Python code for applying Gabor filters to an image.
The Gabor filter has four different wavelengths and four different orientations.
The file pineapple.jpeg is again from the website www.pexels.com/.

EXAMPLE 5.15:  THE GABORFILTER2.PY PROGRAM

Example 5.15
import math
import cv2
import numpy as np
import matplotlib.pyplot as plt

image = cv2.imread('pineapple.jpeg', 0).astype(np.float32) / 255
cv2.imshow('Image', image)

No = 4

Figure 5.28: The wavelets of the Gabor filters at four different wavelengths (rows) and four
different orientations (columns)

http://www.pexels.com/

260	 Part III ■ AI Applications

Nw = 4
N = No*Nw
n = 0

plt.figure(figsize=(20,20))
for j in range(Nw): #wavelength
 for i in range(No): #Orientation
 kernel = cv2.getGaborKernel((21, 21), 5, np.pi/5*i, 4*(j+1),
1, 0, cv2.CV_32F)
 kernel /= math.sqrt((kernel * kernel).sum())
 filtered = cv2.filter2D(image, -1, kernel)
 n = n + 1
 plt.subplot(Nw,No,n)
 plt.imshow(filtered, cmap='rainbow')
 plt.axis('off')
plt.show()

Figure 5.29 shows the output results of the previous program.

You can use the Gabor filter to create artistic images with what is called the
Fractalius effect. Example 5.16 shows the Python code for applying Gabor
filters to a color image to generate the Fractalius effect. The Gabor filter has
a fixed wavelength and four different orientations (0, π/4, π/2, 3π/4). It
selects the maximum values of all filters at each pixel and generates a filtered
image. The files bird2.jpeg and pineapple.jpeg are again from the website
www.pexels.com/.

EXAMPLE 5.16:  THE GABORFILTER3.PY PROGRAM

Example 5.16
import math
import cv2

Figure 5.29: The original grayscale image (top) and the corresponding filtered images (bottom)
with Gabor filters at four different wavelengths (rows) and four different orientations (columns)

http://www.pexels.com/

	 Chapter 5 ■ Image Classification	 261

import numpy as np
import matplotlib.pyplot as plt

#image = cv2.imread('bird2.jpg').astype(np.float32) / 255
image = cv2.imread('pineapple.jpeg').astype(np.float32) / 255
image = cv2.cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
No = 4
j = 1
size = image.shape #h, w, c = im.shape
filtered = np.zeros(size, np.int8)

for i in range(No): #Orientation
 kernel = cv2.getGaborKernel((21, 21), 4, np.pi/4*i, 4*(j+1), 1,
0, cv2.CV_32F)
 kernel /= math.sqrt((kernel * kernel).sum())
 fimg = cv2.filter2D(image, -1, kernel)
 filtered = np.maximum(filtered, fimg)
plt.figure()
plt.subplot(1,2,1)
plt.imshow(image)
plt.axis('off')
plt.title('Original Image')
plt.subplot(1,2,2)
plt.imshow(filtered)
plt.axis('off')
plt.title('Gabor Filtered Image')
plt.show()

Figure 5.30 and Figure 5.31 show the original color images and the correspond
ing Gabor filtered images with the Fractalius effect.

Figure 5.30: The original color image of the pineapple.jpeg file and the corresponding
Gabor filtered image with the Fractalius effect

262	 Part III ■ AI Applications

EXERCISE 5.22

Modify the previous Python program, use six different orientations (0, π/6, 2π/6, 3π/6,
4π/6, 5π/6), run the program, and comment on the results.

5.8  Summary

This chapter covered image classifications, one of the most researched topics, in
artificial intelligence. You can perform image classifications using pre-trained
deep learning neural network models or using custom trained models, this is
also called transfer learning.

With pre-trained models, such as AlexNet, GoogLeNet, VGG, ResNet,
MobileNet, EfficientNet, and so on, you can classify images with predefined
classes. For example, when you train the deep neural networks on ImageNet,
you can recognize 1,000 types of daily objects.

With transfer learning, you can train the models with your own image data to
recognize new image classes. Transfer learning can be used in many areas, such
as skin cancer classification, retinopathy classification, chest X-ray classification,
MRI classification, and so on.

Federated learning is a new technique for model training. It enables mobile
devices to train together and to learn collaboratively from a shared model.

Figure 5.31: The original color image of the bird2.jpeg file and the corresponding Gabor
filtered image with the Fractalius effect

	 Chapter 5 ■ Image Classification	 263

With the Streamlit library, you can easily build web-based image classifi
cation applications.

In image processing, image stitching allows you to merge multiple images
into a single image. With image template matching, you can search the same
regions of interest in different images. Image inpainting allows you to fix the
damaged, deteriorated, or missing parts of the image. Image coloring allows
you to add colors to old black-and-white photos. Image super resolution allows
you to improve the image resolutions. Gabor filters use frequency and orienta-
tion to analyze the image texture.

5.9  Chapter Review Questions

Q5.1.	 What is image classification?

Q5.2.	� What are the differences between image classification, object detec-
tion, and image segmentation?

Q5.3.	 What is transfer learning?

Q5.4.	 What are medical imaging technologies?

Q5.5.	� Use a suitable table to compare the characteristic features of X-ray,
MRI, and CT imaging.

Q5.6.	 What is federated learning?

Q5.7.	 What is the Streamlit library?

Q5.8.	� What is meant by image stitching, template matching, region of
interest, and photo inpainting in the context of image processing?

Q5.9.	 What is the PySimpleGUI library?

Q5.10.	 What is the image super resolution?

Q5.11.	� What is a Gabor filter? What are the effects of different wavelengths
(or frequencies) and different orientations on Gabor wavelets?

Q5.12.	 What is the Fractalius effect?

C H A P T E R

265

6

C H A P T E R O U T L I N E

6.1.	 Introduction
6.2.	 Face Detection and Face Landmarks
6.3.	 Face Recognition
6.4.	 Age, Gender, and Emotion Detection
6.5.	 Face Swap
6.6.	 Face Detection Web Apps
6.7.	 How to Defeat Face Recognition
6.8.	 Summary
6.9.	 Chapter Review Questions

Face Detection and Face
Recognition

“Why are there so many shocking results in AI? Because AI is the new electricity.”

—Andrew Ng (American computer scientist)

6.1  Introduction

Face detection and face recognition are probably the most controversial AI tech-
nologies and yet are still widely adopted in many areas. With face detection,
smart phones and many digital cameras can identify faces while photos and
videos are being taken. With face recognition, people can unlock their phones,
find and track missing people or criminals, and provide access control in airports
and stations. Many of the big companies, such as Facebook, Google, Amazon,

266	 Part III ■ AI Applications

Microsoft, IBM, and so on, have worked on their own face recognition technol-
ogies. Face recognition has outperformed humans with an accuracy of close to
100 percent in many cases. The main controversies around face recognition are
ethical and privacy issues, which will be the research focus for coming years.

Face recognition can be dated back to the 1960s, when Woody Bledsoe, Helen
Chan Wolf, and Charles Bisson worked on using the computer to recognize
human faces in photographs. In their project, coordinates of the facial features
in a photograph had to be established first, and then 20 distances of key feature
points were calculated. In 2001, Kaiqi Cen published a paper titled “Study of
Viola-Jones Real Time Face Detector,” which was the first scientific study relating
to the use of algorithms in detecting faces (https://web.stanford.edu/class/
cs231a/prev_projects_2016/cs231a_final_report.pdf).

Many people get confused about the difference between face detection and
face recognition. Face detection simply means to detect faces in an image, while
face recognition means to identify a person by their face. You will need to detect
the faces first and then perform the recognition. A typical face recognition par-
adigm can include these four steps:

1.	 Face detection: Detect faces in an image.

2.	 Face alignment: Align the face (size, orientation) with the database faces.

3.	 Face feature extraction: Analyze the face and extract distinguishable
landmarks, also called nodal points, from each face. Each face can have up
to 80 nodal points, such as eyes, nose, cheeks, and lips. Other features
include the distance between your eyes or the shape of your
cheekbones.

4.	 Face matching: Match the face against a database of known faces accord-
ing to the nodal point values and return the best match(es).

In this chapter, we will introduce how to detect faces in an image, either from
an image file or from a webcam, and then how to recognize faces.

6.2  Face Detection and Face Landmarks

The most popular method to detect faces in real time is to use the Haar cas-
cade classifier, an effective object detection method proposed by Paul Viola and
Michael Jones in 2001. In this approach, a cascade function is trained from a lot
of positive and negative images and then used to detect faces in other images.

Example 6.1 shows a simple face detection program by using OpenCV. It loads
a face image from a file called face0.jpeg (https://www.pexels.com/search/
face/). Please note that OpenCV reads the image file as BGR (blue, green, red)
format, not the commonly used RGB (red, green, blue) format, which can cause
problems when you are using different image processing libraries.

https://web.stanford.edu/class/cs231a/prev_projects_2016/cs231a_final_report.pdf
https://web.stanford.edu/class/cs231a/prev_projects_2016/cs231a_final_report.pdf
https://www.pexels.com/search/face/
https://www.pexels.com/search/face/

	 Chapter 6 ■ Face Detection and Face Recognition	 267

You will also need to download the Haar cascade XML file from https://
github.com/Itseez/opencv/tree/master/data/haarcascades.

EXAMPLE 6.1  THE FACE.PY PROGRAM

#Example 6.1 OpenCV face detection
import cv2
img = cv2.imread('face0.jpg')
cascade_classifier = cv2.CascadeClassifier('haarcascade_frontalface_
default.xml')
gray =cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces= cascade_classifier.detectMultiScale(gray, minNeighbors=5)

for (x,y,w,h) in faces:
 cv2.rectangle(img,(x,y),(x+w,y+h),(255,255,0),2)
 cv2.putText(img,'face', (x + 10, y + 10), cv2.FONT_HERSHEY_
SIMPLEX, 1, (255,0,255), 2)

cv2.imshow('face', img)
cv2.waitKey(0)

Figure 6.1 shows the output of the program, which includes the image of the
face0.jpeg file and the face detected in the image.

Figure 6.1: The image of the face0.jpeg file and the face detected in the image

https://github.com/Itseez/opencv/tree/master/data/haarcascades
https://github.com/Itseez/opencv/tree/master/data/haarcascades

268	 Part III ■ AI Applications

As you try different photos, you will find that sometimes face detection can
misidentify faces. Unfortunately, for AI, this is not an uncommon problem.
To solve this problem, OpenCV’s face detection function (faceCascade
.detectMultiScale()) allows you to adjust its parameters, such as
scaleFactor, minNeighbors, and minSize, as shown here:

faces = faceCascade.detectMultiScale(
 gray,
 scaleFactor=1.3,
 minNeighbors=5,
 minSize=(30, 30)
)

EXERCISE 6.1

Modify the Example 6.1 Python program. Try different face images and comment on
the accuracy of the face detection. Adjust the scaleFactor, minNeighbors, and
minSize parameters to see how they affect the results.

For more information on OpenCV face detection, see the following:

https://realpython.com/face-recognition-with-python/

https://opencv-python-tutroals.readthedocs.io/en/latest/

py_tutorials/py_objdetect/py_face_detection/py_face_detection.html

Example 6.2 shows a different version of the previous face detection program
that uses OpenCV. It uses a webcam to get the image and perform face detec-
tion on the webcam image.

EXAMPLE 6.2  THE FACEWEBCAM.PY PROGRAM

#Example 6.2 OpenCV Face Detection with Webcam
import cv2

cascade_classifier = cv2.CascadeClassifier('haarcascade_frontalface_
default.xml')
camera = cv2.VideoCapture(0)

while camera.isOpened():
 ok, cam_frame = camera.read()
 if not ok:
 break

 gray_img=cv2.cvtColor(cam_frame, cv2.COLOR_BGR2GRAY)
 faces= cascade_classifier.detectMultiScale(gray_img, minNeighbors=5)

https://realpython.com/face-recognition-with-python/
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_objdetect/py_face_detection/py_face_detection.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_objdetect/py_face_detection/py_face_detection.html

	 Chapter 6 ■ Face Detection and Face Recognition	 269

 for (x,y,w,h) in faces:
 cv2.rectangle(cam_frame,(x,y),(x+w,y+h),(255,255,0),2)
 cv2.putText(cam_frame,'face', (x + 10, y + 10), cv2
.FONT_HERSHEY_SIMPLEX, 1, (255,0,255), 2)

 cv2.imshow('video image', cam_frame)
 key = cv2.waitKey(30)
 if key == 27: # press 'ESC' to quit
 break

camera.release()
cv2.destroyAllWindows()

EXERCISE 6.2

Modify the Example 6.2 Python program so that it reads images from a video file. Hint:
Modify cv2.VideoCapture(0) and replace 0 with the video filename.

Example 6.3 shows a simple face and eye detection program that uses OpenCV.
It loads a face image from a file called face1.jpeg (https://www.pexels.com/
search/face/). The smile detection is based on the haarcascade_eye.xml file.

EXAMPLE 6.3  THE FACEEYE.PY PROGRAM

#Example 6.3 OpenCV Faces and Eyes detection
import cv2
img = cv2.imread('face1.jpeg')
faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default
.xml')
eyeCascade = cv2.CascadeClassifier('haarcascade_eye.xml')

gray =cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(
 gray,
 scaleFactor=1.3,
 minNeighbors=5,
 minSize=(30, 30)
)

for (x,y,w,h) in faces:
 cv2.rectangle(img,(x,y),(x+w,y+h),(255,255,0),2)
 cv2.putText(img,'face', (x + 10, y + 10), cv2.FONT_HERSHEY_
SIMPLEX, 1, (255,0,255), 2)
 face_gray = gray[y:y+h, x:x+w]
 face_color = img[y:y+h, x:x+w]

https://www.pexels.com/search/face/
https://www.pexels.com/search/face/

270	 Part III ■ AI Applications

 eyes = eyeCascade.detectMultiScale(
 face_gray,
 scaleFactor= 1.1,
 minNeighbors=10,
 minSize=(10, 10),
)

 for (ex, ey, ew, eh) in eyes:
 cv2.rectangle(face_color, (ex, ey), (ex + ew, ey + eh),
(0, 255, 0), 2)

cv2.imshow('face', img)
cv2.waitKey(0)

Figure 6.2 shows the output of the program, which includes the image of the
face1.jpeg file and the face and the eyes detected in the image.

EXERCISE 6.3

Modify the Example 6.3 Python program, trying different images and commenting on
the accuracy of the detections.

Figure 6.2: The image of the face1.jpeg file and the face and the eyes detected in the
image

	 Chapter 6 ■ Face Detection and Face Recognition	 271

Example 6.4 shows a simple face, eye, and smile detection program by using
OpenCV. It loads a face image from the file called face2.jpeg (https://www
.pexels.com/search/face/). The smile detection is based on the haarcas-
cade_smile.xml file.

EXAMPLE 6.4  THE FACEEYESMILE.PY PROGRAM

#Example 6.4 OpenCV Face, Eye and Smile detection
import cv2
img = cv2.imread('face2.jpeg')
faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default
.xml')
eyeCascade = cv2.CascadeClassifier('haarcascade_eye.xml')
smileCascade = cv2.CascadeClassifier('haarcascade_smile.xml')

gray =cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(
 gray,
 scaleFactor=1.3,
 minNeighbors=5,
 minSize=(30, 30)
)

for (x,y,w,h) in faces:
 cv2.rectangle(img,(x,y),(x+w,y+h),(255,255,0),2)
 cv2.putText(img,'face', (x + 10, y + 10), cv2.FONT_HERSHEY_
SIMPLEX, 1, (255,0,255), 2)
 face_gray = gray[y:y+h, x:x+w]
 face_color = img[y:y+h, x:x+w]

 eyes = eyeCascade.detectMultiScale(
 face_gray,
 scaleFactor= 1.1,
 minNeighbors=10,
 minSize=(10, 10),
)

 for (ex, ey, ew, eh) in eyes:
 cv2.rectangle(face_color, (ex, ey), (ex + ew, ey + eh),
(0, 255, 0), 2)

 smile = smileCascade.detectMultiScale(
 face_gray,
 scaleFactor= 1.5,
 minNeighbors=5,
 minSize=(10, 10),
)

https://www.pexels.com/search/face/
https://www.pexels.com/search/face/

272	 Part III ■ AI Applications

 for (xx, yy, ww, hh) in smile:
 cv2.rectangle(face_color, (xx, yy), (xx + ww, yy + hh),
(0, 0, 255), 2)

cv2.imshow('face', img)
cv2.waitKey(0)

Figure 6.3 shows the output of the previous program, which shows the image
of the face2.jpeg file and the face, the eyes, and the smile detected in the image.

EXERCISE 6.4

Modify the Example 6.4 Python program, trying different images and commenting on
the accuracy of the detections.

Example 6.5 is the webcam version of the previous face, eye, and smile detec-
tion program that uses OpenCV.

Figure 6.3: The image of the face2.jpeg file and the face, the eyes, and the smile detected
in the image

	 Chapter 6 ■ Face Detection and Face Recognition	 273

EXAMPLE 6.5  THE FACEEYESMILEWEBCAM.PY PROGRAM

#Example 6.5 OpenCV Face, Eye and Smile detection with Webcam
import cv2

faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default
.xml')
eyeCascade = cv2.CascadeClassifier('haarcascade_eye.xml')
smileCascade = cv2.CascadeClassifier('haarcascade_smile.xml')

camera = cv2.VideoCapture(0)

while camera.isOpened():
 ok, frame = camera.read()
 if not ok:
 break
 gray =cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
 faces = faceCascade.detectMultiScale(
 gray,
 scaleFactor=1.3,
 minNeighbors=5,
 minSize=(30, 30)
)

 for (x,y,w,h) in faces:
 cv2.rectangle(frame,(x,y),(x+w,y+h),(255,255,0),2)
 cv2.putText(frame,'face', (x + 10, y + 10), cv2.FONT_HERSHEY_
SIMPLEX, 1, (255,0,255), 2)
 face_gray = gray[y:y+h, x:x+w]
 face_color = frame[y:y+h, x:x+w]

 eyes = eyeCascade.detectMultiScale(
 face_gray,
 scaleFactor= 1.1,
 minNeighbors=10,
 minSize=(10, 10),
)

 for (ex, ey, ew, eh) in eyes:
 cv2.rectangle(face_color, (ex, ey), (ex + ew, ey + eh),
(0, 255, 0), 2)

 smile = smileCascade.detectMultiScale(
 face_gray,
 scaleFactor= 1.6,
 minNeighbors=5,
 minSize=(10, 10),
)

274	 Part III ■ AI Applications

 for (xx, yy, ww, hh) in smile:
 cv2.rectangle(face_color, (xx, yy), (xx + ww, yy + hh),
(0, 0, 255), 2)

 cv2.imshow('face', frame)
 key = cv2.waitKey(30)
 if key == 27: # press 'ESC' to quit
 break

camera.release()
cv2.destroyAllWindows()

EXERCISE 6.5

Modify the previous Python program so that it read images from a video file. Hint:
Modify cv2.VideoCapture(0) and replace 0 with the video filename.

Besides OpenCV, you can use many other libraries for face detection and face
recognition. Among them, the Face_Recognition library (https://github.com/
ageitgey/face_recognition) is probably the simplest and the most accurate
way to perform face detection and face recognition. It is built on the well-known
DLib library (http://dlib.net/). It not only can detect faces, it can also identify
nine landmarks with 72 key points on face.

To use the Face_Recognition library, you need to install it first.

pip install face-recognition

See the following PyPi website for more details:

https://pypi.org/project/face-recognition/

Example 6.6 is a simple example of a face detection program using the Face_
Recognition library. It uses the PIL library’s Image function to read the image, as
the Face_Recognition library needs the image in RGB format. Again, the image
file faces.jpeg is from https://www.pexels.com/search/face/.

EXAMPLE 6.6  THE FACEDETECT.PY PROGRAM

#Example 6.6 Face detection by face_recognition library
from PIL import Image
import face_recognition

image = face_recognition.load_image_file("faces.jpg")
face_locations = face_recognition.face_locations(image)

https://github.com/ageitgey/face_recognition
https://github.com/ageitgey/face_recognition
http://dlib.net/
https://pypi.org/project/face-recognition/
https://www.pexels.com/search/face/

	 Chapter 6 ■ Face Detection and Face Recognition	 275

count = 0
for face_location in face_locations:
 count = count + 1
 top, right, bottom, left = face_location
 print("Face {} Top: {}, Left: {}, Bottom: {}, Right: {}".
format(count, top, left, bottom, right))

 face_image = image[top:bottom, left:right]
 pil_image = Image.fromarray(face_image)
 pil_image.show()

Example 6.6a is the OpenCV version of the previous face detection program
using the Face_Recognition library. As OpenCV reads the image file in BGR
(blue, green, red) format, you need to convert it to RGB format first, before
calling the Face_Recognition library functions.

EXAMPLE 6.6A  THE FACEDETECT2.PY PROGRAM

#Example 6.6a Face detection by face_recognition library
import cv2
import face_recognition

image = cv2.imread("faces.jpg")
cv2.imshow('photo', image)

rgb_frame = image[:, :, ::-1] #Convert to RGB format
face_locations = face_recognition.face_locations(rgb_frame)

count = 0
for face_location in face_locations:
 count = count + 1
 top, right, bottom, left = face_location
 print("Face {} Top: {}, Left: {}, Bottom: {}, Right: {}"
.format(count, top, left, bottom, right))

 face_image = image[top:bottom, left:right]
 title = 'face' + str(count)
 cv2.imshow(title, face_image)

cv2.waitKey(0)
cv2.destroyAllWindows()

Figure 6.4 shows the original image of the faces.jpg file, and Figure 6.5
shows the corresponding faces detected in the image.

276	 Part III ■ AI Applications

EXERCISE 6.6

Modify the previous Python program, trying different images with multiple faces. Then
run the program and comment on the accuracy.

Example 6.7 is an example that detects face landmarks by using the Face_Rec-
ognition library. It uses the OpenCV library to read and display the image from
a file. It can detect nine face landmarks with 72 key points:

■■ chin

■■ left_eyebrow

■■ right_eyebrow

■■ nose_bridge

■■ nose_tip

■■ left_eye

■■ right_eye

■■ top_lip

■■ bottom_lip

EXAMPLE 6.7  THE FACEMARKS.PY PROGRAM

#Example 6.7 Face Landmarks detection by face_recognition library
import cv2
import face_recognition

Figure 6.5: The corresponding faces detected in the image of the faces.jpg file

Figure 6.4: The original image of the faces.jpg file

	 Chapter 6 ■ Face Detection and Face Recognition	 277

image = cv2.imread("face1.jpeg")
cv2.imshow('photo', image)

rgb_frame = image[:, :, ::-1]
face_landmarks_list = face_recognition.face_landmarks(rgb_frame)
count = 0
for face_landmarks in face_landmarks_list:
 for facial_feature in face_landmarks.keys():
 print(facial_feature)
 a = face_landmarks[facial_feature]
 for index, item in enumerate(a):
 if index == len(a) -1:
 break
 cv2.line(image, item, a[index + 1], [0, 255, 0], 2)
 for pt in face_landmarks[facial_feature]:
 image = cv2.circle(image, pt, 2, (0, 0, 255), 2)
 count = count +1
 print(pt)

print(count)
cv2.imshow('Face Landmarks', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

Figure 6.6 shows the output of the previous program, which shows the face
landmark key points detected on the image of the face1.jpeg file.

Figure 6.6: The face landmark key points detected on the image of the face1.jpeg file

278	 Part III ■ AI Applications

EXERCISE 6.7

Modify the previous Python program so that it uses the print() function to print out
the face landmark names and the corresponding coordinate values.

Example 6.8 is the webcam version of the previous face landmarks detection
program using the Face_Recognition library.

EXAMPLE 6.8  THE FACEMARKSWEBCAM.PY PROGRAM

#Example 6.8 Face Landmarks detection by face_recognition library
using Webcam
import cv2
import face_recognition

Get a reference to webcam
video_capture = cv2.VideoCapture(0)

Initialize variables
face_locations = []

while True:
 # Grab a single frame of video
 ret, frame = video_capture.read()
 rgb_frame = frame[:, :, ::-1]
 face_landmarks_list = face_recognition.face_landmarks(rgb_frame)
 for face_landmarks in face_landmarks_list:
 for facial_feature in face_landmarks.keys():
 a = face_landmarks[facial_feature]
 for index, item in enumerate(a):
 if index == len(a) −1:
 break
 cv2.line(frame, item, a[index + 1], [0, 255, 0], 2)
 for pt in face_landmarks[facial_feature]:
 frame = cv2.circle(frame, pt, 2, (0, 0, 255), 2)

 cv2.imshow('Face Landmarks', frame)

 # Hit 'q' on the keyboard to quit!
 if cv2.waitKey(1) & 0xFF == ord('q'):
 break

Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()

	 Chapter 6 ■ Face Detection and Face Recognition	 279

EXERCISE 6.8

Modify the previous Python program so that it uses the cv2.putText() function to
display the face landmark names at the corresponding positions on the webcam live
images.

6.3  Face Recognition

Face recognition is a hot topic and has been increasingly used, from unlocking
a phone such as with iPhone X’s Face ID to granting employees entry to their
offices such as at Baidu. There are several open source libraries for face rec-
ognition. We will be mainly focused on the Face_Recognition library and the
OpenCV library.

6.3.1  Face Recognition with Face_Recognition
Example 6.9 is a face recognition program by using the Face_Recognition library.
It uses a webcam to load the image. It can recognize three different faces. The
three known faces are stored in three files, face0.jpeg, face1.jpeg, and face2
.jpeg. The filenames are used as labels; they are face0, face1, and face2.

EXAMPLE 6.9  THE FACERECWEBCAM.PY PROGRAM

#Example 6.9 Face Recognition by face_recognition library using Webcam
import face_recognition
import cv2
import numpy as np

video_capture = cv2.VideoCapture(0)

face0_image = face_recognition.load_image_file("face0.jpeg")
face1_image = face_recognition.load_image_file("face1.jpeg")
face2_image = face_recognition.load_image_file("face2.jpeg")
face0_encoding = face_recognition.face_encodings(face0_image)[0]
face1_encoding = face_recognition.face_encodings(face1_image)[0]
face2_encoding = face_recognition.face_encodings(face2_image)[0]

Create arrays of known face encodings and their names
known_face_encodings = [
 face0_encoding,
 face1_encoding,
 face2_encoding
]

280	 Part III ■ AI Applications

known_face_names = [
 "Face 0",
 "Face 1",
 "Face 2"
]

while True:
 ret, frame = video_capture.read()
 rgb_frame = frame[:, :, ::−1]

 face_locations = face_recognition.face_locations(rgb_frame)
 face_encodings = face_recognition.face_encodings(rgb_frame,
face_locations)

 for (top, right, bottom, left), face_encoding in zip(face_
locations, face_encodings):
 matches = face_recognition.compare_faces(known_face_
encodings, face_encoding)
 name = "Unknown"
 face_distances = face_recognition.face_distance(known_face_
encodings, face_encoding)
 best_match_index = np.argmin(face_distances)
 if matches[best_match_index]:
 name = known_face_names[best_match_index]
 cv2.rectangle(frame, (left, top), (right, bottom), (0, 0,
255), 2)

 cv2.rectangle(frame, (left, bottom − 35), (right, bottom),
(0, 0, 255), cv2.FILLED)
 font = cv2.FONT_HERSHEY_DUPLEX
 cv2.putText(frame, name, (left + 6, bottom − 6), font, 1.0,
(255, 255, 255), 1)

 # Display the resulting image
 cv2.imshow('Video', frame)

 # Hit 'q' on the keyboard to quit!
 if cv2.waitKey(1) & 0xFF == ord('q'):
 break

Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()

Figure 6.7 shows the output of the previous program. It shows the face rec-
ognized on the webcam image.

	 Chapter 6 ■ Face Detection and Face Recognition	 281

EXERCISE 6.9

Modify the previous Python program so that it has 10 known face files. Run the
program and comment on the accuracy and speed of face recognition on the webcam
live images.

Example 6.9a is another version of the previous face recognition program that
uses the Face_Recognition library. All the known images are saved in a directory
specified by the path variable. It uses the def getFaces(path) function to go
through all the files in the folder, collects all the faces and the labels, and saves
them in the faces and IDs list variables.

EXAMPLE 6.9A  THE FACEREC2.PY PROGRAM

#Example 6.9a Face Recognition by face_recognition library using
Webcam
import face_recognition
import cv2
import numpy as np
import os

path='.'

def getFaces(path):
 imagepaths=[os.path.join(path,f) for f in os.listdir(path)]
 faces=[]

Figure 6.7: The face recognized on the webcam image

282	 Part III ■ AI Applications

 IDs=[]
 count = 0
 for imagepath in imagepaths:
 if (os.path.split(imagepath)[−1].split('.')[1]!='jpeg'):
 continue
 print(imagepath)
 face_image = face_recognition.load_image_file(imagepath)
 face_encoding = face_recognition.face_encodings(face_image)[0]
 faces.append(face_encoding)
 ID=os.path.split(imagepath)[−1].split('.')[0]
 IDs.append(ID)
 count = count + 1
 return IDs,faces

known_face_names, known_face_encodings = getFaces(path)
print(known_face_names)
testpath = "face2.jpeg";

frame = cv2.imread(testpath)
rgb_frame = frame[:, :, ::−1]

face_locations = face_recognition.face_locations(rgb_frame)
face_encodings = face_recognition.face_encodings(rgb_frame, face_locations)

for (top, right, bottom, left), face_encoding in zip(face_locations,
face_encodings):
 matches = face_recognition.compare_faces(known_face_encodings,
face_encoding)
 name = "Unknown"
 face_distances = face_recognition.face_distance(known_face_
encodings, face_encoding)
 best_match_index = np.argmin(face_distances)
 if matches[best_match_index]:
 name = known_face_names[best_match_index]
 cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)

 cv2.rectangle(frame, (left, bottom − 35), (right, bottom), (0, 0,
255), cv2.FILLED)
 font = cv2.FONT_HERSHEY_DUPLEX
 cv2.putText(frame, name, (left + 6, bottom − 6), font, 1.0, (255,
255, 255), 1)

Display the resulting image
cv2.imshow('Video', frame)
cv2.waitKey(0)
cv2.destroyAllWindows()

	 Chapter 6 ■ Face Detection and Face Recognition	 283

The following is the text output, which shows the three known face image
files used and their labels extracted from the names of the images.

.\face0.jpeg

.\face1.jpeg

.\face2.jpeg
['face0', 'face1', 'face2']

Figure 6.8 shows the webcam output of the previous program. It shows the
face recognized on the webcam image.

Example 6.9b is the webcam version of the previous face recognition program.
Again, all the known face images are saved in a directory specified by the path
variable.

EXAMPLE 6.9B  THE FACERECWEBCAM2.PY PROGRAM

#Example 6.9b Face Recognition by face_recognition library using Webcam
import face_recognition
import cv2
import numpy as np
import os

Figure 6.8: The face recognized on the webcam image

284	 Part III ■ AI Applications

path='.'

def getFaces(path):
 imagepaths=[os.path.join(path,f) for f in os.listdir(path)]
 faces=[]
 IDs=[]
 count = 0
 for imagepath in imagepaths:
 if (os.path.split(imagepath)[−1].split('.')[1]!='jpeg'):
 continue
 print(imagepath)
 face_image = face_recognition.load_image_file(imagepath)
 face_encoding = face_recognition.face_encodings(face_image)[0]
 faces.append(face_encoding)
 ID=os.path.split(imagepath)[−1].split('.')[0]
 IDs.append(ID)
 count = count + 1
 return IDs,faces

known_face_names, known_face_encodings = getFaces(path)
print(known_face_names)

video_capture = cv2.VideoCapture(0)
while True:
 ret, frame = video_capture.read()
 rgb_frame = frame[:, :, ::−1]

 face_locations = face_recognition.face_locations(rgb_frame)
 face_encodings = face_recognition.face_encodings(rgb_frame,
face_locations)

 for (top, right, bottom, left), face_encoding in zip(face_
locations, face_encodings):
 matches = face_recognition.compare_faces(known_face_
encodings, face_encoding)
 name = "Unknown"
 face_distances = face_recognition.face_distance(known_face_
encodings, face_encoding)
 best_match_index = np.argmin(face_distances)
 if matches[best_match_index]:
 name = known_face_names[best_match_index]
 cv2.rectangle(frame, (left, top), (right, bottom), (0, 0,
255), 2)

 cv2.rectangle(frame, (left, bottom − 35), (right, bottom),
(0, 0, 255), cv2.FILLED)

	 Chapter 6 ■ Face Detection and Face Recognition	 285

 font = cv2.FONT_HERSHEY_DUPLEX
 cv2.putText(frame, name, (left + 6, bottom − 6), font, 1.0,
(255, 255, 255), 1)

 # Display the resulting image
 cv2.imshow('Video', frame)

 # Hit 'q' on the keyboard to quit!
 if cv2.waitKey(1) & 0xFF == ord('q'):
 break

Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()

6.3.2  Face Recognition with OpenCV
OpenCV also provides several methods for face recognition. You will need to
install the opencv-contrib-python library first.

pip install opencv-contrib-python

To use OpenCV for face recognition, you need to do two steps: train the rec-
ognizer, and use the trained recognizer to recognize faces. Example 6.10 is a
face recognition training program that uses the OpenCV library. Example 6.11
is a face recognizer program.

Example 6.10 trains three different faces by using the Local Binary Patterns
Histograms Recognizer (LBPHFaceRecognizer) and saves the training result in
a file called cvtraining.yml. The three known faces are stored in three files:
face0.jpeg, face1.jpeg, and face2.jpeg. The filenames are used as labels;
they are face0, face1, and face2.

EXAMPLE 6.10  THE FACERECCV.PY PROGRAM

#Example 6.10 Train a Face Recognition model with OpenCV

#pip install opencv-contrib-python
import os
import cv2
import numpy as np
import os

recognizer=cv2.face.LBPHFaceRecognizer_create()

imagePaths = ["face0.jpeg", "face1.jpeg", "face2.jpeg"]

286	 Part III ■ AI Applications

faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default
.xml')
X = []
ids = []
count = 0
for imagePath in imagePaths:
 image = cv2.imread(imagePath)
 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
 img_numpy = np.array(gray,'uint8')
 faces = faceCascade.detectMultiScale(
 img_numpy ,
 scaleFactor=1.3,
 minNeighbors=10,
 minSize=(100, 100)
)

 for (x,y,w,h) in faces:
 X.append(img_numpy[y:y+h,x:x+w])
 ids.append(count)
 print(ids)
 break
 count = count + 1

recognizer.train(X,np.array(ids))
recognizer.save('cvtraining.yml')

Example 6.11 is a face recognizer program that uses the OpenCV library. It
loads the training data from a file called cvtraining.yml and recognizes dif-
ferent faces by using LBPHFaceRecognizer.

EXAMPLE 6.11  THE FACERECCV2.PY PROGRAM

#Example 6.11 Image Face Recognition with model trained in OpenCV

#pip install opencv-contrib-python
import os
import cv2
import numpy as np
import os

recognizer=cv2.face.LBPHFaceRecognizer_create()
recognizer.read('cvtraining.yml')

testpath = "face2.jpeg";

faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default
.xml')
image = cv2.imread(testpath)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

	 Chapter 6 ■ Face Detection and Face Recognition	 287

img_numpy = np.array(gray,'uint8')
faces = faceCascade.detectMultiScale(
 img_numpy ,
 scaleFactor=1.3,
 minNeighbors=10,
 minSize=(100, 100)
)
for (x,y,w,h) in faces:
 id, confidence = recognizer.predict(gray[y:y+h,x:x+w])
 print(id)
 print(confidence)

The following is the output, which shows that the face ID is 2 and the confidence
is 0. The confidence is more like an error here; the lower the value the better. A
confidence between 0 and 50 normally means a perfect match.

2
0.0

For more information about face recognition using OpenCV, see the following:
https://docs.opencv.org/2.4/modules/contrib/doc/facerec/facerec_

tutorial.html

EXERCISE 6.10

Modify the previous Python program, trying the different OpenCV face recognizers,
such as EigenFaceRecognizer, FisherFaceRecognizer, and
LBPHFaceRecognizer, and comment on the accuracy.

Example 6.12 is a webcam version of the previous face recognizer program
that uses the OpenCV library. It loads the training data and recognizes different
faces by using the LBPHFaceRecognizer function.

EXAMPLE 6.12  THE FACERECCVWEBCAM.PY PROGRAM

#Example 6.12 Webcam Face Recognition with model trained in OpenCV

import os
import cv2
import numpy as np
import os

recognizer=cv2.face.LBPHFaceRecognizer_create()
recognizer.read('cvtraining.yml')

https://docs.opencv.org/2.4/modules/contrib/doc/facerec/facerec_tutorial.html
https://docs.opencv.org/2.4/modules/contrib/doc/facerec/facerec_tutorial.html

288	 Part III ■ AI Applications

faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default
.xml')

cam = cv2.VideoCapture(0)
font = cv2.FONT_HERSHEY_SIMPLEX

while True:

 ret, img =cam.read()
 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

 img_numpy = np.array(gray,'uint8')
 faces = faceCascade.detectMultiScale(
 img_numpy ,
 scaleFactor=1.3,
 minNeighbors=10,
 minSize=(100, 100)
)
 for (x,y,w,h) in faces:
 cv2.rectangle(img, (x,y), (x+w,y+h), (0,255,0), 2)
 id, confidence = recognizer.predict(gray[y:y+h,x:x+w])
 print(confidence)
 cv2.putText(img, str(id), (x+5,y−5), font, 1, (255,255,255), 2)
 cv2.putText(img, str(int(confidence)), (x+5,y+h−5), font, 1,
(255,255,0), 1)

 cv2.imshow('camera',img)

 k = cv2.waitKey(10) & 0xff # Press 'ESC' for exiting video
 if k == 27:
 break

cam.release()
cv2.destroyAllWindows()

Figure 6.9 shows the output of the previous program. It shows the face rec-
ognized on the webcam image.

6.3.3  GUI-Based Face Recognition System
By using libraries such as PySimpleGUI, you can also develop a face recogni-
tion system with a graphical user interface (GUI). For more details about the
PySimpleGUI library, visit this website:

https://pysimplegui.readthedocs.io/en/latest/

https://pysimplegui.readthedocs.io/en/latest/

	 Chapter 6 ■ Face Detection and Face Recognition	 289

Example 6.13 shows an example of a complete, fully functional GUI-based face
recognition system for student records. The face recognition is achieved by using
OpenCV, and the GUI is achieved by using the PySimpleGUI library. You find
the program in the FaceRecSystem1 subdirectory in the Chapter 6 directory of
the code that accompanies this book. It has the following file structures. The data
directory is for storing face image files. The database.txt file is for storing the
information of each student, such as ID, name, and course. The FaceRecSystem1
.py file is the main Python program. The haarcascade_frontalface_default
.xml file is the Haar cascade classifier for detecting frontal faces. The Trainner
.yml file holds a trained OpenCV face recognizer model.

FaceRecSystem1\
 |--data
 |--perry.0.0.jpg
 |--perry.0.1.jpg
... ...
 |--tony.1.0.jpg
 |--tony.1.1.jpg
... ...
 |--database.txt
 |--FaceRecSystem1.py
 |--haarcascade_frontalface_default.xml
 |--Trainner.yml

Figure 6.9: The face recognized on the webcam image

290	 Part III ■ AI Applications

In the FaceRecSystem1.py file, the createImages function takes an image
frame from the webcam as input and then uses the OpenCV Haar cascade code
to find and locate the faces and save the faces into the data directory. The face
filenames have the following format: name.ID.count.jpg.

def createImages(frame,count):
... ...

This writeDatabase() function saves the student information such as the ID,
name, and course into the database.txt file.

def writeDatabase(databaseFile,row):
... ...

This getImagesAndLabels() function goes through the data directory, gets
all the face file images and their IDs, puts them into faces and Id list variables,
and returns them.

def getImagesAndLabels(path):
... ...

This Train() function trains the OpenCV face recognizer using the faces and
Id data and saves the trained model into a file called Trainner.yml.

def Train(path):
... ...

This TrackImages() function loads the trained model from the Trainner
.yml file, detects the faces in the image, and uses the trained recognizer to
recognize faces.

def TrackImages(frame):
... ...

main() is the main of the program. It first creates a GUI window by using
the PySimpleGUI library, and then it uses a while loop to catch the window
events, read images from the webcam, and perform the corresponding tasks.

def main():
... ...

This program is run in three simple steps through three buttons on the window:

1.	 Register: This allows you to detect faces in the webcam images, save the
face images into files, and save the corresponding student information
such as ID, name, and course into the database.txt file.

	 Chapter 6 ■ Face Detection and Face Recognition	 291

2.	 Train: This is to train the OpenCV face recognizer, such as LBPHFaceRecognizer,
using the face image files and IDs, and save the trained model into the
Trainner.yml file.

3.	 Recognize: This is to load the trained model from the Trainner.yml file,
recognize faces, and display the corresponding information in the webcam
live images.

Example 6.13 shows the complete code of the FaceRecSystem1.py file.

EXAMPLE 6.13  THE FACERECSYSTEM1.PY PROGRAM

#Example 6.13 Face Recognition System OpenCV
import cv2
import numpy as np
import PySimpleGUI as sg
import sys
import os
from PIL import Image
import pandas as pd
import csv

dataPath = "data"
databaseFile = "database.txt"

register = False
recognizeFrame = False
sampleNum = 20
name = ""
Id = ""
course = ""

faces=[]
Id =[]
Local Binary Pattern Histogram is an Face Recognizer
recognizer = cv2.face.LBPHFaceRecognizer_create()
#recognizer = cv2.face.EigenFaceRecognizer_create()
#recognizer = cv2.face.FisherFaceRecognizer_create()

creating detector for faces
detector = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")

def createImages(frame,count):
 global dataPath,name,Id,detector
 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
 faces = detector.detectMultiScale(gray, 1.3, 5)
 for (x, y, w, h) in faces:
 cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2)

292	 Part III ■ AI Applications

 cv2.imwrite(dataPath+"\\"+name +"."+Id +'.'+ str(count) +
".jpg", gray[y:y + h, x:x + w])
 return frame
def writeDatabase(databaseFile,row):
 #Create a student record file if does not exist
 if not os.path.exists(databaseFile):
 with open(databaseFile, 'a+') as csvFile:
 writer = csv.writer(csvFile)
 writer.writerow(["Id","Name","Course"])
 csvFile.close()
 with open(databaseFile, 'a+') as csvFile:
 writer = csv.writer(csvFile)
 writer.writerow(row)
 csvFile.close()
 return "Saved to database"
def getImagesAndLabels(path):
 imagePaths =[os.path.join(path, f) for f in os.listdir(path)]
 faces =[]
 Ids =[]
 for imagePath in imagePaths:
 extension = os.path.splitext(imagePath)[1]
 if extension != '.jpg':
 print(extension)
 continue
 pilImage = Image.open(imagePath).convert('L')
 imageNp = np.array(pilImage, 'uint8')
 Id = int(os.path.split(imagePath)[−1].split(".")[1])
 faces.append(imageNp)
 Ids.append(Id)
 return faces, Ids

def Train(path):
 global recognizer,detector
 faces, Id = getImagesAndLabels(path)
 recognizer.train(faces, np.array(Id))
 recognizer.save("Trainner.yml")
 return "Training finished..."

For testing phase
def TrackImages(frame):
 global recognizer,detector
 recognizer.read("Trainner.yml")
 df = pd.read_csv(databaseFile,delimiter=',')
 font = cv2.FONT_HERSHEY_SIMPLEX
 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
 faces = detector.detectMultiScale(gray, 1.2, 5)
 person = ""
 person_to_show = ""
 for(x, y, w, h) in faces:

	 Chapter 6 ■ Face Detection and Face Recognition	 293

 cv2.rectangle(frame, (x, y), (x + w, y + h), (225, 0, 0), 2)
 Id, conf = recognizer.predict(gray[y:y + h, x:x + w])
 #print("ID:" + str(Id) + " conf:" + str(conf))
 #print(df['Id'])

 #If confidence is less than 100 ==>"0" perfect match
 if(conf < 50):
 person = df.loc[df['Id'] == Id]['Name'].values
 cr = df.loc[df['Id'] == Id]['Course'].values
 print(person)
 person = str(Id)+"−"+person+"−"+cr
 else:
 Id ='Unknown'
 person = str(Id)
 person = (str(person)+" " +str(int(conf))+"%")
 #cv2.putText(frame, person, (x, y + h),
 # font, 1, (255, 255, 255), 2)
 if(conf < 50):
 person_to_show = person # only shows a recognized person,
useful when multiple faces are detected

 return frame, person_to_showcount = 0
def main():
 global register,sampleNum,dataPath,name,Id,course,recognizeFrame
 sg.ChangeLookAndFeel('LightGreen')

 # define the window layout
 leftpanel = [
 [sg.Text('Face Recognition', size=(20, 1),
justification='center', font='Helvetica 20',key='title')],
 [sg.Image(filename='', key='image')],
]
 rightpanel =[[sg.Text('Id:', size =(10, 1))],
 [sg.InputText("", key="Id")],
 [sg.Text('Name:', size =(10, 1))],
 [sg.InputText("", key="name")],
 [sg.Text('Course:', size =(10, 1))],
 [sg.InputText("", key="course")],
 [sg.Button('1.Register', size=(15, 1),
font='Helvetica 14')],
 [sg.Button('2.Train', size=(15, 1), font='Any 14')],
 [sg.Button('3.Recognize', size=(15, 1),
font='Helvetica 14')],
]
 layout = [
 [sg.Column(leftpanel),
 sg.VSeperator(),
 sg.Column(rightpanel),
]
]

294	 Part III ■ AI Applications

 window = sg.Window('Face Recognition System',location=(100, 100))
 window.Layout(layout).Finalize()

 info =""
 cap = cv2.VideoCapture(0)
 while True:
 event, values = window.read(timeout=20, timeout_key='timeout')
 if event == sg.WIN_CLOSED:
 break
 elif event == '1.Register':
 register = True
 count = 0
 elif event == '2.Train':
 info = Train(dataPath)
 elif event == '3.Recognize':
 recognizeFrame = True

 name = values["name"]
 Id = values["Id"]
 course = values["course"]

 ret, frame = cap.read()

 if register:
 createImages(frame,count)
 info = "Saving "+str(count)
 count = count + 1
 if count > sampleNum: # for each student, we take
multiple samples
 row = [Id, name,course]
 info = writeDatabase(databaseFile,row)
 register = False
 if recognizeFrame:
 frame,info = TrackImages(frame)

 imgbytes = cv2.imencode('.png', frame)[1].tobytes()
 window['image'].update(data=imgbytes)
 window['title'].update(info)

 # Release the webcam and close the window
 cap.release()
 cv2.destroyAllWindows()
 window.close()

Start the main program =============
main()

	 Chapter 6 ■ Face Detection and Face Recognition	 295

Figure 6.10 and Figure 6.11 show the output of the previous GUI-based face
recognition system program. Figure 6.10 shows the register step, and Figure 6.11
shows the recognize step.

Figure 6.11: The GUI-based face recognition system program, recognize step

Figure 6.10: The GUI-based face recognition system program, register step

296	 Part III ■ AI Applications

EXERCISE 6.11

Modify the previous Python program so that it also stores the address of the student.

For more details about the PySimpleGUI library, see the following:

https://pysimplegui.readthedocs.io/en/latest/

https://github.com/PySimpleGUI/PySimpleGUI

Example 6.14 shows another version of the previous GUI-based face recog-
nition system. You find the program in the FaceRecSystem2 subdirectory in the
Chapter 6 directory.

This time the face recognition is achieved by using the Face_Recognition
library. The GUI is still achieved by using the PySimpleGUI library. It has the
same file structures and the same functions and performs the same three steps:
register, update, and recognize.

The difference is in step 2, update, where you don’t need to train the model
anymore; instead, it uses the following function to get the encoding of all the
faces and their IDs:

def getFaces(path):
... ...

Example 6.14 shows the complete code.

EXAMPLE 6.14  THE FACERECSYSTEM2.PY PROGRAM

#Example 6.14 Face Recognition System face_recognition
#pip install face-recognition
import cv2
import numpy as np
import PySimpleGUI as sg
import sys
import os

import pandas as pd
import csv
import face_recognition

dataPath = "data"
databaseFile = "database.txt"

register = False
recognizeFrame = False
sampleNum = 1
name = ""
Id = ""
course = ""

https://pysimplegui.readthedocs.io/en/latest/
https://github.com/PySimpleGUI/PySimpleGUI

	 Chapter 6 ■ Face Detection and Face Recognition	 297

faces=[]
Id =[]
def getFaces(path):
 imagepaths=[os.path.join(path,f) for f in os.listdir(path)]
 faces=[]
 IDs=[]
 count = 0
 for imagepath in imagepaths:
 ext = os.path.split(imagepath)[−1].split('.')[−1]
 if (ext!='jpg'):
 continue

 face_image = face_recognition.load_image_file(imagepath)
 face_encoding = face_recognition.face_encodings(face_image)
 if len(face_encoding)<1:
 continue
 faces.append(face_encoding[0])
 ID=os.path.split(imagepath)[−1].split('.')[0]

 #Id = int(os.path.split(imagePath)[−1].split(".")[1])
 IDs.append(ID)
 count = count + 1
 print(IDs)
 return IDs,faces

def createImages(frame,count):
 global dataPath,name,Id
 rgb_frame = frame[:, :, ::−1]

 face_locations = face_recognition.face_locations(rgb_frame)
 face_encodings = face_recognition.face_encodings(rgb_frame,
face_locations)

 for (top, right, bottom, left), face_encoding in zip(face_
locations, face_encodings):
 cv2.imwrite(dataPath+"\\"+name +"."+Id +'.'+ str(count) +
".jpg", frame)
 cv2.rectangle(frame, (left, top), (right, bottom), (0, 0,
255), 2)
 return frame

def writeDatabase(databaseFile,row):
 #Create a student record file if does not exist
 if not os.path.exists(databaseFile):
 with open(databaseFile, 'a+') as csvFile:
 writer = csv.writer(csvFile)
 writer.writerow(["Id","Name","Course"])
 csvFile.close()
 with open(databaseFile, 'a+') as csvFile:

298	 Part III ■ AI Applications

 writer = csv.writer(csvFile)
 writer.writerow(row)
 csvFile.close()
 return "Saved to database"

For testing phase
def recogImages(frame,known_face_names, known_face_encodings):
 global recognizer,detector
 rgb_frame = frame[:, :, ::−1]
 df = pd.read_csv(databaseFile,delimiter=',')
 face_locations = face_recognition.face_locations(rgb_frame)
 face_encodings = face_recognition.face_encodings(rgb_frame,
face_locations)
 name = "Unknown"
 for (top, right, bottom, left), face_encoding in zip(face_
locations, face_encodings):
 matches = face_recognition.compare_faces(known_face_
encodings, face_encoding)
 if (len(matches)<1):
 continue

 face_distances = face_recognition.face_distance(known_face_
encodings, face_encoding)
 best_match_index = np.argmin(face_distances)
 if matches[best_match_index]:
 name = known_face_names[best_match_index]
 cr = df.loc[df['Name'] == name]['Course'].values
 name = name + "−" + cr[0]
 print(name)

 cv2.rectangle(frame, (left, top), (right, bottom), (0, 0,
255), 2)
 cv2.rectangle(frame, (left, bottom − 35), (right, bottom),
(0, 0, 255), cv2.FILLED)
 font = cv2.FONT_HERSHEY_DUPLEX
 cv2.putText(frame, name, (left + 6, bottom − 6), font, 1.0,
(255, 255, 255), 1)
 return frame,name

count = 0
def main():
 global register,sampleNum,dataPath,name,Id,course,recognizeFrame
 sg.ChangeLookAndFeel('LightGreen')

 # define the window layout
 leftpanel = [
 [sg.Text('Face Recognition', size=(20, 1),
justification='center', font='Helvetica 20',key='title')],
 [sg.Image(filename='', key='image')],
]

	 Chapter 6 ■ Face Detection and Face Recognition	 299

 rightpanel =[[sg.Text('Id:', size =(10, 1))],
 [sg.InputText("", key="Id")],
 [sg.Text('Name:', size =(10, 1))],
 [sg.InputText("", key="name")],
 [sg.Text('Course:', size =(10, 1))],
 [sg.InputText("", key="course")],
 [sg.Button('1.Register', size=(15, 1), font='Helvetica
14')],
 [sg.Button('2.Update', size=(15, 1), font='Any 14')],
 [sg.Button('3.Recognize', size=(15, 1), font='Helvetica
14')],
]
 layout = [
 [sg.Column(leftpanel),
 sg.VSeperator(),
 sg.Column(rightpanel),
]
]
 window = sg.Window('Face Recognition System',location=(100, 100))
 window.Layout(layout).Finalize()

 known_face_names, known_face_encodings = getFaces(dataPath)

 info =""
 cap = cv2.VideoCapture(0)
 #frame = cv2.imread('./data/face 0.0.0.jpg')
 while True:
 event, values = window.read(timeout=20, timeout_key='timeout')
 if event == sg.WIN_CLOSED:
 break
 elif event == '1.Register':
 register = True
 count = 0
 elif event == '2.Update':
 known_face_names, known_face_encodings = getFaces(dataPath)
 info = "Update done!"
 elif event == '3.Recognize':
 recognizeFrame = True

 name = values["name"]
 Id = values["Id"]
 course = values["course"]

 ret, frame = cap.read()

 if register:
 createImages(frame,count)

300	 Part III ■ AI Applications

 info = "Saving "+str(count)
 count = count + 1
 if count >= sampleNum:
 row = [Id, name,course]
 info = writeDatabase(databaseFile,row)
 register = False
 if recognizeFrame:
 frame,info = recogImages(frame,known_face_names,
known_face_encodings)

 imgbytes = cv2.imencode('.png', frame)[1].tobytes()
 window['image'].update(data=imgbytes)
 window['title'].update(info)

 # Release the webcam and close the window
 cap.release()
 cv2.destroyAllWindows()
 window.close()

Start the main program =============
main()

EXERCISE 6.12

Modify the previous Python program; instead of using database.txt, add another
text box so that users can specify a filename.

Other GUI Development Libraries

Besides the PySimpleGUI library, there are several other GUI libraries for Python.

■■ WxPython is an open source Python interface that brings its wxWidgets
cross-platform GUI library from its native C++ to Python.

https://www.wxpython.org/

https://www.tutorialspoint.com/wxpython/index.htm

■■ Tkinter is the Python interface to the Tk GUI toolkit shipped with Python.

https://wiki.python.org/moin/TkInter

https://docs.python.org/3/library/tkinter.html

■■ JPython is a Java implementation of Python that gives Python scripts
seamless access to Java class libraries on the local machine.

http://www.jython.org

https://www.wxpython.org/
https://www.tutorialspoint.com/wxpython/index.htm
https://wiki.python.org/moin/TkInter
https://docs.python.org/3/library/tkinter.html
http://www.jython.org

	 Chapter 6 ■ Face Detection and Face Recognition	 301

■■ PyQt is a Python binding of the open source widget toolkit Qt, a popular
C++ cross-platform application development framework.

https://wiki.python.org/moin/PyQt

https://www.guru99.com/pyqt-tutorial.html

https://realpython.com/qt-designer-python/

https://www.tutorialspoint.com/python/python_gui_programming.htm

■■ Python GTK+ 3 provides Python bindings to GTK objects (windows,
widgets, and so on).

https://python-gtk-3-tutorial.readthedocs.io/en/latest/

■■ Pyramid is a simple web framework for Python.

https://trypyramid.com/

■■ Pywebview is a lightweight cross-platform wrapper for displaying web
HTML content in its own native GUI window.

https://github.com/r0x0r/pywebview

■■ Pyforms is a Python 3 framework to develop applications for Desktop
GUI, Terminal, and web environments.

https://pyforms.readthedocs.io/en/latest/

6.3.4  Google FaceNet
Google’s FaceNet (https://github.com/davidsandberg/facenet) has achieved
state-of-the-art performances in face recognition by using siamese networks.
Siamese networks have an architecture with two parallel neural networks, each
taking a different input and whose outputs are combined to make predictions.

For more details about Google’s FaceNet, see the following resources:

https://thedatamage.com/face-recognition-tensorflow-tutorial/

https://missinglink.ai/guides/tensorflow/tensorflow-

face-recognition-three-quick-tutorials/

https://machinelearningmastery.com/one-shot-learning-with-

siamese-networks-contrastive-and-triplet-loss-for-face-recognition/

https://github.com/davidsandberg/facenet

6.4  Age, Gender, and Emotion Detection

In this section we’ll talk about age, gender, and emotion detection.

https://wiki.python.org/moin/PyQt
https://www.guru99.com/pyqt-tutorial.html
https://realpython.com/qt-designer-python/
https://www.tutorialspoint.com/python/python_gui_programming.htm
https://python-gtk-3-tutorial.readthedocs.io/en/latest/
https://trypyramid.com/
https://github.com/r0x0r/pywebview
https://pyforms.readthedocs.io/en/latest/
https://github.com/davidsandberg/facenet
https://thedatamage.com/face-recognition-tensorflow-tutorial/
https://missinglink.ai/guides/tensorflow/tensorflow-face-recognition-three-quick-tutorials/
https://missinglink.ai/guides/tensorflow/tensorflow-face-recognition-three-quick-tutorials/
https://machinelearningmastery.com/one-shot-learning-with-siamese-networks-contrastive-and-triplet-loss-for-face-recognition/
https://machinelearningmastery.com/one-shot-learning-with-siamese-networks-contrastive-and-triplet-loss-for-face-recognition/
https://github.com/davidsandberg/facenet

302	 Part III ■ AI Applications

6.4.1  DeepFace
Another interesting application is age, gender, and emotion detection. The
DeepFace repository is a cool library that allows you to use different deep
learning models to detect faces, identify faces, verify and analyze faces, and
get age, gender, race, and emotion information.

To use it, just install the library like so:

pip install deepface

Example 6.15 is a simple DeepFace demo example. It first shows how to detect
faces in the image file oldwoman.jpeg; then shows how to verify two images,
face11a.jpeg and face11b.jpeg, to see if they are the same person; and finally
shows how to analyze image file face10.jpeg to get age, gender, race, and emo-
tion information. Again, all the images are from https://www.pexels.com/.

EXAMPLE 6.15  THE DEEPFACEDEMO.PY PROGRAM

#Example 6.15
from deepface import DeepFace

#Detect Faces ===
detected_face = DeepFace.detectFace("oldwoman.jpeg")

#Verify images==
result = DeepFace.verify("face11a.jpeg", "face11b.jpeg")
print("Is verified: ", result["verified"])

Get age, gender, race, emotion ====================================
#from deepface import DeepFace
#demography = DeepFace.analyze("perry1.jpg") #passing nothing as 2nd
argument will find everything
#demography = DeepFace.analyze("face5.jpeg", ['age', 'gender', 'race',
'emotion']) #identical to the line above
demography = DeepFace.analyze("face10.jpeg") #passing nothing as 2nd
argument will find everything

print("Age: ", int(demography["age"]))
print("Emotion: ", demography["dominant_emotion"])
print("Gender: ", demography["gender"])
print("Race: ", demography["dominant_race"])

Figure 6.12 shows shows the original image from the oldwoman.jpeg file (left)
and the face detected (right).

https://www.pexels.com/

	 Chapter 6 ■ Face Detection and Face Recognition	 303

Figure 6.13 shows the two images face11a.jpeg and face11b.jpeg for ver-
ification to see if they are the same person.

The following is the corresponding text output, which confirms that the
face11a.jpeg and face11b.jpeg images are the same person.

Is verified: True

Figure 6.14 shows face10.jpeg, which is the input file for age, gender, race,
and emotion detection.

The following is the corresponding text output, which shows the age, gender,
race, and emotion information from the face10.jpeg file:

Actions to do: ['emotion', 'age', 'gender', 'race']

Finding actions: 0%| | 0/4 [00:00<?, ?it/s]
Action: emotion: 0%| | 0/4 [00:00<?, ?it/s]

Figure 6.13: The two images face11a.jpeg and face11b.jpeg for same-person
verification

Figure 6.12: The original image from the oldwoman.jpeg file (left) and the face detected
(right)

304	 Part III ■ AI Applications

Action: emotion: 25%|##5 | 1/4 [00:00<00:00, 3.34it/s]
Action: age: 25%|##5 | 1/4 [00:00<00:00, 3.34it/s]
Action: age: 50%|##### | 2/4 [00:01<00:00, 2.09it/s]
Action: gender: 50%|##### | 2/4 [00:01<00:00, 2.09it/s]
Action: gender: 75%|#######5 | 3/4 [00:02<00:00, 1.72it/s]
Action: race: 75%|#######5 | 3/4 [00:02<00:00, 1.72it/s]
Action: race: 100%|##########| 4/4 [00:02<00:00, 1.51it/s]
Action: race: 100%|##########| 4/4 [00:02<00:00, 1.39it/s]
Age: 29
Gender: Woman
Emotion: happy
Race: asian

EXERCISE 6.13

Modify the previous Python program, try different photos for face detection, face
identification, and age, gender, race, and emotion detection. Comment on the results.

You can also use this program with a webcam. It will read an image from the
webcam; analyze image to get age, gender, race, and emotion information; then
wait for five seconds and start again. It takes just one line of code! See Example
6.15a and Figure 6.15.

Figure 6.14: The face10.jpeg file for age, gender, race, and emotion detection

	 Chapter 6 ■ Face Detection and Face Recognition	 305

EXAMPLE 6.15A  THE DEEPFACESTREAM.PY PROGRAM

https://github.com/serengil/deepface
pip install deepface
#Example 6.15a Online Face Analysis with DeepFace

from deepface import DeepFace
DeepFace.stream(".")

For more details about the DeepFace library, see the following:
https://github.com/serengil/deepface

6.4.2  TCS-HumAIn-2019
The following repository is an interesting example of age, gender, emotion, and
ethnicity detection. It is a submission for the TCS-HumAIn-2019 contest, which
is organized by Tata Consultancy Services (TCS) (https://www.tcs.com/).

To use the code, just download the entire repository as a zipped file, as shown
in Figure 6.16. By default, the zipped file is called TCS-HumAIn-2019-Age-
Emotions-Ethnicity-Gender-Predictions-Using-Computer-Vision-master

.zip. Just unzip the file into a folder; then from the terminal software, such
as the Windows Command Prompt, go into the folder and run the following
Python program:

Python data_preprocessing_and_model_training.py

Figure 6.15: The webcam version of the previous program for age, gender, race, and emotion
detection

https://github.com/serengil/deepface
https://www.tcs.com/

306	 Part III ■ AI Applications

This program will first download a range of training human face
images of different age, gender, emotion, and ethnicity according to the
Face_Recognition.json file and then use four different deep learning models to
train on the data. The face images are reshaped to 70×70 pixels in size. Finally,
save the trained models. There is also a Jupyter notebook version of the same
code named data_preprocessing_and_model_training.ipynb.

After training, you can run the following program to perform age, gender,
emotion, and ethnicity predictions:

Python get_predictions.py

However, there are two typos in the code, which set the face size to 25×25,
on line 78:

image = img.load_img('face.jpg',target_size=(25,25))

as well as on line 82:

image = image.reshape(1,25,25,3)

You need to change 25 to 70 in those two places. This program will run the
prediction through a web page using the Flask library, where you can upload
an image, and it will give you the results. So you will need to install the Flask
library first, as shown here, and it runs on TensorFlow version 1:

pip install flask

Figure 6.16: The TCS-HumAIn-2019-Age-Emotions-Ethnicity-Gender-Predictions-Using-
Computer-Vision GitHub website
(Source: https://github.com/akash18tripathi/TCS-HumAIn-2019-
Age-Emotions-Ethnicity-Gender-Predictions-Using-Computer-Vision)

https://github.com/akash18tripathi/TCS-HumAIn-2019-Age-Emotions-Ethnicity-Gender-Predictions-Using-Computer-Vision
https://github.com/akash18tripathi/TCS-HumAIn-2019-Age-Emotions-Ethnicity-Gender-Predictions-Using-Computer-Vision

	 Chapter 6 ■ Face Detection and Face Recognition	 307

Example 6.15b is a revised version of the get_predictions.py program,
which runs as a normal Python program, and can work for both TensorFlow
version 1 and version 2.

EXAMPLE 6.15B  THE GET_PREDICTIONS0.PY PROGRAM

#Example 6.15b
#Modified from:
#https://github.com/akash18tripathi/TCS-HumAIn-2019-Age-Emotions-
Ethnicity-Gender-Predictions-Using-Computer-Vision/blob/master/get_
predictions.py

from tensorflow.keras.models import load_model
from PIL import Image
import numpy as np
import cv2
import tensorflow as tf
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image as img
import cv2
import matplotlib.pyplot as plt

age_dict={
 0:'below_20',
 1:'20-30',
 2:'30-40',
 3:'40-50',
 4:'above_50'
}

gender_dict = {
 0:'Male',
 1:'Female'
}
ethnicity_dict={
 0:'arab',
 1:'asian',
 2:'black',
 3:'hispanic',
 4:'indian',
 5:'white'
}
emotion_dict={
 0:'angry',
 1:'happy',
 2:'neutral',
 3:'sad'
}

308	 Part III ■ AI Applications

def predict(file):

 #image = img.load_img(file)
 #image = np.array(image,dtype='uint8')
 image = cv2.imread(file)

 gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
 faces = face_cascade.detectMultiScale(gray,1.3,10)
 for (x,y,w,h) in faces:
 cv2.rectangle(image,(x,y),(x+w,y+h),(0,255,0),2)
 roi_color = image[y:y+h,x:x+w]
 roi_color = cv2.resize(roi_color, (70,70), interpolation =
cv2.INTER_AREA)
 face = np.array(roi_color,dtype='uint8')
 face = face/255
 face = face.reshape(1,70,70,3)
 #Predicting
 g_pred = gender_pred(face)
 e_pred = ethnicity_pred(face)
 a_pred = age_pred(face)
 emo_pred = emotions_pred(face)
 cv2.putText(image,"Age:"+str(a_pred),(x,y+h+20),cv2.FONT_
HERSHEY_SIMPLEX,0.8,(0,255,0),1,cv2.LINE_AA)
 cv2.putText(image,"Gender: "+str(g_pred),(x,y+h+40),cv2
.FONT_HERSHEY_SIMPLEX,0.8,(0,255,0),1,cv2.LINE_AA)
 cv2.putText(image,"Emotion: "+str(emo_pred),(x,y+h+60),cv2
.FONT_HERSHEY_SIMPLEX,0.8,(0,255,0),1,cv2.LINE_AA)
 cv2.putText(image,"Ethnicity: "+str(e_pred),(x,y+h+80),cv2
.FONT_HERSHEY_SIMPLEX,0.8,(0,255,0),1,cv2.LINE_AA)
 cv2.imwrite('output.jpg',image)
 cv2.imshow('output',image)

def gender_pred(image):
 gen = gender_model.predict(image).argmax()
 return gender_dict[gen]

def emotions_pred(image):
 emotion = emotions_model.predict(image).argmax()
 return emotion_dict[emotion]

def ethnicity_pred(image):
 eth = ethnicity_model.predict(image).argmax()
 return ethnicity_dict[eth]

def age_pred(image):
 age = age_model.predict(image).argmax()
 return age_dict[age]

	 Chapter 6 ■ Face Detection and Face Recognition	 309

ethnicity_model = load_model('ethnicity_model.h5')
gender_model = load_model('gender_model.h5')
age_model = load_model('age_model.h5')
emotions_model = load_model('emotions_model.h5')
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_
default.xml')

file = 'image2.jpeg'
predict(file)

Figure 6.17 shows the output of the previous program, which predicts age,
gender, race, and emotion. As you can see, it is pretty accurate.

EXERCISE 6.14

Modify the previous Python program, and try different photos for age, gender, race,
and emotion detection. Comment on the results.

6.5  Face Swap

Face swap is a controversial but popular AI application, which allows you to
swap faces in photos and videos. There are already many apps that implement

Figure 6.17: The output of the get_predictions0.py program

310	 Part III ■ AI Applications

face swap, such as Snapchat, B612, Cupace, Face Swap by Microsoft, Face App,
Face Swap, MSQRD, Face Swap Booth, MixBooth, and so on. The Face Swap
Live app can even allow you to swap faces in real time in live videos. The sim-
plest way to achieve this is to use the Face_Recognition and OpenCV libraries.

6.5.1  Face_Recognition and OpenCV
Example 6.16 shows a face swap example, which is modified from https://
github.com/spmallick/learnopencv/blob/master/FaceSwap/faceSwap.py. It
basically loads images from two image files, face0.jpeg and face1.jpeg, and
detects and locates the faces by using the Face_Recognition library; this includes
finding the face landmarks. Then it masks the face in the face0.jpeg file and
blends it into the face location of the face1.jpeg file.

EXAMPLE 6.16  THE FACESWAP.PY PROGRAM

#Example 6.16 Face Swap with OpenCV and Face_Recognition
#Modified from:
#https://github.com/spmallick/learnopencv/blob/master/FaceSwap/
faceSwap.py
import sys
import numpy as np
import cv2
import face_recognition

Read points from text file
def readPoints(path) :
 # Create an array of points.
 points = [];

 image = cv2.imread(path)

 rgb_frame = image[:, :, ::−1]
 face_landmarks_list = face_recognition.face_landmarks(rgb_frame)
 for face_landmarks in face_landmarks_list:
 for facial_feature in face_landmarks.keys():
 #print(facial_feature)
 a = face_landmarks[facial_feature]
 for index, item in enumerate(a):
 if index == len(a) −1:
 break
 cv2.line(image, item, a[index + 1], [0, 255, 0], 2)
 for pt in face_landmarks[facial_feature]:
 image = cv2.circle(image, pt, 2, (0, 0, 255), 2)
 points.append(pt)
 cv2.imshow(path, image)

https://github.com/spmallick/learnopencv/blob/master/FaceSwap/faceSwap.py
https://github.com/spmallick/learnopencv/blob/master/FaceSwap/faceSwap.py

	 Chapter 6 ■ Face Detection and Face Recognition	 311

 print(points)
 return points

Apply affine transform calculated using srcTri and dstTri to src and
output an image of size.
def applyAffineTransform(src, srcTri, dstTri, size) :

 # Given a pair of triangles, find the affine transform.
 warpMat = cv2.getAffineTransform(np.float32(srcTri),
np.float32(dstTri))

 # Apply the Affine Transform just found to the src image
 dst = cv2.warpAffine(src, warpMat, (size[0], size[1]), None,
flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT_101)

 return dst

Check if a point is inside a rectangle
def rectContains(rect, point) :
 if point[0] < rect[0] :
 return False
 elif point[1] < rect[1] :
 return False
 elif point[0] > rect[0] + rect[2] :
 return False
 elif point[1] > rect[1] + rect[3] :
 return False
 return True

#calculate delanauy triangle
def calculateDelaunayTriangles(rect, points):
 #create subdiv
 subdiv = cv2.Subdiv2D(rect);

 # Insert points into subdiv
 for p in points:
 subdiv.insert(p)

 triangleList = subdiv.getTriangleList();

 delaunayTri = []

 pt = []

 for t in triangleList:
 pt.append((t[0], t[1]))
 pt.append((t[2], t[3]))
 pt.append((t[4], t[5]))

312	 Part III ■ AI Applications

 pt1 = (t[0], t[1])
 pt2 = (t[2], t[3])
 pt3 = (t[4], t[5])

 if rectContains(rect, pt1) and rectContains(rect, pt2) and
rectContains(rect, pt3):
 ind = []
 #Get face-points (from 68 face detector) by coordinates
 for j in range(0, 3):
 for k in range(0, len(points)):
 if(abs(pt[j][0] - points[k][0]) < 1.0 and
abs(pt[j][1] − points[k][1]) < 1.0):
 ind.append(k)
 # Three points form a triangle. Triangle array
corresponds to the file tri.txt in FaceMorph
 if len(ind) == 3:
 delaunayTri.append((ind[0], ind[1], ind[2]))

 pt = []

 return delaunayTri

Warps and alpha blends triangular regions from img1 and img2 to img
def warpTriangle(img1, img2, t1, t2) :

 # Find bounding rectangle for each triangle
 r1 = cv2.boundingRect(np.float32([t1]))
 r2 = cv2.boundingRect(np.float32([t2]))

 # Offset points by left top corner of the respective rectangles
 t1Rect = []
 t2Rect = []
 t2RectInt = []

 for i in range(0, 3):
 t1Rect.append(((t1[i][0] − r1[0]),(t1[i][1] − r1[1])))
 t2Rect.append(((t2[i][0] − r2[0]),(t2[i][1] − r2[1])))
 t2RectInt.append(((t2[i][0] − r2[0]),(t2[i][1] − r2[1])))

 # Get mask by filling triangle
 mask = np.zeros((r2[3], r2[2], 3), dtype = np.float32)
 cv2.fillConvexPoly(mask, np.int32(t2RectInt), (1.0, 1.0, 1.0), 16, 0);

	 Chapter 6 ■ Face Detection and Face Recognition	 313

 # Apply warpImage to small rectangular patches
 img1Rect = img1[r1[1]:r1[1] + r1[3], r1[0]:r1[0] + r1[2]]
 #img2Rect = np.zeros((r2[3], r2[2]), dtype = img1Rect.dtype)

 size = (r2[2], r2[3])

 img2Rect = applyAffineTransform(img1Rect, t1Rect, t2Rect, size)

 img2Rect = img2Rect * mask

 # Copy triangular region of the rectangular patch to the output
image
 img2[r2[1]:r2[1]+r2[3], r2[0]:r2[0]+r2[2]] = img2[r2[1]:r2[1]+r2[3],
r2[0]:r2[0]+r2[2]] * ((1.0, 1.0, 1.0) - mask)

 img2[r2[1]:r2[1]+r2[3], r2[0]:r2[0]+r2[2]] = img2[r2[1]:r2[1]+r2[3],
r2[0]:r2[0]+r2[2]] + img2Rect

if __name__ == '__main__' :

 # Make sure OpenCV is version 3.0 or above
 (major_ver, minor_ver, subminor_ver) = (cv2.__version__).split('.')

 if int(major_ver) < 3 :
 print >>sys.stderr, 'ERROR: Script needs OpenCV 3.0 or higher'
 sys.exit(1)

 # Read images
 filename1 = 'face1.jpeg'
 filename2 = 'face2.jpeg'

 img1 = cv2.imread(filename1);
 img2 = cv2.imread(filename2);
 img1Warped = np.copy(img2);

 # Read array of corresponding points
 points1 = readPoints(filename1)
 points2 = readPoints(filename2)

 # Find convex hull
 hull1 = []
 hull2 = []

 hullIndex = cv2.convexHull(np.array(points2), returnPoints = False)

314	 Part III ■ AI Applications

 for i in range(0, len(hullIndex)):
 hull1.append(points1[int(hullIndex[i])])
 hull2.append(points2[int(hullIndex[i])])

 # Find Delanauy Triangulation for convex hull points
 sizeImg2 = img2.shape
 rect = (0, 0, sizeImg2[1], sizeImg2[0])

 dt = calculateDelaunayTriangles(rect, hull2)

 if len(dt) == 0:
 quit()

 # Apply affine transformation to Delaunay triangles
 for i in range(0, len(dt)):
 t1 = []
 t2 = []

 #get points for img1, img2 corresponding to the triangles
 for j in range(0, 3):
 t1.append(hull1[dt[i][j]])
 t2.append(hull2[dt[i][j]])

 warpTriangle(img1, img1Warped, t1, t2)

 # Calculate Mask
 hull8U = []
 for i in range(0, len(hull2)):
 hull8U.append((hull2[i][0], hull2[i][1]))

 mask = np.zeros(img2.shape, dtype = img2.dtype)

 cv2.fillConvexPoly(mask, np.int32(hull8U), (255, 255, 255))

 r = cv2.boundingRect(np.float32([hull2]))

 center = ((r[0]+int(r[2]/2), r[1]+int(r[3]/2)))

 # Clone seamlessly.
 output = cv2.seamlessClone(np.uint8(img1Warped), img2, mask, center,
cv2.NORMAL_CLONE)

 cv2.imshow("Face Swapped", output)
 cv2.waitKey(0)

 cv2.destroyAllWindows()

	 Chapter 6 ■ Face Detection and Face Recognition	 315

The program outputs the 72 face landmark key points of the two images.

 [(162, 194), (163, 216), (166, 239), (171, 261), (178, 282), (191, 300),
(206, 316), (223, 330), (243, 334), (263, 331), (282, 319), (298, 305),
(311, 290), (320, 271), (324, 250), (328, 228), (329, 206), (175, 171),
(189, 165), (204, 166), (218, 170), (231, 178), (266, 179), (279, 174),
(294, 173), (308, 174), (319, 181), (248, 199), (247, 216), (247, 234),
(247, 251), (231, 258), (238, 262), (246, 265), (254, 263), (261, 259),
(192, 195), (202, 190), (215, 191), (225, 202), (213, 203), (200, 202),
(270, 204), (280, 195), (293, 195), (303, 202), (294, 207), (281, 207),
(215, 286), (227, 281), (237, 278), (246, 281), (254, 279), (264, 282),
(276, 287), (270, 288), (254, 287), (245, 288), (237, 287), (221, 287),
(276, 287), (265, 298), (254, 302), (245, 302), (236, 301), (226, 296),
(215, 286), (221, 287), (237, 288), (245, 289), (254, 289), (270, 288)]
[(127, 306), (131, 330), (136, 354), (144, 378), (155, 399), (172, 417),
(192, 433), (216, 445), (243, 444), (270, 434), (291, 416), (310, 393),
(322, 369), (327, 341), (325, 312), (321, 285), (315, 258), (131, 286),
(137, 271), (153, 266), (170, 266), (187, 270), (223, 262), (239, 251),
(256, 244), (274, 243), (290, 248), (208, 282), (211, 300), (214, 318),
(218, 336), (202, 351), (212, 352), (223, 352), (233, 347), (243, 342),
(152, 298), (161, 289), (174, 287), (186, 291), (176, 297), (163, 300),
(237, 279), (247, 269), (260, 267), (270, 270), (263, 276), (251, 279),
(193, 387), (206, 379), (218, 374), (228, 374), (239, 369), (255, 368),
(270, 366), (265, 369), (241, 376), (229, 380), (220, 381), (198, 387),
(270, 366), (259, 379), (246, 389), (234, 393), (223, 395), (210, 395),
(193, 387), (198, 387), (221, 381), (231, 379), (242, 375), (265, 369)]

Figure 6.18 shows the first input face image from the face0.jpeg file. Figure 6.19
shows the second input face image from the face1.jpeg file. Figure 6.20, the
output image, shows the face1.jpeg file image with the face swapped with
the face0.jpeg face. The face swap result is impressive; it even re-aligns the
swapped face accordingly.

EXERCISE 6.15

Modify the previous Python program, trying different photos for the face swap.
Comment on the results.

6.5.2  Simple_Faceswap
Here is another interesting face swap Python repository (https://github.com/
Jacen789/simple_faceswap), which uses Dlib to get 68 face landmarks and
uses OpenCV to perform the face swap on live video images from a webcam.
Example 6.17 is a revised version of the program.

https://github.com/Jacen789/simple_faceswap
https://github.com/Jacen789/simple_faceswap

316	 Part III ■ AI Applications

Figure 6.18: The first face image from the face0.jpeg file

Figure 6.19: The second face image from the face1.jpeg file

	 Chapter 6 ■ Face Detection and Face Recognition	 317

Example 6.17 is the main program FaceSwap2.py. It uses a file called face1.
jpeg as the face template, detects the face in the webcam image, and swaps the
webcam face with the template face.

EXAMPLE 6.17  THE FACESWAP2.PY PROGRAM

#Example 6.17 Face Swap with dlib and OpenCV
#Modified from:
#https://raw.githubusercontent.com/Jacen789/simple_faceswap/master/
faceswap.py

#pip install opencv-python, dlib
#Download dlib face landmarks detection model:shape_predictor_68_
face_landmarks.dat.bz2
#and unzip it
#http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2

import os
import cv2
import dlib
import numpy as np
from FaceSwap_Utils import * # see Example 6.17b

Figure 6.20: The face1.jpeg file image with the face swapped with the face0.jpeg face

318	 Part III ■ AI Applications

here = os.path.dirname(os.path.abspath(__file__))

models_folder_path = os.path.join(here)
faces_folder_path = os.path.join(here)
predictor_path = os.path.join(models_folder_path, 'shape_
predictor_68_face_landmarks.dat')
image_face_path = os.path.join(faces_folder_path, 'face1.jpeg')

detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(predictor_path)

def main():
 im1 = cv2.imread(image_face_path)
 im1 = cv2.resize(im1, (600, im1.shape[0] * 600 // im1.shape[1]))
 landmarks1 = get_face_landmarks(im1, detector, predictor) # 68_
face_landmarks
 if landmarks1 is None:
 print('{}:Face not detected'.format(image_face_path))
 exit(1)
 im1_size = get_image_size(im1)
 im1_mask = get_face_mask(im1_size, landmarks1)

 cam = cv2.VideoCapture(0)
 while True:
 ret_val, im2 = cam.read() # camera_image
 landmarks2 = get_face_landmarks(im2, detector, predictor) #
68_face_landmarks
 if landmarks2 is not None:
 im2_size = get_image_size(im2)
 im2_mask = get_face_mask(im2_size, landmarks2)

 affine_im1 = get_affine_image(im1, im2, landmarks1,
landmarks2)
 affine_im1_mask = get_affine_image(im1_mask, im2,
landmarks1, landmarks2)

 union_mask = get_mask_union(im2_mask, affine_im1_mask)

 affine_im1 = skin_color_adjustment(affine_im1, im2,
mask=union_mask)
 point = get_mask_center_point(affine_im1_mask)
 seamless_im = cv2.seamlessClone(affine_im1, im2,
mask=union_mask, p=point, flags=cv2.NORMAL_CLONE)
 cv2.imshow('seamless_im', seamless_im)
 else:
 cv2.imshow('seamless_im', im2)
 if cv2.waitKey(1) == 27:

	 Chapter 6 ■ Face Detection and Face Recognition	 319

 break
 cv2.destroyAllWindows()

if __name__ == '__main__':
 main()

Example 6.17 makes use of the FaceSwap_Utils package, shown in Example
6.17a.

EXAMPLE 6.17A  THE FACESWAP_UTILS.PY PROGRAM

#Example 6.17a FaceSwap_Utils for Example 6.17a
#Modified from:
#https://raw.githubusercontent.com/Jacen789/simple_faceswap/master/
faceswap.py

import os
import cv2
import dlib
import numpy as np

def get_image_size(image):
 """
 :param image: image
 :return: (height,width)
 """
 image_size = (image.shape[0], image.shape[1])
 return image_size

def get_face_landmarks(image, face_detector, shape_predictor):
 """
 Get face landmark, 68 key points
 :param image: image
 :param face_detector: dlib.get_frontal_face_detector
 :param shape_predictor: dlib.shape_predictor
 :return: np.array([[],[]]), 68 key points
 """
 dets = face_detector(image, 1)
 num_faces = len(dets)
 if num_faces == 0:
 print("Sorry, there were no faces found.")
 return None
 shape = shape_predictor(image, dets[0])
 face_landmarks = np.array([[p.x, p.y] for p in shape.parts()])
 return face_landmarks

320	 Part III ■ AI Applications

def get_face_mask(image_size, face_landmarks):
 """
 Get Face Mask
 :param image_size: Image Size
 :param face_landmarks: 68 key points
 :return: image_mask, Face Mask
 """
 mask = np.zeros(image_size, dtype=np.uint8)
 points = np.concatenate([face_landmarks[0:16],
face_landmarks[26:17:-1]])
 cv2.fillPoly(img=mask, pts=[points], color=255)

 # mask = np.zeros(image_size, dtype=np.uint8)
 # points = cv2.convexHull(face_landmarks) # 凸包

 # cv2.fillConvexPoly(mask, points, color=255)
 return mask

def get_affine_image(image1, image2, face_landmarks1,
face_landmarks2):
 """
 Get Affine Image
 :param image1: Image 1
 :param image2: Image 2
 :param face_landmarks1: Image 1 face landmarks
 :param face_landmarks2: Image 2 face landmarks
 :return: The Affine Image 1
 """
 three_points_index = [18, 8, 25]
 M = cv2.getAffineTransform(face_landmarks1[three_points_index].
astype(np.float32),
 face_landmarks2[three_points_index].
astype(np.float32))
 dsize = (image2.shape[1], image2.shape[0])
 affine_image = cv2.warpAffine(image1, M, dsize)
 return affine_image.astype(np.uint8)

def get_mask_center_point(image_mask):
 """
 Get Mask Center Point
 :param image_mask: Image mask
 :return: center point
 """
 image_mask_index = np.argwhere(image_mask > 0)
 miny, minx = np.min(image_mask_index, axis=0)
 maxy, maxx = np.max(image_mask_index, axis=0)
 center_point = ((maxx + minx) // 2, (maxy + miny) // 2)
 return center_point

	 Chapter 6 ■ Face Detection and Face Recognition	 321

def get_mask_union(mask1, mask2):
 """
 Get Mask Union
 :param mask1: mask_image, Mask 1
 :param mask2: mask_image, Mask 2
 :return: The union of two masks
 """
 mask = np.min([mask1, mask2], axis=0)
 mask = ((cv2.blur(mask, (5, 5)) == 255) * 255).astype(np.uint8)
 mask = cv2.blur(mask, (3, 3)).astype(np.uint8)
 return mask

def skin_color_adjustment(im1, im2, mask=None):
 """
 Skin Color Adjustment
 :param im1: Image 1
 :param im2: Image 2
 :param mask: Face mask.
 :return: Adjusted Image 1
 """
 if mask is None:
 im1_ksize = 55
 im2_ksize = 55
 im1_factor = cv2.GaussianBlur(im1, (im1_ksize, im1_ksize),
0).astype(np.float)
 im2_factor = cv2.GaussianBlur(im2, (im2_ksize, im2_ksize),
0).astype(np.float)
 else:
 im1_face_image = cv2.bitwise_and(im1, im1, mask=mask)
 im2_face_image = cv2.bitwise_and(im2, im2, mask=mask)
 im1_factor = np.mean(im1_face_image, axis=(0, 1))
 im2_factor = np.mean(im2_face_image, axis=(0, 1))

 im1 = np.clip((im1.astype(np.float) * im2_factor / np.clip(im1_
factor, 1e-6, None)), 0, 255).astype(np.uint8)
 return im1

Figure 6.21 shows the webcam output of Example 6.17, which shows the face
in the webcam has been swapped.

EXERCISE 6.16

Modify the previous Python program, choosing a different file template for the face
swap. Comment on the results.

322	 Part III ■ AI Applications

6.5.3  DeepFaceLab
In computer science, a deepfake means to use deep learning neural networks to
generate fake images. This is often done by training the deep learning neural
network models with a large quantity of face images of two people to learn the
features and to swap the faces. Deepfakes are highly controversial and have
attracted widespread attention for their uses in pornography, celebrity photos/
videos, fake news, hoaxes, and so on.

DeepFaceLab claims to be the leading software for creating deepfakes. With
DeepFaceLab, you can replace the face or head, de-age the face, or even manip-
ulate someone’s lips. It even created a realistic fake Queen Speech in 2020 that
broadcast on Channel 4 in the United Kingdom. See the following link for more
details.

https://github.com/iperov/DeepFaceLab

For more details about DeepFaceLab, see the following:

https://arxiv.org/abs/2005.05535

Here are other Python face swap repositories:

https://awesomeopensource.com/project/deepfakes/faceswap

https://faceswap.dev/

https://github.com/topics/faceswap

6.6  Face Detection Web Apps

With the Streamlit library (https://docs.streamlit.io/en/stable/) you can
develop a web-based app for face detection.

Example 6.18 shows how to create a web app to perform face detection. It
first allows users to upload an image file and then performs face detection by
clicking the Detect Faces button.

Figure 6.21: The webcam output of Example 6.17, which shows the face has been swapped

https://arxiv.org/abs/2005.05535
https://awesomeopensource.com/project/deepfakes/faceswap
https://faceswap.dev/
https://github.com/topics/faceswap
https://docs.streamlit.io/en/stable/

	 Chapter 6 ■ Face Detection and Face Recognition	 323

EXAMPLE 6.18  THE STREAMLITFACE.PY PROGRAM

#Example 6.18 Face Detection web app with Streamlit
#pip install --upgrade protobuf
#pip install streamlit

import streamlit as st
import cv2
from PIL import Image
import numpy as np

face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_
default.xml')

def detect_faces(our_image):
 new_img = np.array(our_image.convert('RGB'))
 img = cv2.cvtColor(new_img,1)
 gray = cv2.cvtColor(new_img, cv2.COLOR_BGR2GRAY)
 # Detect faces
 faces = face_cascade.detectMultiScale(gray, 1.1, 4)
 # Draw rectangle around the faces
 for (x, y, w, h) in faces:
 cv2.rectangle(img, (x, y), (x+w, y+h), (255, 0, 0), 2)
 return img,faces

def main():
 st.title("Face Detection")
 st.text("Built with Streamlit and OpenCV")

 image_file = st.file_uploader("Upload Image",type=['jpg','jpeg',
'png','gif'])

 if image_file is not None:
 our_image = Image.open(image_file)
 st.text("Original Image")
 st.image(our_image)

 if st.button("Detect Faces"):
 result_img,result_faces = detect_faces(our_image)
 st.image(result_img)
 st.success("Found {} faces".format(len(result_faces)))

if __name__ == '__main__':
 main()

To run it, just type the following command in a Command Prompt window:

streamlit run StreamlitFace.py

Figure 6.22 shows the output results.

324	 Part III ■ AI Applications

Figure 6.22: The output of the StreamlitFace.py program, which shows the original
image of a file (top) and a face detected in the image (bottom)

	 Chapter 6 ■ Face Detection and Face Recognition	 325

EXERCISE 6.17

Modify the previous Python program, adding another Save Face button that, when
clicked, will save the face-detected image into a file.

Example 6.19 is a webcam-based version of Example 6.18. It also has three
slider bars to allow users to adjust the scaleFactor, minNeighbours, and min-
Size parameters. Those parameters will affect the results and accuracy of the
face detection. This example allows you to work on both a webcam file or a
video file. You can comment and uncomment the corresponding lines, return
cv2.VideoCapture(0) and return cv2.VideoCapture('Roller Coaster.mp4').
Here Roller Coaster.mp4 is a video clip you can download from this location:

https://www.pexels.com/video/roller-coaster-852415/

EXAMPLE 6.19  THE STREAMLITWEBFACE.PY PROGRAM

#Example 6.19 Face Detection in webcam - web app with Streamlit
#pip install --upgrade protobuf
#pip install streamlit

import streamlit as st
import cv2

cascade_classifier = cv2.CascadeClassifier('haarcascade_frontalface_
default.xml')

@st.cache(allow_output_mutation=True)
def get_cap():
 #from webcam
return cv2.VideoCapture(0)
 #from a video file
 return cv2.VideoCapture('Roller Coaster.mp4')

cap = get_cap()

frameST = st.empty()
st.title("Face Detection")
st.text("Built with Streamlit and OpenCV")

scale=st.sidebar.slider('Scale Factor:', 1.0, 2.0, 1.3)
mn=st.sidebar.slider('minNeighbors:', 5, 20, 5)
msize=st.sidebar.slider('minSize:', 10, 200, 30)

while True:
 ret, frame = cap.read()
 # Stop the program if reached end of video

https://www.pexels.com/video/roller-coaster-852415/

326	 Part III ■ AI Applications

 if not ret:
 cv2.waitKey(3000)
 cap.release()
 break

 gray_img=cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
 faces= cascade_classifier.detectMultiScale(gray_img,
 scaleFactor=scale,
 minNeighbors=mn,
 minSize=(msize, msize)
)

 for (x,y,w,h) in faces:
 cv2.rectangle(frame,(x,y),(x+w,y+h),(255,255,0),2)
 cv2.putText(frame,'face', (x + 10, y + 10), cv2.FONT_HERSHEY_
SIMPLEX, 1, (255,0,255), 2)

 frameST.image(frame, channels="BGR")

To run it, just type the following command in a Command Prompt window:

streamlit run StreamlitWebcamFace.py

Figure 6.23 shows the output of the previous program, which shows the face
detection in the Roller Coaster.mp4 video clip. There are the three sliders for
adjusting the scaleFactor, minNeighbours, and minSize parameters, and with
a face detected in the image.

Figure 6.23: The output of the StreamlitWebcamFace.py program, which shows the three
sliders for adjusting the scaleFactor, minNeighbours, and minSize parameters, and
with a face detected in the image

	 Chapter 6 ■ Face Detection and Face Recognition	 327

EXERCISE 6.18

Modify the previous Python program, adding another Save Face button that, when
clicked, will save the webcam image into a file.

Example 6.20 is a webcam-based beauty web app. It also has slider bars to
allow users to adjust different parameters of a live feed from the webcam.

EXAMPLE 6.20  THE STREAMLITWEBCAMBEAUTY PROGRAM

#Example 6.20 Webcam Beautify web app with Streamlit
#pip install --upgrade protobuf
#pip install streamlit

from PIL import Image
from PIL import ImageEnhance
import streamlit as st
import cv2
import numpy as np
import pandas as pd

@st.cache(allow_output_mutation=True)
def get_cap():
 return cv2.VideoCapture(0)

brightness = 1.5
contrast = 0.2
color=1.9
sharpness=0.1
whiteness = 1

cap = get_cap()

frameST = st.empty()
st.subheader("Webcam Beauty App")
st.sidebar.markdown("# Brightness Contrast ")
brightness = st.sidebar.slider("Brightness", 0, 255, 0, 1)
contrast = st.sidebar.slider("Contrast", 0, 255, 0, 1)
smothness = st.sidebar.slider("Smothness", 0.0, 5.0, 1.0, 0.1)

st.sidebar.markdown("# Alpha * frame + Beta")
alpha = st.sidebar.slider("Alpha", 0.0, 5.0, 2.0, 0.1)
beta = st.sidebar.slider("Beta", 0, 100, 10, 1)

def apply_brightness_contrast(input_img, brightness = 0, contrast = 0):

 if brightness != 0:
 if brightness > 0:

328	 Part III ■ AI Applications

 shadow = brightness
 highlight = 255
 else:
 shadow = 0
 highlight = 255 + brightness
 alpha_b = (highlight - shadow)/255
 gamma_b = shadow

 buf = cv2.addWeighted(input_img, alpha_b, input_img, 0,
gamma_b)
 else:
 buf = input_img.copy()

 if contrast != 0:
 f = 131*(contrast + 127)/(127*(131-contrast))
 alpha_c = f
 gamma_c = 127*(1-f)

 buf = cv2.addWeighted(buf, alpha_c, buf, 0, gamma_c)

 return buf

while True:
 ret, frame = cap.read()
 # Stop the program if reached end of video
 if not ret:
 cv2.waitKey(3000)
 # Release device
 cap.release()
 break

 #Alpha and Beta ===
 frame2 = np.uint8(np.clip((alpha * frame + beta), 0, 255))

 #Ajust the Smoothness of the Image===============================
 level = int(smothness*10)
 frame2 = cv2.bilateralFilter(frame2, level, 75, 75)

 #Adjust the brightness and contrast ==============================
 frame2 = apply_brightness_contrast(frame2, brightness , contrast)

 #concatanate image Vertically ===================================
 result=np.concatenate((frame,frame2),axis=0)

 frameST.image(result, channels="BGR")

	 Chapter 6 ■ Face Detection and Face Recognition	 329

To run it, just type the following command in a Command Prompt window:

streamlit run StreamlitWebcamBeauty.py

Figure 6.24 shows the output of the previous program; on the right are the
sliders for adjusting different parameters.

Example 6.21 is a photo pencil sketch program.

EXAMPLE 6.21  THE PENCILSKETCH_WEBAPP.PY PROGRAM

#Example 6.21 Pencil Sketch web app with Streamlit
import streamlit as st
import numpy as np
from PIL import Image
import cv2

def pencilSketch(inp_img):
 img_gray = cv2.cvtColor(inp_img, cv2.COLOR_BGR2GRAY)
 img_invert = cv2.bitwise_not(img_gray)
 img_smoothing = cv2.GaussianBlur(img_invert, (21, 21),sigmaX=0,
sigmaY=0)
 final_img = cv2.divide(img_gray, 255 - img_smoothing, scale=256)
 return(final_img)

Figure 6.24: The output of the StreamlitWebcamBeauty.py program, which shows the
sliders for adjusting different parameters

330	 Part III ■ AI Applications

st.title("Photo Pencil Sketch")
st.write("Convert your photos to pencil sketches")

file_image = st.sidebar.file_uploader("Upload your Photos",
type=['jpeg','jpg','png','gif'])

if file_image is None:
 st.write("No image file!")

else:
 input = Image.open(file_image)
 final_sketch = pencilSketch(np.array(input))
 st.write("Original Photo")
 st.image(input, use_column_width=True)
 st.write("Pencil Sketch")
 st.image(final_sketch, use_column_width=True)
 if st.button("Download"):
 im_pil = Image.fromarray(final_sketch)
 im_pil.save('output.jpg')
 st.write('Download completed')

To run it, just type the following command in a Command Prompt window:

streamlit run pencilsketch_webapp.py

Figure 6.25 shows the output of the proevious program, which shows an
impressive pencil sketch of a photo image.

Figure 6.25: The output of the pencilsketch_webapp.py program

	 Chapter 6 ■ Face Detection and Face Recognition	 331

EXERCISE 6.19

Modify the previous Python program, add sliders for adjusting the parameters in
the cv2.GaussianBlur(img_invert, (21, 21),sigmaX=0, sigmaY=0)
function. Comment on the results.

TensorFlow.js Facemesh  TensoFlow.js is Google’s solution for deploying
Python code through web apps by using JavaScript. The following is
the TensorFlow.js Facemesh repository GitHub site, with an impressive
Facemesh example.

https://github.com/tensorflow/tfjs-models/tree/master/face-landmarks-

detection

It also has a live demo website (https://storage.googleapis.com/tfjs-
models/demos/face-landmarks-detection/index.html), as shown in Figure 6.26,
where you use your own webcam for generating a face mesh.

Mediapipe  Mediapipe is another impressive library that provides a range
of deep learning functionalities, including face detection and face mesh-
ing; see the following link for more details.

https://github.com/google/mediapipe

Figure 6.26: The TensorFlow.js Facemesh live demo site
(Source: https://storage.googleapis.com/tfjs-models/demos/face-
landmarks-detection/index.html)

https://storage.googleapis.com/tfjs-models/demos/face-landmarks-detection/index.html
https://storage.googleapis.com/tfjs-models/demos/face-landmarks-detection/index.html
https://storage.googleapis.com/tfjs-models/demos/face-landmarks-detection/index.html
https://storage.googleapis.com/tfjs-models/demos/face-landmarks-detection/index.html

332	 Part III ■ AI Applications

To use it, you will need to install it first.

pip install mediapipe

With Mediapipe, you can also detect faces and generate face meshes. Example
6.22 shows a simple Mediapipe example for detecting faces in a file.

EXAMPLE 6.22  THE MEDIAPIPE_FACEMESH.PY PROGRAM

#Example 6.22 mediapipe facemesh
#Modified based on:
#https://google.github.io/mediapipe/solutions/face_mesh.html
#pip install mediapipe

import cv2
import mediapipe as mp
mp_drawing = mp.solutions.drawing_utils
mp_face_mesh = mp.solutions.face_mesh

For static images:
face_mesh = mp_face_mesh.FaceMesh(
 static_image_mode=True,
 max_num_faces=1,
 min_detection_confidence=0.5)
drawing_spec = mp_drawing.DrawingSpec(thickness=1, circle_radius=1)

file_list = ['emotion10.jpeg']
for idx, file in enumerate(file_list):
 image = cv2.imread(file)
 # Convert the BGR image to RGB before processing.
 results = face_mesh.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))

 # Print and draw face mesh landmarks on the image.
 if not results.multi_face_landmarks:
 continue
 annotated_image = image.copy()
 for face_landmarks in results.multi_face_landmarks:
 print('face_landmarks:', face_landmarks)
 mp_drawing.draw_landmarks(
 image=annotated_image,
 landmark_list=face_landmarks,
 connections=mp_face_mesh.FACEMESH_CONTOURS,
 landmark_drawing_spec=drawing_spec,
 connection_drawing_spec=drawing_spec)

	 Chapter 6 ■ Face Detection and Face Recognition	 333

 cv2.imwrite('annotated_image' + str(idx) + '.png', annotated_image)
 cv2.imshow(file,annotated_image)
face_mesh.close()

cv2.waitKey(-1)
cv2.destroyAllWindows()

EXERCISE 6.20

Modify the previous Python program, at file_list = ['emotion10.jpeg'], so
that it has more than one file. Run the program and comment on the results.

Example 6.23 shows a simple Mediapipe example for detecting faces in the
live feed of a webcam.

EXAMPLE 6.23  THE MEDIAPIPE_FACEMESH_WEBCAM.PY PROGRAM

#Example 6.23 mediapipe facemesh from webcam feed
#Modified based on:
#https://google.github.io/mediapipe/solutions/face_mesh.html
#pip install mediapipe

import cv2
import mediapipe as mp
mp_drawing = mp.solutions.drawing_utils
mp_face_mesh = mp.solutions.face_mesh

For webcam input:
face_mesh = mp_face_mesh.FaceMesh(
 min_detection_confidence=0.5, min_tracking_confidence=0.5)
drawing_spec = mp_drawing.DrawingSpec(thickness=1, circle_radius=1)
cap = cv2.VideoCapture(0)
#image = cv2.imread('emotion10.jpeg')

#while cap.isOpened():
while True:

 success, image = cap.read()
 if not success:

334	 Part III ■ AI Applications

 print("Ignoring empty camera frame.")
 # If loading a video, use 'break' instead of 'continue'.
 continue

 # Flip the image horizontally for a later selfie-view display, and
convert
 # the BGR image to RGB.
 image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
 # To improve performance, optionally mark the image as not
writeable to
 # pass by reference.
 image.flags.writeable = False
 results = face_mesh.process(image)

 # Draw the face mesh annotations on the image.
 image.flags.writeable = True
 image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
 if results.multi_face_landmarks:
 for face_landmarks in results.multi_face_landmarks:
 mp_drawing.draw_landmarks(
 image=image,
 landmark_list=face_landmarks,
 connections=mp_face_mesh. FACEMESH_CONTOURS,
 landmark_drawing_spec=drawing_spec,
 connection_drawing_spec=drawing_spec)
 cv2.imshow('MediaPipe FaceMesh', image)
 if cv2.waitKey(5) & 0xFF == 27:
 break
face_mesh.close()
cap.release()

EXERCISE 6.21

Modify the previous Python program and use the print() function to print all the
face landmarks and corresponding locations. Run the program and comment on the
results.

6.7  How to Defeat Face Recognition

As we explained, face recognition is highly controversial. If you don’t want
your face to be detected and recognized, there are a range of things you can do,
for example, wearing certain patterns on your clothes, wearing certain types of
glasses or makeup, or having certain types of hair styles.

	 Chapter 6 ■ Face Detection and Face Recognition	 335

For more details, check out the Survivopedia website for six ways to defeat
facial recognition.

https://www.survivopedia.com/6-ways-to-defeat-facial-recognition/

6.8  Summary

This chapter covered face detection and face recognition. Face detection means
to detect faces in an image, while face recognition, one of the most controversial
research topics in artificial intelligence, means to identify the person of each face.
Face recognition can be divided into four steps: face detection, face alignment,
face feature attraction, and face matching.

A popular way to detect faces is to use the Haar cascade classifier, an effective
object detection method proposed by Paul Viola and Michael Jones in 2001. Face
detection can also be achieved by using many deep learning neural network
model libraries, such as DLib library and Face_Recognition library, which not
only detect faces but also identify face landmarks such as eyebrows, eyes, nose,
chin, and mouth.

Face recognition can be achieved by using the Face_Recognition library or
OpenCV (for example, with its Local Binary Patterns Histograms Recognizer,
LBPHFaceRecognizer). We also presented a GUI-based face recognition system
example, where you can register, detect, and recognize faces.

■■ With the DeepFace library, you can perform age, gender, race, and emo-
tion detection.

■■ With OpenCV and DLib, you can detect faces in two images and swap
the faces.

■■ With the Streamlit library, you can easily turn those programs into web-
based apps.

■■ With the TensorFlow.js and Mediapipe libraries, you can create face meshes,
even within a web browser.

Finally, remember there are also ways to defeat face recognition, which is
also increasingly difficult to achieve thanks to the continuing advancement of
the technology.

336	 Part III ■ AI Applications

6.9  Chapter Review Questions

Q6.1.	 What is face detection?

Q6.2.	� What is face recognition? How many steps are there in face
recognition?

Q6.3.	 What are face landmarks?

Q6.4.	 How does age detection work?

Q6.5.	 How does gender detection work?

Q6.6.	 How does emotion detection work?

Q6.7.	 What is the DeepFace library?

Q6.8.	 What is face swap, and how does it work?

Q6.9.	 What is the PySimpleGUI library?

Q6.10.	 What is TensorFlow.js? What can it do?

Q6.11.	 What is the Mediapipe library? What can you achieve with it?

Q6.12.	� Do an Internet search, and find out more about how to defeat face
recognition.

C H A P T E R

337

7

C H A P T E R O U T L I N E

7.1 Introduction
7.2 Object Detections with Pretrained Models
7.3 Object Detections with Custom Trained Models
7.4 Object Tracking
7.5 Image Segmentation
7.6 Background Removal
7.7 Depth Estimation
7.8 Augmented Reality
7.9 Summary
7.10 Chapter Review Questions

Object Detections and Image
Segmentations

“AI doesn’t have to be evil to destroy humanity—if AI has a goal and humanity
just happens to come in the way, it will destroy humanity as a matter of course without

even thinking about it, no hard feelings.”

—Elon Musk (American entrepreneur, industrial designer, and engineer)

7.1  Introduction

Object detection is another important aspect of image analysis or image processing.
Different from image classification, which identifies the content of the whole
image, object detection detects and locates different objects within an image,
for example, to detect dogs and cats in an image or to detect cyclists, vehicles,
and pedestrians in an image.

338	 Part III ■ AI Applications

Traditionally, object detection is achieved by detecting colors, shapes, and
contours, and you can typically implement this by using the popular OpenCV
library. In Hollywood, people have long been using green-colored backgrounds
during filming, which can then be easily replaced with different scenes later.
However, this approach is suitable only for detecting simple objects.

A much more modern approach is to use deep learning neural network models,
which are suitable for detecting more complex objects. Object detection with
deep learning is essentially dividing the whole image into small regions and
performing image classification with each region.

The following are some commonly used deep learning neural network models
for object detection:

■■ R-CNN: Region-based convolutional neural network (two-step approach)

■■ YOLO: You only look once (one-step approach)

■■ SSD: Single-shot detector (one-step approach)

R-CNN is a two-step approach, first to identify regions and then to detect
objects in those regions using convolutional neural networks (CNNs). YOLO and
SSD are one-step approaches, which use a CNN that is able to find all objects
within an image in one step.

R-CNN Family
R-CNNs are a family of techniques for addressing object localization and recog-
nition tasks, which include R-CNN, Fast R-CNN, Faster R-CNN, and the latest
Mask R-CNN. Facebook’s Mesh R-CNN is also a cool implementation that can
even predict the full 3D shape of each detected object.

R-CNN was introduced in 2013 by Ross Girshick and colleagues from Uni-
versity of California – Berkeley, in a paper titled “Rich feature hierarchies for
accurate object detection and semantic segmentation.” Traditionally, object
detection is done through sliding windows, that is, scanning through the image
with sliding windows of different sizes and trying to find if there is an object
inside the window. As you can see, this process is extremely time-consuming.
A much more efficient approach is selective search, which is an advanced
algorithm that seeks to merge similar pixels and to find regions of an image
that could contain an object. R-CNN first uses selective search to generate 2,000
regions from the image, called regions of interest (ROIs). It then extracts features
from these regions by using CNNs and checks whether any of these regions
contain any object by classifying features as one of the known classes using the
Support Vector Machines (SVM) classifier. In other words, R-CNN divides the
image into 2,000 proposed regions and performs image classification on each
region. For every region with known objects, it labels the region and puts a box

	 Chapter 7 ■ Object Detections and Image Segmentations	 339

around the region. R-CNN achieved then state-of-the-art results on the VOC-
2012 dataset and the 200-class ILSVRC-2013 object detection dataset.

However, R-CNN is also very slow. It takes around 40 to 50 seconds to make
predictions for each image, which makes it impossible for real-time object
detection.

Fast R-CNN was introduced, also by Ross Girshick, to reduce the computational
burden of R-CNN. Instead of dividing the image into 2,000 regions and running
a CNN for each region, it runs a CNN on the whole image first, generates the
convolutional feature maps, and then uses a ROI pooling layer to reshape all the
proposed regions (region proposals) into a fixed size so that it can be fed into
a fully connected network. As a result, Fast R-CNN has dramatically reduced
the time from 40 to 50 seconds to around 2 seconds per image to detect objects.
However, 2 seconds per image is still not good enough for real-time detection.
Here enters Faster R-CNN.

Faster R-CNN is the modified version of Fast RCNN. Instead of using selective
search for generating regions of interest, Faster RCNN uses a region proposal
network (RPN), which takes image feature maps as an input and generates a
set of object proposals, each with an object score as output.

Mask R-CNN is basically an extension of Faster R-CNN. It is built on top of
Faster R-CNN. In addition to the class label and bounding box coordinates for
each object, Mask R-CNN will also return the object mask.

Mesh R-CNN is from Facebook AI Research (FAIR). Mesh R-CNN takes an
input image, predicts object instances in that image, and infers their 3D shape.
The implementation of Mesh R-CNN is based on Detectron2 and PyTorch3D
(https://github.com/facebookresearch/meshrcnn).

YOLO
YOLO was first developed by Joseph Redmon and Ross Girshick in 2015, in a
paper titled “You Only Look Once: Unified, Real-Time Object Detection.” YOLO
uses a single neural network trained from end to end to predict objects in an
image with bounding boxes and class labels. It first splits the image into a grid
of nonoverlapping NxN cells. Then for each cell, it predicts a bounding box if
the center of a bounding box falls within the cell. It also predicts the class and
the confidence. YOLO uses a technique called nonmax suppression to remove
overlapping boxes by returning the boxes with maximum probability and sup-
pressing the close-by boxes with nonmax probabilities. YOLO is less accurate
and not good at detecting small objects, but YOLO is orders of magnitude faster
than other object detection algorithms. YOLO can remarkably process images
at 45 frames per second and up to 155 frames per second for a speed-optimized
version of the model. YOLO has four official versions: v1, v2, v3, and v4.

https://github.com/facebookresearch/meshrcnn

340	 Part III ■ AI Applications

SSD
SSD was developed by Wei Liu and colleagues in 2016 in a paper titled “SSD:
Single Shot MultiBox Detector.” Unlike YOLO, SSD does not split the image
into grids of arbitrary size but uses a convolutional neural network’s pyramidal
feature hierarchy for efficient detection of objects of various sizes. SSD has two
components, a feature extraction network and a detection network. The feature
extraction network usually is a pretrained image classification network used
as a feature extractor, such as a ResNet trained on an ImageNet. The detection
network is just one or more convolutional layers added to this feature extrac-
tion network. The detection network’s outputs are the bounding boxes and
classes of objects.

Table 7.1 compares different object detection algorithms.

Table 7.1: Comparison of Different Object Detection Algorithms

ALGORITHM FEATURES

PREDICTION
TIME PER
IMAGE PROS AND CONS

R-CNN Uses selective search to
generate 2,000 regions from
each image and extracts
features using CNN from
each region.

40 to 50
seconds

Accurate but slow.
Long computation
time, as well as using
three different
models for
predictions. Not
suitable for real-time
detection.

Fast R-CNN Uses CNN only once on the
image to extract feature
maps and use selective
search on the maps to detect
objects.

2.3 seconds Computation time is
still long for real-time
detection. Selective
search is slow.

Faster R-CNN Uses RPN to extract features.
RPN is much faster.

0.2 seconds Very accurate and
reasonably fast.

Mask R-CNN Built on top of Faster R-CNN;
returns not only object class,
label, bounding box, but also
its mask.

0.2 seconds Very accurate and
with object mask.

YOLO Divides the image into grids
and uses a single neural
network to predict objects in
an image

0.02 seconds Less accurate but
very fast.

SSD Uses a pretrained feature
extraction network and a
detection network to detect
objects.

0.02 seconds Less accurate but
very fast.

	 Chapter 7 ■ Object Detections and Image Segmentations	 341

In summary, if you look for accurate object detection, choose Faster R-CNN
or Mask R-CNN, and if you look for fast object detection, choose YOLO or SSD.
In fact, variants of YOLO and SSD can achieve comparable accuracies as Faster
R-CNN; see the following article for a detailed accuracy comparison:

https://jonathan-hui.medium.com/object-detection-speed-and-

accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359

7.2  Object Detections with Pretrained Models

Object detection can be done by using either pretrained models or customized
trained models. Pretrained models are trained on large object image datasets,
such as a COCO image dataset (https://cocodataset.org/).

7.2.1  Object Detection with OpenCV
OpenCV is the most widely used for object detections. To use OpenCV, you
need to install the library first.

pip install opencv-python

OpenCV can detect objects by using shapes, contours, colors, or Haar cas-
cade codes.

Example 7.1 is a simple Python circle detection code. It first reads the image
from a file called ball.jpeg, changes to grayscale, and then uses the cv2
.HoughCircles() function to detect the circles. The image file ball.jpeg is
again from http://www.pexels.com.

EXAMPLE 7.1  THE OPENCV1.PY PROGRAM

#Example 7.1 Circle Detection
import cv2

img = cv2.imread("ball.jpeg")
width,height,c=img.shape
print(img.shape)

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = cv2.medianBlur(gray, 5)
circles = cv2.HoughCircles(gray,cv2.HOUGH_GRADIENT,1,20,
 param1=50,param2=30,minRadius=35,maxRadius=50)

for co, i in enumerate(circles[0, :], start=1):
 cv2.circle(img,(int(i[0]),int(i[1])),int(i[2]),(0,255,0),2)
 cv2.circle(img,(int(i[0]),int(i[1])),2,(0,0,255),3)
print("Number of circles detected:", co)
cv2.imshow('Circle Detection',img)

https://jonathan-hui.medium.com/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359
https://jonathan-hui.medium.com/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359
https://cocodataset.org/
http://www.pexels.com

342	 Part III ■ AI Applications

Figure 7.1 shows the output. You can use minRadius and maxRadius to control
the number of circles detected.

EXERCISE 7.1

Modify the Example 7.1 Python program, trying different images, and comment on the
accuracy of detection. Adjust the parameters of the cv2.HoughCircles() function,
and see how they affect the results.

Example 7.2 is a simple Python shape detection code. It reads the image from
a file called shapes1.jpeg, changes it to grayscale, blurs the image using the
cv2.medianBlur() function, uses the cv2.findContours() function to detect
the different shapes, and then selects only the contours whose area is greater
than 10. The image file shapes1.jpeg is again from http://www.pexels.com.

EXAMPLE 7.2  THE OPENCV2.PY PROGRAM

#Example 7.2 Shape Detection
import cv2
import numpy as np

img = cv2.imread("shapes1.jpeg")
width,height,c=img.shape
print(img.shape)

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = cv2.medianBlur(gray, 5)
ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2
.THRESH_OTSU)
cnts, _ = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2
.CHAIN_APPROX_SIMPLE)
cnts = np.array(cnts)[[cv2.contourArea(c)>10 for c in cnts]]

Figure 7.1: The output of the Example 7.1 program with two circles detected

http://www.pexels.com

	 Chapter 7 ■ Object Detections and Image Segmentations	 343

for c in cnts:
 area = cv2.contourArea(c)
 if area > 10:
 cv2.drawContours(img, [c], -1, (0, 255, 0), 2)
 M = cv2.moments(c)
 if M["m00"] != 0:
 cX = int((M["m10"] / M["m00"]))
 cY = int((M["m01"] / M["m00"]))
 # Find the Center of a Blob (detected contour)
 cv2.circle(img, (cX,cY), 2, (255, 255,0), 2)
cv2.imshow("Output", img)
cv2.waitKey(0)

Figure 7.2 shows the output.

EXERCISE 7.2

Modify the Example 7.2 Python program, trying different images, and comment on the
accuracy of detection.

Example 7.2a is a different version of the earlier Python shape detection
code. It first reads the image from a file, changes to grayscale, then uses the cv2
.Canny() function to find the edges, uses the cv2.findContours() function to
detect the different shapes, and uses the cv2.drawContours() function to draw
the different contours.

EXAMPLE 7.2A  THE OPENCV2A.PY PROGRAM

#Example 7.2a Identifying and Drawing Contours with OpenCV
import cv2
import numpy as np

image = cv2.imread('shapes.jpeg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

Figure 7.2: The output of the Example 7.2 program with different shapes detected

344	 Part III ■ AI Applications

edged = cv2.Canny(gray, 30, 200)
contours, hierarchy = cv2.findContours(edged,
 cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)

print("Number of Contours found = " + str(len(contours)))

contourIdx=-1signifies drawing all contours 3: thickness
cv2.drawContours(image=image, contours=contours, contourIdx=-1,
color=(0, 255, 0), thickness=2, lineType=cv2.LINE_AA)cv2
.imshow('Contours', image)
cv2.waitKey(0)

EXERCISE 7.3

Modify the Example 7.2a Python program, trying different images and commenting on
the accuracy of detection. Adjust the parameters of the cv2.Canny() function to see
how they affect the results.

Example 7.3 is a simple Python object detection code based on color. It uses
a webcam to read in the image, uses a tracker bar to select the range of HSV
values, uses HSV ranges to generate a mask, and then uses the mask to mask
out the background of the image. We are left with the detected object. You can
use this program to select the desired color range for your object, such as skin
or a hand.

EXAMPLE 7.3  THE OPENCV3.PY PROGRAM

#Example 7.3 Color Detection
import cv2
import numpy as np

def callback(x):
 pass

cap = cv2.VideoCapture(0)
cv2.namedWindow('HSV Color')

create trackbars for HSV color
cv2.createTrackbar('H0','HSV Color',0,179,callback)
cv2.createTrackbar('H1','HSV Color',179,179,callback)

cv2.createTrackbar('S0','HSV Color',0,255,callback)
cv2.createTrackbar('S1','HSV Color',255,255,callback)

cv2.createTrackbar('V0','HSV Color',0,255,callback)
cv2.createTrackbar('V1','HSV Color',255,255,callback)

	 Chapter 7 ■ Object Detections and Image Segmentations	 345

while(1):
 ret, frame = cap.read()
 h0 = cv2.getTrackbarPos('H0', 'HSV Color')
 h1 = cv2.getTrackbarPos('H1', 'HSV Color')
 s0 = cv2.getTrackbarPos('S0', 'HSV Color')
 s1 = cv2.getTrackbarPos('S1', 'HSV Color')
 v0 = cv2.getTrackbarPos('V0', 'HSV Color')
 v1 = cv2.getTrackbarPos('V1', 'HSV Color')

 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
 cv2.imshow('HSV', hsv)
 lower = np.array([h0, s0, v0])
 higher = np.array([h1, s1, v1])
 mask = cv2.inRange(hsv, lower, higher)
 frame = cv2.bitwise_and(frame, frame, mask=mask)

 cv2.imshow('frame', frame)

 if(cv2.waitKey(1) & 0xFF == ord('q')):
 break
cv2.destroyAllWindows()
cap.release()

Figure 7.3 shows the output of the earlier program including the masked
image, the image in HSV color space, and the HSV sliders.

Figure 7.3: The output of the Example 7.3 program that shows the original webcam image (top
left), the masked image (top right), and the HSV sliders (bottom)

346	 Part III ■ AI Applications

EXERCISE 7.4

Modify the Example 7.3 Python program, using the cv2.imshow() function to
display the mask as well.

Example 7.4 is a simple Python full body detection code based on the Haar
cascade code. You can find more about the Haar cascade code from https://
github.com/opencv/opencv/tree/master/data/haarcascades.

EXAMPLE 7.4  THE OPENCV4.PY PROGRAM

#Example 7.4 Haar Cascade Code Detection
import time
import numpy as np
import cv2
classifier = cv2.CascadeClassifier('haarcascade_fullbody.xml')
cap = cv2.VideoCapture(0)

while cap.isOpened():
 ret, frame = cap.read()
 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

 # Pass frame to the classifier
 bodys = classifier.detectMultiScale(gray, 1.5, 10)

 # Extract bounding boxes for any bodies identified
 for (x,y,w,h) in bodys:
 cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 255), 2)

 cv2.imshow('Body', frame)
 if cv2.waitKey(1) == 13: #13 is the Enter Key
 break
cap.release()
cv2.destroyAllWindows()

EXERCISE 7.5

Modify the Example 7.4 Python program so that it can detect the upper body by using
the upper body Haar cascade code, in haarcascade_upperbody.xml.

7.2.2  Object Detection with YOLO
YOLO is one of the most popular object detection libraries. You can detect 20
different classes of objects with YOLO. For more details, see the following:

https://github.com/pjreddie/darknet

https://github.com/opencv/opencv/tree/master/data/haarcascades
https://github.com/opencv/opencv/tree/master/data/haarcascades
https://github.com/pjreddie/darknet

	 Chapter 7 ■ Object Detections and Image Segmentations	 347

Example 7.5 is a simple Python YOLO program that works for both YOLOv3
and YOLOv4. It is modified from this GitHub repository: https://github.com/
iArunava/YOLOv3-Object-Detection-with-OpenCV. It has two files, yolov3
.py and yolo_util.py. To run this program, you also need to download the
YOLOv3 weights and CFG and COCO label files from the following links and
save them into a subfolder called yolov3-coco:

https://pjreddie.com/media/files/yolov3.weights

https://github.com/pjreddie/darknet/blob/master/cfg/yolov3.cfg

https://github.com/pjreddie/darknet/blob/master/data/coco.names

https://github.com/iArunava/YOLOv3-Object-Detection-with-OpenCV/

blob/master/yolov3-coco/coco-labels

This is the yolov3.py program.

EXAMPLE 7.5  THE YOLOV3.PY PROGRAM

#Example 7.5 YOLOv3 Detection
import numpy as np
import argparse
import cv2 as cv
import subprocess
import time
import os
from yolo_utils import infer_image, show_image
from types import SimpleNamespace

d = {'confidence':0.5,'threshold':0.3,
 'weights':'./yolov3-coco/yolov3.weights',
 'config':'./yolov3-coco/yolov3.cfg',
 'show_time':False}
FLAGS = SimpleNamespace(**d)
cocolabels='./yolov3-coco/coco-labels'
labels = open(cocolabels).read().strip().split('\n')
print(FLAGS)

colors = np.random.randint(0, 255, size=(len(labels), 3), dtype='uint8')
net = cv.dnn.readNetFromDarknet(FLAGS.config, FLAGS.weights)

layer_names = net.getLayerNames()
layer_names = [layer_names[i[0] - 1] for i in net
.getUnconnectedOutLayers()]

vid = cv.VideoCapture(0)

while True:
 _, frame = vid.read()

https://github.com/iArunava/YOLOv3-Object-Detection-with-OpenCV
https://github.com/iArunava/YOLOv3-Object-Detection-with-OpenCV
https://pjreddie.com/media/files/yolov3.weights
https://github.com/pjreddie/darknet/blob/master/cfg/yolov3.cfg
https://github.com/pjreddie/darknet/blob/master/data/coco.names
https://github.com/iArunava/YOLOv3-Object-Detection-with-OpenCV/blob/master/yolov3-coco/coco-labels
https://github.com/iArunava/YOLOv3-Object-Detection-with-OpenCV/blob/master/yolov3-coco/coco-labels

348	 Part III ■ AI Applications

 #frame = cv.resize(frame, (1280,720), interpolation = cv.INTER_AREA)
 #1920, 1080
 frame = cv.resize(frame, (640,360), interpolation = cv.INTER_AREA)
 height, width = frame.shape[:2]
 frame, boxes, confidences, classids, idxs = infer_image(net,
layer_names, \
 height, width, frame, colors, labels, FLAGS)
 cv.imshow('webcam', frame)

 if cv.waitKey(1) & 0xFF == ord('q'):
 break
vid.release()
cv.destroyAllWindows()

This is the yolo_utils.py program:

#Example 7.5 yolo_utils.py
import numpy as np
import argparse
import cv2 as cv
import subprocess
import time
import os

def show_image(img):
 cv.imshow("Image", img)
 cv.waitKey(0)

def draw_labels_and_boxes(img, boxes, confidences, classids, idxs, colors,
labels):
 # If there are any detections
 if len(idxs) > 0:
 for i in idxs.flatten():
 # Get the bounding box coordinates
 x, y = boxes[i][0], boxes[i][1]
 w, h = boxes[i][2], boxes[i][3]

 # Get the unique color for this class
 color = [int(c) for c in colors[classids[i]]]

 # Draw the bounding box rectangle and label on the image
 cv.rectangle(img, (x, y), (x+w, y+h), color, 2)
 text = "{}: {:4f}".format(labels[classids[i]], confidences[i])
 cv.putText(img, text, (x, y-5), cv.FONT_HERSHEY_SIMPLEX, 0.5,
color, 2)
 return img

	 Chapter 7 ■ Object Detections and Image Segmentations	 349

def generate_boxes_confidences_classids(outs, height, width, tconf):
 boxes = []
 confidences = []
 classids = []

 for out in outs:
 for detection in out:
 #print (detection)
 #a = input('GO!')

 # Get the scores, classid, and the confidence of the prediction
 scores = detection[5:]
 classid = np.argmax(scores)
 confidence = scores[classid]

 # Consider only the predictions that are above a certain
confidence level
 if confidence > tconf:
 # TODO Check detection
 box = detection[0:4] * np.array([width, height, width,
height])
 centerX, centerY, bwidth, bheight = box.astype('int')

 # Using the center x, y coordinates to derive the top
 # and the left corner of the bounding box
 x = int(centerX - (bwidth / 2))
 y = int(centerY - (bheight / 2))

 # Append to list
 boxes.append([x, y, int(bwidth), int(bheight)])
 confidences.append(float(confidence))
 classids.append(classid)

 return boxes, confidences, classids

def infer_image(net, layer_names, height, width, img, colors, labels, FLAGS,
 boxes=None, confidences=None, classids=None, idxs=None,
infer=True):

 if infer:
 # Contructing a blob from the input image
 blob = cv.dnn.blobFromImage(img, 1 / 255.0, (416, 416),
 swapRB=True, crop=False)

 # Perform a forward pass of the YOLO object detector
 net.setInput(blob)

350	 Part III ■ AI Applications

 # Getting the outputs from the output layers
 start = time.time()
 outs = net.forward(layer_names)
 end = time.time()

 if FLAGS.show_time:
 print ("[INFO] YOLOv3 took {:6f} seconds".format(end - start))

 # Generate the boxes, confidences, and classIDs
 boxes, confidences, classids = generate_boxes_confidences_
classids(outs, height, width, FLAGS.confidence)

 # Apply Non-Maxima Suppression to suppress overlapping bounding
boxes
 idxs = cv.dnn.NMSBoxes(boxes, confidences, FLAGS.confidence,
FLAGS.threshold)

 if boxes is None or confidences is None or idxs is None or classids
is None:
 raise '[ERROR] Required variables are set to None before drawing
boxes on images.'

 # Draw labels and boxes on the image
 img = draw_labels_and_boxes(img, boxes, confidences, classids, idxs,
colors, labels)

 return img, boxes, confidences, classids, idxs

EXERCISE 7.6

Modify the Example 7.5 Python program so that it uses a YOLOv3-Tiny model for object
detection. Comment on the accuracy and speed. You can get the YOLOv3-Tiny model
weights and CFG files from here:

https://pjreddie.com/media/files/yolov3-tiny.weights
https://github.com/pjreddie/darknet/blob/master/cfg/

yolov3-tiny.cfg

EXERCISE 7.7

Modify the Example 7.5 Python program so that it uses the YOLOv4 model for object
detection. Comment on the accuracy and speed. You can get the YOLOv4 model
weights and CFG files from here:

https://github.com/AlexeyAB/darknet/releases/download/
darknet_yolo_v3_optimal/yolov4.weights

https://raw.githubusercontent.com/AlexeyAB/darknet/master/
cfg/yolov4.cfg

https://pjreddie.com/media/files/yolov3-tiny.weights
https://github.com/pjreddie/darknet/blob/master/cfg/yolov3-tiny.cfg
https://github.com/pjreddie/darknet/blob/master/cfg/yolov3-tiny.cfg
https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.weights
https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.weights
https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4.cfg
https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4.cfg

	 Chapter 7 ■ Object Detections and Image Segmentations	 351

For more details about YOLOv4, see the following:
https://github.com/AlexeyAB/darknet

PySimpleGUI-YOLO   You can also use PySimpleGUI library to create
a YOLO object detection program; see a ready example in Figure 7.4.

For more examples about using PySimpleGUI library, see the following:

https://pysimplegui.readthedocs.io/en/latest/

7.2.3  Object Detection with OpenCV and Deep Learning
Example 7.6 is an object detection Python program that uses OpenCV and deep
learning neural networks. It uses OpenCV to load the MobileNet SSD deep
learning model to detect 20 different objects from webcam images.

You need to download the MobileNet SSD model files, MobileNetSSD_deploy
.prototxt and MobileNetSSD_deploy.caffemodel, from here:

https://github.com/TheNsBhasin/DNN_Object_Detection/

In the program, this is to specify the deep learning model files and the
confidence for detection:

prototxt = 'MobileNetSSD_deploy.prototxt'
model = 'MobileNetSSD_deploy.caffemodel'
confidence = 0.1

Figure 7.4: The GitHub website for the PySimpleGUI-YOLO project
(Source: https://github.com/PySimpleGUI/PySimpleGUI-YOLO)

https://github.com/AlexeyAB/darknet
https://pysimplegui.readthedocs.io/en/latest/
https://github.com/TheNsBhasin/DNN_Object_Detection/
https://github.com/PySimpleGUI/PySimpleGUI-YOLO

352	 Part III ■ AI Applications

This is to specify all the object labels:

CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
 "bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
 "dog", "horse", "motorbike", "person", "pottedplant", "sheep",
 "sofa", "train", "tvmonitor"]

This is to use OpenCV to load the deep learning model:

net = cv2.dnn.readNetFromCaffe(prototxt, model)

This is to use the deep learning model to detect objects in the image:

 net.setInput(blob)
 detections = net.forward()

This is to display all the detected objects whose confidence is greater than
0.1 on the image:

 for i in np.arange(0, detections.shape[2]):
 conf = detections[0, 0, i, 2]

 if conf > confidence:

Example 7.6 shows the complete code.

EXAMPLE 7.6  THE OBJECTDETECTIONDNNOPENCV.PY PROGRAM

Example 7.6 MobileNet SSD Object Detection
Modified based on:
https://www.pyimagesearch.com/2017/09/18/
real-time-object-detection-with-deep-learning-and-opencv/

import the necessary packages
from imutils.video import VideoStream
from imutils.video import FPS
import numpy as np
import argparse
import imutils
import time
import cv2

prototxt = 'MobileNetSSD_deploy.prototxt'
model = 'MobileNetSSD_deploy.caffemodel'
confidence = 0.1

CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
 "bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
 "dog", "horse", "motorbike", "person", "pottedplant", "sheep",
 "sofa", "train", "tvmonitor"]

	 Chapter 7 ■ Object Detections and Image Segmentations	 353

COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))

net = cv2.dnn.readNetFromCaffe(prototxt, model)

vf=0
vs = VideoStream(vf).start()

time.sleep(2.0)
fps = FPS().start()

while True:
 frame = vs.read()
 frame = imutils.resize(frame, width=400)
 (h, w) = frame.shape[:2]
 blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)),
 0.007843, (300, 300), 127.5)
 net.setInput(blob)
 detections = net.forward()

 for i in np.arange(0, detections.shape[2]):
 conf = detections[0, 0, i, 2]

 if conf > confidence:
 idx = int(detections[0, 0, i, 1])
 box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
 (startX, startY, endX, endY) = box.astype("int")
 label = "{}: {:.2f}%".format(CLASSES[idx],
 conf * 100)
 cv2.rectangle(frame, (startX, startY), (endX, endY),
 COLORS[idx], 2)
 y = startY - 15 if startY - 15 > 15 else startY + 15
 cv2.putText(frame, label, (startX, y),
 cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)
 cv2.imshow("Frame", frame)
 key = cv2.waitKey(1) & 0xFF
 # if the `q` key was pressed, break from the loop
 if key == ord("q"):
 break
 fps.update()

fps.stop()
print("[INFO] elapsed time: {:.2f}".format(fps.elapsed()))
print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))
do a bit of cleanup
cv2.destroyAllWindows()
vs.stop()

Example output below:

354	 Part III ■ AI Applications

EXERCISE 7.8

Modify the earlier Python program, adding a slider for adjusting different confidence
levels. Comment on the accuracy.

7.2.4  Object Detection with TensorFlow, ImageAI, Mask
RNN, PixelLib, Gluon
In this section, we’ll talk about object detection with even more libraries.

TensorFlow Object Detection

You can also use TensorFlow for object detection. The following link shows the
GitHub website for object detection using TensorFlow 2.

https://github.com/TannerGilbert/Tensorflow-Object-Detection-with-

Tensorflow-2.0

More details are also available from here:

https://gilberttanner.com/blog/object-detection-with-tensorflow-2

There is also a Google Colab tutorial on object detection using TensorFlow 2
for you to try; see the following link.

https://colab.research.google.com/github/tensorflow/models/blob/

master/research/object_detection/colab_tutorials/object_detection_

tutorial.ipynb

EXERCISE 7.9

From a web browser, use the URL shown earlier to find the Google Colab tutorial, make
a copy of it in your own Google Colab account, run the program on different images,
and comment on the accuracy.

The following link shows an interesting example code for using TensorFlow
object detection through the webcam.

https://tensorflow-object-detection-api-tutorial.readthedocs.io/

en/latest/auto_examples/object_detection_camera.html

EXERCISE 7.10

Save the earlier example code in a Python file, run the program on a different object,
and comment on the accuracy and speed.

https://github.com/TannerGilbert/Tensorflow-Object-Detection-with-Tensorflow-2.0
https://github.com/TannerGilbert/Tensorflow-Object-Detection-with-Tensorflow-2.0
https://gilberttanner.com/blog/object-detection-with-tensorflow-2
https://colab.research.google.com/github/tensorflow/models/blob/master/research/object_detection/colab_tutorials/object_detection_tutorial.ipynb

https://colab.research.google.com/github/tensorflow/models/blob/master/research/object_detection/colab_tutorials/object_detection_tutorial.ipynb

https://colab.research.google.com/github/tensorflow/models/blob/master/research/object_detection/colab_tutorials/object_detection_tutorial.ipynb

https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/auto_examples/object_detection_camera.html
https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/auto_examples/object_detection_camera.html

	 Chapter 7 ■ Object Detections and Image Segmentations	 355

ImageAI Object Detection

ImageAI is an object detection library built on TensorFlow version 1.x. See the
following links for more details:

https://imageai.readthedocs.io/en/latest/

https://github.com/OlafenwaMoses/ImageAI

Example 7.7 shows some simple code for object detection that uses the ImageAI
library. As you can see, it has only eight lines of code. It is based on ResNet50
deep learning neural networks. You need to download the ResNet50 library
from here:

https://github.com/OlafenwaMoses/ImageAI/releases/download/

essentials-v5/resnet50_imagenet_tf.2.0.h5

https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/

resnet50_coco_best_v2.0.1.h5

EXAMPLE 7.7  THE IMAGEAI1.PY PROGRAM

Example 7.7 Object Detection with ImageAI
https://github.com/OlafenwaMoses/ImageAI
Only works for TensorFlow 1.X
pip install imageai

from imageai.Detection import ObjectDetection
import cv2
import time;

t0 = time.time();
detector = ObjectDetection()
detector.setModelTypeAsRetinaNet()
detector.setModelPath("resnet50_coco_best_v2.0.1.h5")
detector.loadModel()
detections = detector.detectObjectsFromImage("fruits.jpeg", output_
image_path="imagenew.jpg")
print(detections)
t1 = time.time() - t0;
print(t1)

EXERCISE 7.11

Modify the earlier Python program to use the YOLOv3 model; see the model file to
download here. Run the program and comment on the accuracy and speed.

https://github.com/OlafenwaMoses/ImageAI/releases/
download/1.0/yolo.h5/

https://imageai.readthedocs.io/en/latest/
https://github.com/OlafenwaMoses/ImageAI
https://github.com/OlafenwaMoses/ImageAI/releases/download/essentials-v5/resnet50_imagenet_tf.2.0.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/essentials-v5/resnet50_imagenet_tf.2.0.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coco_best_v2.0.1.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50_coco_best_v2.0.1.h5
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo.h5/
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo.h5/

356	 Part III ■ AI Applications

Example 7.8 is a longer version of the earlier program. It not only detects the
objects but also prints out the x,y locations of the objects.

EXAMPLE 7.8  THE IMAGEAI2.PY PROGRAM

Example 7.8 Object Detection with ImageAI
https://github.com/OlafenwaMoses/ImageAI
Only works for TensorFlow 1.X
pip install imageai

import matplotlib.pyplot as plt
from imageai.Detection import ObjectDetection
import os
import cv2

import tensorflow.compat.v1 as tf
tf.disable_v2_behavior

execution_path = os.getcwd()
print(execution_path)
input_image=os.path.join(execution_path , "fruits.jpeg")

detector = ObjectDetection()
detector.setModelTypeAsRetinaNet()
detector.setModelPath(os.path.join(execution_path ,
"resnet50_coco_best_v2.0.1.h5"))
#detector.setModelTypeAsYOLOv3()
#detector.setModelPath(os.path.join(execution_path , "yolo.h5")) #
Download the model via this link https://github.com/OlafenwaMoses/
ImageAI/releases/tag/1.0

detector.loadModel()
detections = detector.detectObjectsFromImage(input_image, output_
image_path=os.path.join(execution_path , "imagenew.jpg"))

for eachObject in detections:
 print(eachObject["name"] , " : " , eachObject["percentage_
probability"] , " : ", eachObject["box_points"])
 x1= int(eachObject["box_points"][0])
 y1= int(eachObject["box_points"][1])
 x2= int(eachObject["box_points"][2])
 y2= int(eachObject["box_points"][3])
 start_point = (x1,y1)
 end_point = (x2,y2)
 image = cv2.rectangle(image, start_point, end_point, color,
thickness)
 cv2.putText(image, eachObject["name"] , (x1, y1-10), cv2.FONT_
HERSHEY_SIMPLEX, 0.9, color , thickness)

	 Chapter 7 ■ Object Detections and Image Segmentations	 357

Displaying the image
cv2.imshow(window_name, image)

EXERCISE 7.12

Modify the earlier Python program to use the YOLOv3-Tiny model; see the model file to
download here. Run the program and comment on the accuracy and speed.

https://github.com/OlafenwaMoses/ImageAI/releases/
download/1.0/yolo-tiny.h5/

Example 7.9 is a webcam version of the earlier program.

EXAMPLE 7.9  THE IMAGEAIWEBCAM.PY PROGRAM

Example 7.9 Object Detection from live webcam feed with ImageAI
from imageai.Detection import VideoObjectDetection
import os
import cv2

camera = cv2.VideoCapture(0)

detector = VideoObjectDetection()
detector.setModelTypeAsRetinaNet()
detector.setModelPath("resnet50_coco_best_v2.0.1.h5")
detector.loadModel()

video_path = detector.detectObjectsFromVideo(camera_input=camera,
 output_file_path=os.path.join(execution_path, "camera_detected_video")
 , frames_per_second=20, log_progress=True, minimum_percentage_
probability=40, detection_timeout=120)

EXERCISE 7.13

Modify the earlier Python program to use the YOLOv3 or YOLOv3-Tiny model. Run the
program and comment on the accuracy and speed.

MaskRCNN Object Detection

MaskRCNN is also a popular Python library for object detection. It is based
on the Mask R-CNN algorithm; see the following GitHub site for more details:

https://github.com/matterport/Mask_RCNN/

https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo-tiny.h5/
https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/yolo-tiny.h5/
https://github.com/matterport/Mask_RCNN/

358	 Part III ■ AI Applications

To use it, you need to install it first, as well as scikit-image, which it relies
upon, by typing this:

pip install mrcnn scikit-image

Example 7.10 is a code for object detection that uses the MaskRCNN library.
It is modified based on the following:

https://machinelearningmastery.com/how-to-perform-object-detection-

in-photographs-with-mask-r-cnn-in-keras/

Note this example requires TensorFlow version 1.

EXAMPLE 7.10  THE MASK R-CNN.PY PROGRAM

Example 7.10 Object Detection with MaskRCNN
Modified based on:
https://machinelearningmastery.com/how-to-perform-object-detection-
in-photographs-with-mask-r-cnn-in-keras/
example of inference with a pre-trained coco model: download from
https://github.com/matterport/Mask_RCNN/releases/download/v2.0/mask_
rcnn_coco.h5

from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array
from mrcnn.config import Config
from mrcnn.model import MaskRCNN
from mrcnn import model as modellib
from mrcnn import visualize

from matplotlib import pyplot
from matplotlib.patches import Rectangle
import cv2
import numpy as np
import imutils
import colorsys
import random
import os

load the class label names from disk, one label per line
#The content does not seem to be correct
#CCLASS_NAMES = open('coco_labels.txt').read().strip().split("\n")

CLASS_NAMES = ['BG', 'person', 'bicycle', 'car', 'motorcycle', 'airplane',
 'bus', 'train', 'truck', 'boat', 'traffic light',
 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird',
 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear',
 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie',
 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
 'kite', 'baseball bat', 'baseball glove', 'skateboard',
 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup',

https://machinelearningmastery.com/how-to-perform-object-detection-in-photographs-with-mask-r-cnn-in-keras/
https://machinelearningmastery.com/how-to-perform-object-detection-in-photographs-with-mask-r-cnn-in-keras/

	 Chapter 7 ■ Object Detections and Image Segmentations	 359

 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed',
 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster',
 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors',
 'teddy bear', 'hair drier', 'toothbrush']
#
generate random (but visually distinct) colors for each class label
(thanks to Matterport Mask R-CNN for the method!)
hsv = [(i / len(CLASS_NAMES), 1, 1.0) for i in
range(len(CLASS_NAMES))]
COLORS = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv))
random.seed(42)
random.shuffle(COLORS)

define the test configuration
class TestConfig(Config):
 NAME = "test"
 GPU_COUNT = 1
 IMAGES_PER_GPU = 1
 NUM_CLASSES = 1 + 80

define the model
rcnn = MaskRCNN(mode='inference', model_dir='./',
config=TestConfig())
load coco model weights
rcnn.load_weights('mask_rcnn_coco.h5', by_name=True)

image = cv2.imread("./apple.jpeg")
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = imutils.resize(image, width=512)
r = rcnn.detect([image], verbose=1)[0]

for i in range(0, r["rois"].shape[0]):
 classID = r["class_ids"][i]
 mask = r["masks"][:, :, i]
 color = COLORS[classID][::-1]
 # visualize the pixel-wise mask of the object
 image = visualize.apply_mask(image, mask, color, alpha=0.5)

mage = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
for i in range(0, len(r["scores"])):
 (startY, startX, endY, endX) = r["rois"][i]
 classID = r["class_ids"][i]
 label = CLASS_NAMES[classID]

360	 Part III ■ AI Applications

 score = r["scores"][i]
 color = [int(c) for c in np.array(COLORS[classID]) * 255]
 # draw the bounding box, class label, and score of the object
 cv2.rectangle(image, (startX, startY), (endX, endY), color, 2)
 text = "{}: {:.3f}".format(label, score)
 y = startY - 10 if startY - 10 > 10 else startY + 10
 cv2.putText(image, text, (startX, y), cv2.
FONT_HERSHEY_SIMPLEX,
 0.6, color, 2)
cv2.imshow('image', image)

EXERCISE 7.14

Modify the earlier Python program, trying different images. Run the program and com-
ment on the accuracy and speed.

Example 7.11 is a webcam version of the earlier code for object detection that
uses the MaskRCNN library. It works on TensorFlow 1.x, and it is very slow.

EXAMPLE 7.11  THE MASK R-CNN WEBCAM.PY PROGRAM

Example 7.11 Object Detection from live webcam feed with MaskRCNN
Modified based on:
https://machinelearningmastery.com/how-to-perform-object-detection-
in-photographs-with-mask-r-cnn-in-keras/
example of inference with a pretrained coco model

from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array
from mrcnn.config import Config
from mrcnn.model import MaskRCNN
from mrcnn import model as modellib
from mrcnn import visualize

from matplotlib import pyplot
from matplotlib.patches import Rectangle
import cv2
import numpy as np
import imutils
import colorsys
import random
import os

load the class label names from disk, one label per line
#The content does not seem to be correct
#CCLASS_NAMES = open('coco_labels.txt').read().strip().split("\n")

	 Chapter 7 ■ Object Detections and Image Segmentations	 361

CLASS_NAMES = ['BG', 'person', 'bicycle', 'car', 'motorcycle', 'airplane',
 'bus', 'train', 'truck', 'boat', 'traffic light',
 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird',
 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear',
 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie',
 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
 'kite', 'baseball bat', 'baseball glove', 'skateboard',
 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup',
 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed',
 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster',
 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors',
 'teddy bear', 'hair drier', 'toothbrush']
#
generate random (but visually distinct) colors for each class label
(thanks to Matterport Mask R-CNN for the method!)
hsv = [(i / len(CLASS_NAMES), 1, 1.0) for i in range(len(CLASS_NAMES))]
COLORS = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv))
random.seed(42)
random.shuffle(COLORS)

define the test configuration
class TestConfig(Config):
 NAME = "test"
 GPU_COUNT = 1
 IMAGES_PER_GPU = 1
 NUM_CLASSES = 1 + 80

define the model
rcnn = MaskRCNN(mode='inference', model_dir='./', config=TestConfig())
load coco model weights
rcnn.load_weights('mask_rcnn_coco.h5', by_name=True)

Read video
cap = cv2.VideoCapture(0)
vf='./Vehicle Detection/vehicle-detection-master/examples/
PedalPostIncident20200821.mp4'
#cap = cv2.VideoCapture(vf)
#while cap.isOpened():
ok, image = cap.read()
if not ok:
break

while True:

362	 Part III ■ AI Applications

image = cv2.imread("images/3ft.jpg")
 image = cv2.imread("./apple.jpeg")
 image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
 image = imutils.resize(image, width=512)
 # perform a forward pass of the network to obtain the results
 print("[INFO] making predictions with Mask R-CNN...")
 r = rcnn.detect([image], verbose=1)[0]

 # loop over of the detected object's bounding boxes and masks
 for i in range(0, r["rois"].shape[0]):
 # extract the class ID and mask for the current detection, then
 # grab the color to visualize the mask (in BGR format)
 classID = r["class_ids"][i]
 mask = r["masks"][:, :, i]
 color = COLORS[classID][::-1]
 # visualize the pixel-wise mask of the object
 image = visualize.apply_mask(image, mask, color, alpha=0.5)

 # convert the image back to BGR so we can use OpenCV's drawing
 # functions
 mage = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
 # loop over the predicted scores and class labels
 for i in range(0, len(r["scores"])):
 # extract the bounding box information, class ID, label,
predicted
 # probability, and visualization color
 (startY, startX, endY, endX) = r["rois"][i]
 classID = r["class_ids"][i]
 label = CLASS_NAMES[classID]
 score = r["scores"][i]
 color = [int(c) for c in np.array(COLORS[classID]) * 255]
 # draw the bounding box, class label, and score of the object
 cv2.rectangle(image, (startX, startY), (endX, endY), color, 2)
 text = "{}: {:.3f}".format(label, score)
 y = startY - 10 if startY - 10 > 10 else startY + 10
 cv2.putText(image, text, (startX, y), cv2.FONT_HERSHEY_SIMPLEX,
 0.6, color, 2)
 # show the output image
 cv2.imshow('video image', image)
 key = cv2.waitKey(30)
 if key == 27: # press 'ESC' to quit
 break

cap.release()
cv2.destroyAllWindows()

	 Chapter 7 ■ Object Detections and Image Segmentations	 363

EXERCISE 7.15

Modify the earlier Python program, trying different images. Run the program, and
comment on the accuracy and speed.

Gluon Object Detection

The Gluon library in Apache MXNet is another popular library that provides a
clear, concise, and simple API for deep learning. It makes it easy to prototype,
build, and train deep learning models without sacrificing training speed.

Example 7.12 shows some simple code for object detection by using the Gluon
library. It is modified based on the following:

https://cv.gluon.ai/build/examples_detection/demo_webcam.html

EXAMPLE 7.12  THE GLUONWEBCAM.PY PROGRAM

Example 7.12 Object Detection from live webcam feed with Gluon
Modified based on:
https://cv.gluon.ai/build/examples_detection/demo_webcam.html
import gluoncv as gcv
import cv2
import mxnet as mx

Load the model
net = gcv.model_zoo.get_model('ssd_512_mobilenet1.0_voc', pretrained=True)
Compile the model for faster speed
net.hybridize()

Load the webcam handler
cap = cv2.VideoCapture(0)

while(cap.isOpened()):
 ret, frame = cap.read()
 frame = mx.nd.array(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
.astype('uint8')
 rgb_nd, frame = gcv.data.transforms.presets.ssd.transform_
test(frame, short=512, max_size=700)
 class_IDs, scores, bounding_boxes = net(rgb_nd)

 # Display the result
 img = gcv.utils.viz.cv_plot_bbox(frame, bounding_boxes[0],
scores[0], class_IDs[0], class_names=net.classes)
 gcv.utils.viz.cv_plot_image(img)

https://cv.gluon.ai/build/examples_detection/demo_webcam.html

364	 Part III ■ AI Applications

 if cv2.waitKey(1) & 0xFF == ord('q'):
 break

cap.release()
cv2.destroyAllWindows()

In the program, the following will load the deep learning model and compile
it for faster speed:

net = gcv.model_zoo.get_model('ssd_512_mobilenet1.0_voc', pretrained=True)
net.hybridize()

This is to prepare the webcam frame into the required format and detect the
object in the frame:

 frame = mx.nd.array(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)).
astype('uint8')
 rgb_nd, frame = gcv.data.transforms.presets.ssd.transform_
test(frame, short=512, max_size=700)
 class_IDs, scores, bounding_boxes = net(rgb_nd)

This is to draw the box around the objects in the frame:

 img = gcv.utils.viz.cv_plot_bbox(frame, bounding_boxes[0],
scores[0], class_IDs[0], class_names=net.classes)
 gcv.utils.viz.cv_plot_image(img)

EXERCISE 7.16

Modify the earlier Python program, and use the different model, such as YOLOv3, as
shown here:

net = model_zoo.get_model('yolo3_darknet53_voc',
pretrained=True)

Run the program and comment on the accuracy and speed.

7.2.5  Object Detection with Colab OpenCV
Google Colab is a great platform for Python programming on machine learning
and deep learning. But one of the difficulties is to work with a webcam. The
following example shows how to work with a webcam in Google Colab and
perform object detection. We will show the code section by section, and you can
get the full code from the Camera_Capture.ipynb notebook file. To use it, just
log in to your Google Colab account, and upload the notebook file.

	 Chapter 7 ■ Object Detections and Image Segmentations	 365

Figure 7.5 shows the Section 1 code to start the webcam (top) and the webcam
image displayed (bottom). After running the section, you will see live images
from the webcam.

Figure 7.6 shows the Section 2 code to record a video from the webcam (top)
and the video recorded (bottom). When you run the section, it will start recording;
click the button to stop recoding. After it’s stopped, the video will be saved in
a file called test.mp4, and you will be able to view the video.

Figure 7.5: The Section 1 code to start the webcam (top) and the webcam image
displayed (bottom)

366	 Part III ■ AI Applications

Figure 7.7 shows the Section 3 code to capture an image from a webcam (top)
and the image captured (bottom). After you run the section, it will start showing
the webcam image; click the Capture button to capture an image.

Figure 7.8 shows the Section 4 code to use OpenCV to perform full body
detection from the webcam video file called test.mp4.

Figure 7.6: The Section 2 code to record a video from a webcam (top) and the video
recorded (bottom)

	 Chapter 7 ■ Object Detections and Image Segmentations	 367

Figure 7.9 shows the Section 5 code to perform object detection by using the
ImageAI library on an image. It first installs the ImageAI library, then uses the
!wget command to download the ResNet model to Google Colab, and finally
performs the object detection on the photo.jpg image file.

Figure 7.7: The Section 3 code to capture an image from a webcam (top) and the image
captured (bottom)

368	 Part III ■ AI Applications

EXERCISE 7.17

Log in to your Google Colab account, and upload the Camera_Capture.ipynb file.
Run the program and comment on the results.

Figure 7.8: The Section 4 code to use OpenCV to perform full body detection from the webcam
video image

Figure 7.9: The Section 5 code to perform object detection by using the ImageAI library on an
image file called photo.jpg

	 Chapter 7 ■ Object Detections and Image Segmentations	 369

7.3  Object Detections with Custom Trained Models

With pretrained models, you can only recognize the objects that have been
predefined. To recognize your own objects in your own images, you will need
to retrain/update the pretrained models with your own data; this is a type of
transfer learning. This is exactly the same as the image classification we covered
in Chapter 5. In this section, we will introduce how to retrain models on your
own objects by using OpenCV, YOLO, TensorFlow, Gluon, and ImageAI.

7.3.1  OpenCV
As you have seen, you can use Haar cascade code for detecting objects in OpenCV.
You can also train the Haar cascade code for your own customized objects. In
the following example, we will show how to train Haar cascade code to detect
an otter in an image.

Step 1

To train Haar cascade code from scratch, you will require software. So, down-
load the Cascade-Trainer-GUI software using the following link:

https://amin-ahmadi.com/cascade-trainer-gui/

After downloading, install it and launch it.

Step 2

For training a custom object detector using Haar cascade code, you will need
a training image dataset. In this example, we get the otter image dataset from
Bing Images (https://www.bing.com/images/) by using a Python library named
icrawler.

Besides Bing Images, you can also use it for Google and Baidu Images. For
more details about icrawler, visit its website:

https://icrawler.readthedocs.io/en/latest/builtin.html

To install icrawler, type the following command:

pip install icrawler

Step 3

To create a dataset XML file, you will need to classify the images you have
into positive images and negative images. Positive images are images with the

https://amin-ahmadi.com/cascade-trainer-gui/
https://www.bing.com/images/
https://icrawler.readthedocs.io/en/latest/builtin.html

370	 Part III ■ AI Applications

object you want to predict, and negative images are images without the object
you want to predict.

Example 7.13 shows how to search and download positive images (otter) as
well as negative images (not otter) from the Bing Images website.

EXAMPLE 7.13  THE OPENCVHAARCASCADE.PY PROGRAM

Example 7.13 Training Haar Cascade Code – Prepare Images
pip install icrawler
from icrawler.builtin import BingImageCrawler
Find some Otter images and save them in the /p directory
classes=['otter']
number=100
for c in classes:
 bing_crawler=BingImageCrawler(storage={'root_dir':f'p/'})
 bing_crawler.crawl(keyword=c,filters=None,max_num=number,offset=0)

Find some non-Otter images and save them in the /n directory
classes=['trees','roads','cars']
number=100
for c in classes:
 print(number)
 bing_crawler=BingImageCrawler(storage={'root_dir':f'n/'})
 bing_crawler.crawl(keyword=c,filters=None,m
ax_num=number,offset=0)
 number = number + number

After running the program, you will see two folders created, a p folder for
positive images and an n folder for negative images. The following are the file
structures, assuming your current folder is E:/Chapter 7/:

E:/Chapter 7/
 |--p/
 |--000001.jpg
 |--000002.jpg

 |--n/
 |--000001.jpg
 |--000002.jpg

Step 4

Open the Cascade-Trainer-GUI program, and paste the current folder path
E:/Chapter 7/ into a sample folder location. Please also count the number of
negative images and put it in the negative image count, as shown in Figure 7.10.
Then click the Start button to train and generate the otter Haar cascade code.

	 Chapter 7 ■ Object Detections and Image Segmentations	 371

Step 5

After running it, a new directory named classifier will be created, and a new
file named cascade.xml will be created.

From the Bing Images website, find an otter image, and save it to a file.
Example 7.14 shows how to use the cascade.xml file to detect an otter in the file.

EXAMPLE 7.14  THE OPENCVHAARCASCADE.PY PROGRAM

Example 7.14 Training Haar Cascade Code – Testing the Trained Code

import cv2
face_cascade=cv2.CascadeClassifier(r"./classifier/cascade.xml")
img= cv2.imread(r"Otter_6336.jpeg")
scale_percent = 60 # percent of original size
width = int(img.shape[1] * scale_percent / 100)
height = int(img.shape[0] * scale_percent / 100)
dim = (width, height)
resized = cv2.resize(img,dim)
gray=cv2.cvtColor(resized,cv2.COLOR_BGR2GRAY)
faces=face_cascade.detectMultiScale(gray,6.5,17)
for(x,y,w,h) in faces:
 resized=cv2.rectangle(resized,(x,y),(x+w,y+h),(0,255,0),2)
cv2.imshow('img',resized)
cv2.waitKey(0)
cv2.destroyAllWindows()

Figure 7.10: The Cascade-Trainer-GUI program with the sample folder input and the
negative image count input

372	 Part III ■ AI Applications

EXERCISE 7.18

Repeat the earlier steps, and create your own object dataset. Run the program and
comment on the results.

7.3.2  YOLO
YOLO is an amazing real-time object detection library. Here we will use skin
cancer detection as an example to illustrate training your YOLOv3 model.
We will follow step-by-step instructions, illustrated in an interesting article, as
shown in the following website.

https://blog.insightdatascience.com/how-to-train-your-own-yolov3-

detector-from-scratch-224d10e55de2

Step 1

Clone the GitHub repository onto the local computer, as shown in the follow-
ing linking.

https://github.com/AntonMu/TrainYourOwnYOLO

Step 2

Create your own skin cancer image dataset from https://www.isic-archive
.com and put into the TrainYourOwnYOLO/Data/Source_Images/ folder, as shown
next. The training images are stored in the Training_Images folder. The testing
images are stored in the Test_Images folder.

TrainYourOwnYOLO/
 |--Data/
 |--Source_Images/
 |--Training_Images/
 |--actinic_keratorsis_0024468.jpg
 |--actinic_keratorsis_0024470.jpg

 |--carcinoma_0001120.jpg
 |--carcinoma_0001149.jpg

 |--nevus_0000000.jpg
 |--nevus_0000001.jpg
 |--nevus_0000003.jpg

https://www.isic-archive.com
https://www.isic-archive.com

	 Chapter 7 ■ Object Detections and Image Segmentations	 373

 |--Test_Images/
 |--actinic_keratorsis_0032437.jpg

 |--carcinoma_0028542.jpg

 |--nevus_0000075.jpg

Step 3

Annotate your own image dataset by using Microsoft’s Visual Object Tagging
Tool (VoTT). From the following link, download and install the VoTT software.

https://github.com/Microsoft/VoTT/releases

Run the VoTT software and create a new project by clicking the New Project
button, as shown in Figure 7.11.

You will then be brought to the new Project Settings page, as shown
in Figure 7.12. Put Annotations for the display name. Then click the Add
Connection button for Source Connection.

You will then be brought to the Connection Settings page, as shown in
Figure 7.13. Choose Skin Cancer as the display name, choose Local File System

Figure 7.11: The VoTT software for creating a new project

https://github.com/Microsoft/VoTT/releases

374	 Part III ■ AI Applications

as the provider, and choose the TrainYourOwnYOLO/Data/Source_Images/
Training_Images folder as the folder path. Click the green Save Connection
button to save the settings.

This will bring you back to the Project Setting page, as shown in Figure 7.12.
Select Skin Cancer for both Source Connection and Target Connection. Click the
green Save Project button at the bottom of the page to save the project settings.

Figure 7.12: The VoTT software for new project settings

Figure 7.13: The VoTT software for creating a new connection setting

	 Chapter 7 ■ Object Detections and Image Segmentations	 375

Next, you will be brought to the image annotation page, as shown in Figure 7.14.
This is the most time-consuming part; just go through images and select and
label the objects in the images. In this example, three types of skin cancer objects
are labeled.

Step 4

Go to the TrainYourOwnYOLO/1_Image_Annotation folder and run the Python
program to convert the annotations to YOLO format.

python Convert_to_YOLO_format.py

Step 5

Go to the TrainYourOwnYOLO/2_Training folder and run the following Python
to download the pretrained YOLOv3 weights:

python Download_and_Convert_YOLO_weights.py

After that’s finished, run the following Python program to train your
YOLOv3 model:

python TrainYourOwnYOLO/2_Training/Train_YOLO.py

Figure 7.14: The VoTT software for annotating the objects in the images

376	 Part III ■ AI Applications

After training, run the following Python program to test your YOLOv3 model.
This will use the images in the TrainYourOwnYOLO/Data/Source_Images/Test_
Images folder for detecting the skin cancer objects.

python TrainYourOwnYOLO/3_Inference/Train_YOLO.py

EXERCISE 7.19

Repeat the earlier steps, creating your own object dataset. Run the program and com-
ment on the results.

7.3.3  TensorFlow, Gluon, and ImageAI
You can also train your own object detection models by using other libraries or
frameworks, such as TensorFlow, Gluon, and ImageAI.

TensorFlow

The following shows how to also train your own object detection models by
using TensorFlow:

https://tensorflow-object-detection-api-tutorial.readthedocs.io/

en/latest/training.html

https://neptune.ai/blog/how-to-train-your-own-object-detector-

using-tensorflow-object-detection-api

EXERCISE 7.20

Use the earlier links, create your own object dataset, and train your own TensorFlow
object detection model. Run the program and comment on the results.

Gluon

The following shows how to also train your own object detection models by
using Gluon:

https://cv.gluon.ai/build/examples_datasets/detection_custom.html

ImageAI

The following shows how to also train your own object detection models by
using ImageAI:

https://github.com/OlafenwaMoses/ImageAI/blob/master/imageai/

Detection/Custom/CUSTOMVIDEODETECTION.md

https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/training.html
https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/training.html
https://neptune.ai/blog/how-to-train-your-own-object-detector-using-tensorflow-object-detection-api
https://neptune.ai/blog/how-to-train-your-own-object-detector-using-tensorflow-object-detection-api
https://cv.gluon.ai/build/examples_datasets/detection_custom.html
https://github.com/OlafenwaMoses/ImageAI/blob/master/imageai/Detection/Custom/CUSTOMVIDEODETECTION.md
https://github.com/OlafenwaMoses/ImageAI/blob/master/imageai/Detection/Custom/CUSTOMVIDEODETECTION.md

	 Chapter 7 ■ Object Detections and Image Segmentations	 377

EXERCISE 7.21

Following the instructions at the earlier link, create your own object dataset, and train
your own ImageAI object detection model. Run the program and comment on the
results.

7.4  Object Tracking

Object detection in images is simple and straightforward. Object detection in
video is a different story. The simplest way is to perform object detection frame
by frame. As a standard video typically has 30 frames per second, this approach
is obviously inefficient and cumbersome. A much more elegant approach is
through object tracking, which means you detect the object in the first frame
and then simply track the same object in consequent frames. In this section, we
will show how to do object tracking with OpenCV, YOLO, and Gluon.

7.4.1  Object Size and Distance Detection
Let’s start with object size and distance detection first. With a webcam, you
can easily detect the object size, distances, and speed. This may have many
applications in real life. Figure 7.15 shows the simple camera imaging system
and the relationships between object height (H), object distance (D), image
height (h), and focal length (f).

If we know the object height (H), object distance (D), and image height (h),
we can calculate the focal length (f). Once we know the focal length (f), we can
calculate the object height (H) if we know object distance (D), or we can calcu-
late the object distance (D), if we know object height (H).

Figure 7.15: The simple camera imaging system and the relationships between object height
(H), object distance (D), image height (h), and focal length (f).

378	 Part III ■ AI Applications

Example 7.15 shows a simple Python program to calculate the focal length
of a webcam. It uses a standard A4 paper (210×297 mm) at 1040 mm distance
to calculate the camera focal length.

EXAMPLE 7.15  THE GETWEBCAMFOCALLENGTH.PY PROGRAM

Example 7.15
Use a standard A4 paper (210 x 297 mm),at 1040 mm distance,
to calculate the Camera Focal Length

import cv2
import imutils

#sideway A4 paper size in mm
paperHeight = 210
paperWidth = 297
#Distance of A4 paper to camera in mm
distance = 1040

def find_paper(image):
 x,y,w,h = -1, -1, -1, -1
 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
 gray = cv2.GaussianBlur(gray, (5, 5), 0)

 mask = cv2.Canny(gray, 35, 125)
 cv2.imshow('Mask', mask)
 #ret,mask = cv2.threshold(gray,127,255,0)
 contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2
.CHAIN_APPROX_NONE)
 if len(contours)>0:
 c = max(contours, key = cv2.contourArea)
 cv2.drawContours(image, [c], 0, (0, 255, 0), 3)
 area = cv2.contourArea(c)
 #print(area)
 c = cv2.boundingRect(c)
 x,y,w,h = int(c[0]), int(c[1]),int(c[2]),int(c[3])
 return x,y,w,h

def getFocalLength(image, KNOWN_DISTANCE, KNOWN_WIDTH):
 focalLength = -1
 x,y,w,h = find_paper(image)
 focalLength = (w * KNOWN_DISTANCE) / KNOWN_WIDTH
 return x,y,w,h, focalLength

capture frame from a video
cap = cv2.VideoCapture(0)
while True:
 # reads frame from a video
 ret, frame = cap.read()

	 Chapter 7 ■ Object Detections and Image Segmentations	 379

 x,y,w,h, f = getFocalLength(frame, distance,paperWidth)

 if (f>0):
 cv2.rectangle(frame,(x,y),(x+w,y+h),(0,0,255),2)
 text = "Width: {:0.1f} Height: {:0.1f} pixels".format(w,h)
 cv2.putText(frame, text, (x, y-20), cv2.FONT_HERSHEY_SIMPLEX,
0.5, (0,0,255), 2)
 text = "Focal Length: {:0.1f}mm".format(f)
 cv2.putText(frame, text, (x, y-5), cv2.FONT_HERSHEY_SIMPLEX,
0.5, (0,0,255), 2)

 # Display frame in a window
 cv2.imshow('Webcam', frame)

 # Wait for Esc key to stop
 if cv2.waitKey(33) == 27:
 break

close the already opened camera
cap.release()

De-allocate any associated memory usage
cv2.destroyAllWindows()

Figure 7.16 shows the output of the program, including the detected A4
paper mask, the A4 paper width and height in pixels, and the calculated focal
length in mm.

Once you know the focal length of the webcam, you will be then able to
calculate the distance of A4 paper from the webcam.

Example 7.16 shows a simple Python program to calculate the distance of
A4 paper to a webcam.

Figure 7.16: The detected A4 paper mask (left), the A4 paper width and height in pixels, and the
calculated focal length in mm (right)

380	 Part III ■ AI Applications

EXAMPLE 7.16  THE GETWEBCAMDISTANCE.PY PROGRAM

Example 7.16
Use a standard A4 paper (210 x 297 mm),at 1040 mm distance,
to calculate the Camera Focal Length

import cv2
import imutils

focalLength = 448 #mm
#sideway A4 paper size in mm
paperHeight = 210
paperWidth = 297

def find_paper(image):
 x,y,w,h = -1, -1, -1, -1
 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
 gray = cv2.GaussianBlur(gray, (5, 5), 0)

 mask = cv2.Canny(gray, 35, 125)
 cv2.imshow('Mask', mask)
 #ret,mask = cv2.threshold(gray,127,255,0)
 contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2
.CHAIN_APPROX_NONE)
 if len(contours)>0:
 c = max(contours, key = cv2.contourArea)
 cv2.drawContours(image, [c], 0, (0, 255, 0), 3)
 area = cv2.contourArea(c)
 #print(area)
 c = cv2.boundingRect(c)
 x,y,w,h = int(c[0]), int(c[1]),int(c[2]),int(c[3])
 return x,y,w,h
def distance_to_camera(image, focalLength, KNOWN_WIDTH):
 x,y,w,h = find_paper(image)
 distance = (KNOWN_WIDTH * focalLength) / w
 return x,y,w,h, distance

capture frame from a video
cap = cv2.VideoCapture(0)
while True:
 # reads frame from a video
 ret, frame = cap.read()

 x,y,w,h, D = distance_to_camera(frame, focalLength, paperWidth)

 if (D>0):
 cv2.rectangle(frame,(x,y),(x+w,y+h),(0,0,255),2)
 text = "Width: {:0.1f} Height: {:0.1f} pixels".format(w,h)
 cv2.putText(frame, text, (x, y-20), cv2.FONT_HERSHEY_SIMPLEX,
0.5, (0,0,255), 2)

	 Chapter 7 ■ Object Detections and Image Segmentations	 381

 text = "Distance: {:0.1f}mm".format(D)
 cv2.putText(frame, text, (x, y-5), cv2.FONT_HERSHEY_SIMPLEX,
0.5, (0,0,255), 2)

 # Display frame in a window
 cv2.imshow('Webcam', frame)

 # Wait for Esc key to stop
 if cv2.waitKey(33) == 27:
 break

close the already opened camera
cap.release()

De-allocate any associated memory usage
cv2.destroyAllWindows()

Figure 7.17 shows two example outputs of the earlier program, including
the detected A4 paper mask, the A4 paper width and height in pixels, and the
calculated distance of A4 paper to the webcam in mm.

Figure 7.17: The detected A4 paper mask (left), the A4 paper width and height in pixels, and the
calculated distance of A4 paper to the webcam in mm (right)

382	 Part III ■ AI Applications

EXERCISE 7.22

Modify the earlier two programs so that they can work on a cycle shape object. Run the
program and comment on the results.

You can find more details about detecting the object size, distance, and camera
focus length from the following websites:

http://emaraic.com/blog/distance-measurement

https://www.pyimagesearch.com/2015/01/19/find-distance-

camera-objectmarker-using-python-opencv/

https://www.pyimagesearch.com/2016/04/04/measuring-distance-

between-objects-in-an-image-with-opencv/

7.4.2  Object Tracking with OpenCV
This section talks about object tracking with OpenCV.

Single Object Tracking with OpenCV

Example 7.17 is an example of single object tracking using a mouse to select
a region of interest. It is modified from https://www.learnopencv.com/
object-tracking-using-opencv-cpp-python/. It first opens the webcam, reads
a frame, waits for you to select an ROI, and then performs the object tracking
by using OpenCV’s tracker. This program works only for single object tracking.

EXAMPLE 7.17  THE WEBCAM OBJECTTRACKING ROI.PY PROGRAM

Example 7.17 webcam ObjectTracking ROI
Modified based on:
https://www.learnopencv.com/object-tracking-using-opencv-cpp-python/
import cv2
import sys

#OpenCV Trackers:
#tracker = cv2.TrackerBoosting_create()
tracker = cv2.TrackerMIL_create()
#tracker = cv2.TrackerKCF_create()
#tracker = cv2.TrackerTLD_create()
#tracker = cv2.TrackerMedianFlow_create()
#tracker = cv2.TrackerGOTURN_create()
#tracker = cv2.TrackerMOSSE_create()
#tracker = cv2.TrackerCSRT_create()

http://emaraic.com/blog/distance-measurement
https://www.pyimagesearch.com/2015/01/19/find-distance-camera-objectmarker-using-python-opencv/
https://www.pyimagesearch.com/2015/01/19/find-distance-camera-objectmarker-using-python-opencv/
https://www.pyimagesearch.com/2016/04/04/measuring-distance-between-objects-in-an-image-with-opencv/
https://www.pyimagesearch.com/2016/04/04/measuring-distance-between-objects-in-an-image-with-opencv/
https://www.learnopencv.com/object-tracking-using-opencv-cpp-python/
https://www.learnopencv.com/object-tracking-using-opencv-cpp-python/

	 Chapter 7 ■ Object Detections and Image Segmentations	 383

#Open Webcam and select a ROI box
video = cv2.VideoCapture(0)
ok, frame = video.read()
bbox = cv2.selectROI(frame, True)

Initialize tracker with first frame and bounding box
ok = tracker.init(frame, bbox)

while True:
 ok, frame = video.read()
 # Start timer
 timer = cv2.getTickCount()

 if bbox is not None:
 ok, bbox = tracker.update(frame)
 # Calculate Frames per second (FPS)
 fps = cv2.getTickFrequency() / (cv2.getTickCount() - timer);
 # Draw bounding box
 if ok:
 p1 = (int(bbox[0]), int(bbox[1]))
 p2 = (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3]))
 cv2.rectangle(frame, p1, p2, (0,255,0), 2, 1)
 else :
 cv2.putText(frame, "Tracking failure detected", (100,80),
cv2.FONT_HERSHEY_SIMPLEX, 0.75,(0,0,255),2)

 # Display FPS on frame
 cv2.putText(frame, "FPS : " + str(int(fps)), (100,50),
cv2.FONT_HERSHEY_SIMPLEX, 0.75, (50,170,50), 2);
 # Display result
 cv2.imshow("Tracking", frame)
 # Exit if ESC pressed
 k = cv2.waitKey(1) & 0xff
 if k == 27 : break

video.release()
close all windows
cv2.destroyAllWindows()

Figure 7.18 shows the output of the earlier program. In this case, a golf ball
was selected in the first frame and was tracked in the subsequent frames.
The program is capable of running 14 frames per second.

384	 Part III ■ AI Applications

EXERCISE 7.23

Modify the earlier program, and try a different OpenCV tracker. Run the program and
comment on the results.

Here are more examples of object tracking:

https://www.pyimagesearch.com/2018/07/23/simple-object-tracking-

with-opencv/

https://www.pyimagesearch.com/2018/07/30/opencv-object-tracking/

https://learnopencv.com/object-tracking-using-opencv-cpp-python/

Multiple Object Tracking with OpenCV

Example 7.18 shows an example of multiple object tracking using a mouse to
select a region of interest. It is modified from https://stackoverflow.com/
questions/54730427/multi-object-tracking-initialization-in-opencv-

using-multitracker-object. In this program, you press the S key to select an
ROI on the webcam image, and you press the R key to clear all the selections.

EXAMPLE 7.18  THE OBJECTOPENCV.PY PROGRAM

Example 7.18 OpenCV multi-objects tracking
Modified based on:
https://stackoverflow.com/questions/54730427/multi-object-tracking-
initialization-in-opencv-using-multitracker-object
Worked for multi Object tracking
This programe doesn't work for OpenCV > 4.5.0

import imutils
import cv2

Figure 7.18: The object tracking through a webcam. A golf ball was selected in the first frame
(left) and was tracked in the subsequent frames (right).

https://www.pyimagesearch.com/2018/07/23/simple-object-tracking-with-opencv/
https://www.pyimagesearch.com/2018/07/23/simple-object-tracking-with-opencv/
https://www.pyimagesearch.com/2018/07/30/opencv-object-tracking/
https://learnopencv.com/object-tracking-using-opencv-cpp-python/
https://stackoverflow.com/questions/54730427/multi-object-tracking-initialization-in-opencv-using-multitracker-object
https://stackoverflow.com/questions/54730427/multi-object-tracking-initialization-in-opencv-using-multitracker-object
https://stackoverflow.com/questions/54730427/multi-object-tracking-initialization-in-opencv-using-multitracker-object

	 Chapter 7 ■ Object Detections and Image Segmentations	 385

from random import randint

trackerName = 'csrt'

OPENCV_OBJECT_TRACKERS = {
 "csrt": cv2.TrackerCSRT_create,
 "kcf": cv2.TrackerKCF_create,
 "boosting": cv2.TrackerBoosting_create,
 "mil": cv2.TrackerMIL_create,
 "tld": cv2.TrackerTLD_create,
 "medianflow": cv2.TrackerMedianFlow_create,
 "mosse": cv2.TrackerMOSSE_create
}

initialize OpenCV's special multi-object tracker
trackers = cv2.MultiTracker_create()
cap = cv2.VideoCapture(0)

while cap.isOpened():

 ret, frame = cap.read()

 if frame is None:
 break

 frame = imutils.resize(frame, width=600)
 (success, boxes) = trackers.update(frame)

 # loop over the bounding boxes and draw them on the frame
 count = 1
 for box in boxes:
 (x, y, w, h) = [int(v) for v in box]
 cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
 cv2.putText(frame, str(count) , (x,y), cv2.FONT_HERSHEY_
SIMPLEX, 0.75, (50,170,50), 2)
 print(count)
 count = count + 1
 cv2.imshow("Frame", frame)
 key = cv2.waitKey(1) & 0xFF

 # if the 's' key is selected, we are going to "select" a bounding
 # box to track
 if key == ord("s"):
 colors = []
 # select the bounding box of the object we want to track (make
 # sure you press ENTER or SPACE after selecting the ROI)
 box = cv2.selectROIs("Frame", frame, fromCenter=False,
 showCrosshair=True)
 box = tuple(map(tuple, box))
 for bb in box:

386	 Part III ■ AI Applications

 tracker = OPENCV_OBJECT_TRACKERS[trackerName]()
 trackers.add(tracker, frame, bb)

 # if you want to reset bounding box, select the 'r' key
 elif key == ord("r"):
 trackers.clear()
 trackers = cv2.MultiTracker_create()

 box = cv2.selectROIs("Frame", frame, fromCenter=False,
 showCrosshair=True)
 box = tuple(map(tuple, box))
 for bb in box:
 tracker = OPENCV_OBJECT_TRACKERS[trackerName]()
 trackers.add(tracker, frame, bb)

 elif key == ord("q"):
 break
cap.release()
cv2.destroyAllWindows()

Figure 7.19 shows the output of the earlier program. When run the program,
press s key to freeze the video, select a region of a golf ball (top), press Enter
key, select another region of another golf ball (middle), press Enter key, and
then press the Esc key to start tracking (bottom). You can also press s key to
reset the selection.

7.4.2  Object Tracking with YOLOv4 and DeepSORT
You can also implement object tracking with YOLO. The following link shows an
interesting object tracking project implemented with YOLOv4, called DeepSORT:

https://github.com/theAIGuysCode/yolov4-deepsort

YOLOv4 is a state-of-the-art algorithm for object detection. Built on the output
of YOLOv4, DeepSORT has to be able to create a highly accurate object tracker.

An IPython notebook called YOLOv4_DeepSORT.ipynb has been created, which
you can upload to Google Colab to play with.

Example 7.19 highlights some of the code. It first clones the DeepSORT project
into your Google Colab and installs all the required libraries. Download the
YOLOv4 weights, put it in the /yolov4-deepsort/data/ directory, convert it
to a TensorFlow model, and run the DeepSORT object tracker on a video called
car.mp4. The result is saved in a file called car.avi. The code also supports
YOLOv4 tiny weights; just download the tiny weights and follow the same
procedure. The result is saved in a file called car.avi. The video file car.mp4
is also from www.pexels.com.

https://github.com/theAIGuysCode/yolov4-deepsort
http://www.pexels.com

	 Chapter 7 ■ Object Detections and Image Segmentations	 387

Figure 7.19: The multiple objects tracking through a webcam. Two golf balls were selected (top
and middle) and were tracked (bottom).

388	 Part III ■ AI Applications

EXAMPLE 7.19  THE YOLOV4_DEEPSORT.IPYNB PROGRAM

Example 7.19 YOLOv4_DeepSORT on Google Colab
#https://github.com/theAIGuysCode/yolov4-deepsort
#!git clone https://github.com/theAIGuysCode/yolov4-deepsort
!git clone https://github.com/PerryXiao2015/yolov4-deepsort

TensorFlow GPU
!pip install -r requirements-gpu.txt

!curl -L "https://drive.google.com/u/0/uc?export=download&confirm=T6-
x&id=1cewMfusmPjYWbrnuJRuKhPMwRe_b9PaT" > yolov4.weights

!mv yolov4.weights /content/yolov4-deepsort/data/

Convert darknet weights to tensorflow model
!python save_model.py --model yolov4

Run yolov4 deep sort object tracker on video
!python object_tracker.py --video ./data/video/car.mp4 --output
./outputs/car.avi --model yolov4

Run yolov4 deep sort object tracker on webcam (set video flag to 0)
#!python object_tracker.py --video 0 --output ./outputs/webcam.avi
--model yolov4

!wget https://github.com/AlexeyAB/darknet/releases/download/darknet_
yolo_v4_pre/yolov4-tiny.weights
!mv yolov4-tiny.weights /content/yolov4-deepsort/data/

import os
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
from google.colab.patches import cv2_imshow
#cv2_imshow(img)

save yolov4-tiny model
!python save_model.py --weights ./data/yolov4-tiny.weights --output
./checkpoints/yolov4-tiny-416 --model yolov4 --tiny

Run yolov4-tiny object tracker
!python object_tracker.py --weights ./checkpoints/yolov4-tiny-416
--model yolov4 --video ./data/video/cars.mp4 --output ./outputs/
cartiny.avi --tiny

Figure 7.20 shows the output of the video tracking results of the earlier program.
As you can see, it can identify and track different cars; the tracking tails from
the center of each car box shows relative movement of the car within the frame.

	 Chapter 7 ■ Object Detections and Image Segmentations	 389

EXERCISE 7.24

Following the information earlier, try to run the DeepSORT project program on your
own videos. Comment on the results.

7.4.3  Object Tracking with Gluon
You can also perform object tracking with the Gluon library; see the following
link for more information.

https://cv.gluon.ai/build/examples_tracking/index.html

7.5  Image Segmentation

Image segmentation is important for many applications. Image segmentation
can be divided into image semantic segmentation and image instance
segmentation. Image semantic segmentation is to find out which object category
each pixel belongs to.

Image instance segmentation is similar to image semantic segmentation but goes
even further; it not only identifies each pixel which object category it belongs
to but also identifies each pixel which object instance it belongs.

Figure 7.20: The video tracking result of the YOLOv4-DeepSORT project
(Source: https://colab.research.google.com/drive/1EnaiYUrH-M8ZDKJPCX_
D7_9tNziPICf0)

390	 Part III ■ AI Applications

Figure 7.21 shows the differences between image semantic segmentation and
image instance segmentation.

When semantic segmentation is applied, all the pears belong to the same
category and therefore are colored the same. In instance segmentation, it goes
even further; different pears belong to different instances and hence are colored
differently.

7.5.1  Image Semantic Segmentation and Image Instance
Segmentation
This section covers different tools for image semantic segmentation and image
instance segmentation.

PexelLib

PexelLib is a Python library that can perform object detection, image semantic
segmentation, and image instance segmentation; see https://github.com/
ayoolaolafenwa/PixelLib.

Example 7.20 is an image semantic segmentation example. You need
to download the DeepLab V3 Xception model library from https://
github.com/ayoolaolafenwa/PixelLib/releases/download/1.1/deeplabv3_

xception_tf_dim_ordering_tf_kernels.h5.

EXAMPLE 7.20  THE PIXELLIB SEMANTIC SEGMENT.PY PROGRAM

#Example 7.20 Pixellib Semantic Segmentation
#pip install pixellib
import pixellib
from pixellib.semantic import semantic_segmentation
import cv2

Figure 7.21: The differences between semantic segmentation and instance segmentation

https://github.com/ayoolaolafenwa/PixelLib
https://github.com/ayoolaolafenwa/PixelLib
https://github.com/ayoolaolafenwa/PixelLib/releases/download/1.1/deeplabv3_xception_tf_dim_ordering_tf_kernels.h5
https://github.com/ayoolaolafenwa/PixelLib/releases/download/1.1/deeplabv3_xception_tf_dim_ordering_tf_kernels.h5
https://github.com/ayoolaolafenwa/PixelLib/releases/download/1.1/deeplabv3_xception_tf_dim_ordering_tf_kernels.h5

	 Chapter 7 ■ Object Detections and Image Segmentations	 391

segment_image = semantic_segmentation()
segment_image.load_pascalvoc_model("deeplabv3_xception_tf_dim_
ordering_tf_kernels.h5")

f = "city0.jpeg"
segment_image.segmentAsPascalvoc(f, output_image_name = "output.jpg",
overlay = True)
image = cv2.imread(f)
cv2.imshow("Original", image)
output = cv2.imread("output.jpg")
cv2.imshow("Semantic Segment", output)

EXERCISE 7.25

Modify the earlier program, trying different images. Run the program and comment on
the results.

You can also apply semantic segmentation on webcam or video files, as shown
in Example 7.21. As you can see, it is quite slow to apply semantic segmentation
on a webcam and video.

EXAMPLE 7.21  THE PIXELLIB SEMANTIC WEBCAM.PY PROGRAM

#Example 7.21 Pixellib Semantic Segmentation – Webcam Feed
#Model download
#https://github.com/ayoolaolafenwa/PixelLib/releases/download/1.1/
deeplabv3_xception_tf_dim_ordering_tf_kernels.h5

import pixellib
from pixellib.semantic import semantic_segmentation
import cv2

capture = cv2.VideoCapture(0)
segment_video = semantic_segmentation()
segment_video.load_pascalvoc_model("deeplabv3_xception_tf_dim_
ordering_tf_kernels.h5")
#Webcam
segment_video.process_camera_pascalvoc(capture, overlay = True,
frames_per_second= 15, output_video_name="output_video.mp4", show_
frames= True,frame_name= "frame", check_fps = True)
#Video
#segment_video.process_video("cityscene.mp4", show_bboxes = True,
frames_per_second= 15, output_video_name="output_video.mp4")

392	 Part III ■ AI Applications

EXERCISE 7.26

Modify the earlier program, trying it on a webcam first; then try it on a video file. Run
the program and comment on the results.

Example 7.22 shows a different version of the earlier example on a webcam.
In this example, it processes frame by frame from the webcam, saving the
results to a file. Then load in the file, and display the file. As you will see, this
approach is even slower.

EXAMPLE 7.22  THE PIXELLIB SEMANTIC WEBCAM 2.PY PROGRAM

import pixellib
from pixellib.semantic import semantic_segmentation
import cv2

segment_frame = semantic_segmentation()
segment_frame.load_pascalvoc_model("deeplabv3_xception_tf_dim_
ordering_tf_kernels.h5")

cap = cv2.VideoCapture(0)
count = 0
while True:
 ret, frame = cap.read()
 outfile = str(count) + ".jpg"
 segment_frame.segmentFrameAsPascalvoc(frame, output_frame_name=
outfile, overlay = True)
 image = cv2.imread(outfile)
 cv2.imshow("Semantic Segmentation",image)
 count = count + 1
 k = cv2.waitKey(1) & 0xff
 if k == 27 :
 breakcap.release()
cv2.destroyAllWindows()

Example 7.23 is an image instance segmentation example that uses PixelLib.

EXAMPLE 7.23  THE PIXELLIB INSTANCE SEGMENT.PY PROGRAM

#Example 7.23 Pixellib Instance Segment
#pip install pixellib
import pixellib
from pixellib.instance import instance_segmentation
import cv2

	 Chapter 7 ■ Object Detections and Image Segmentations	 393

segment_frame = instance_segmentation()
segment_frame.load_model("mask_rcnn_coco.h5")

image = cv2.imread("strawberrys2.jpeg")
cv2.imshow("Original", image)

segmask, output =segment_frame.segmentFrame(image)
cv2.imshow("Instance Segment", output)

Example 7.24 is the webcam version of the earlier image instance segmentation
example.

EXAMPLE 7.24  THE PIXELLIB INSTANCE WEBCAM.PY PROGRAM

#Example 7.24 Pixellib Instance Webcam Feed
import time
import pixellib
from pixellib.instance import instance_segmentation
import cv2

segment_frame = instance_segmentation()
segment_frame.load_model("mask_rcnn_coco.h5")

capture = cv2.VideoCapture(0)
while True:
 start = time.time()
 ret, frame = capture.read()
 segmask, output =segment_frame.segmentFrame(frame)
 # Display result
 cv2.imshow("Webcam", output)

 # Exit if ESC pressed
 k = cv2.waitKey(1) & 0xff
 if k == 27 :
 break end = time.time()
 print(f"Inference Time: {end-start:.2f}seconds")

EXERCISE 7.27

Modify the earlier program, trying different instance segmentation models. Run the
program and comment on the results.

394	 Part III ■ AI Applications

One of the major advantages of PixelLib is simplicity. You can also build your
own custom trained object detector by using PixelLib with just seven lines of
code; see the following link for details.

https://github.com/ayoolaolafenwa/PixelLib#Custom-Training-with-

7-Lines-of-Code

Detectron2

Facebook’s Detectron2 is another popular image segmentation library. Detectron2
is based on the PyTorch framework. It also provides a Google Colab notebook
file for you to try; see the following links for details.

https://github.com/facebookresearch/detectron2

https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtX

j7BMD_-m5

Gluon CV

Another powerful deep learning framework is Gluon CV, which can do a range
of things, including image segmentation and object detection. See the following
link for the Gluon GitHub website.

https://github.com/gluon-api/gluon-api

The following link shows the Gluon documentation site on Mxnet.

https://gluon.mxnet.io/)

The following link shows the Gluon examples on semantic segmentation.

https://cv.gluon.ai/build/examples_segmentation/index.html

The following link shows the Gluon examples on instance segmentation.

https://cv.gluon.ai/build/examples_instance/index.html

Gluon has also published an open source textbook called Dive into Deep
Learning, which covers all the aspects of deep learning; see the following website
for details.

https://d2l.ai/

7.5.2  K-means Clustering Image Segmentation
K-means clustering is another popular technique for image segmentation. It
groups the image pixels into different clusters, by minimizing the sum of squared
distances between all points and the cluster center.

https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5
https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5

	 Chapter 7 ■ Object Detections and Image Segmentations	 395

Example 7.25 shows some simple code for image segmentation by using
K-means clustering.

EXAMPLE 7.25  THE KMEANS IMAGE.PY PROGRAM

#Example 7.25 K-means Clustering for Image Segmentation
import numpy as np
import matplotlib.pyplot as plt
import cv2

Load image and Change RGB color
image = cv2.imread('strawberry.jpeg')
cv2.imshow('Original',image)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

Reshaping the image and Convert to float type
pixel_vals = np.float32(image.reshape((-1,3)))

Criteria for the algorithm to stop: 100 iterations or 85% accuracy
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100,
0.85)

K-means clustering with 3 clusters and random initial centres
k = 3
retval, labels, centers = cv2.kmeans(pixel_vals, k, None, criteria,
10, cv2.KMEANS_RANDOM_CENTERS)

convert data into 8-bit values
centers = np.uint8(centers)
segmented_data = centers[labels.flatten()]

reshape data into the original image dimensions
segmented_image = segmented_data.reshape((image.shape))
segmented_image = cv2.cvtColor(segmented_image, cv2.COLOR_RGB2BGR)
cv2.imshow('Segmented', segmented_image)

Figure 7.22 shows the output of the earlier program, with the original image
(top) and segmented image (bottom) by using K-means clustering.

EXERCISE 7.28

Modify the earlier program, trying different parameters in K-means clustering and
different images. Run the program and comment on the results.

396	 Part III ■ AI Applications

7.5.3  Watershed Image Segmentation
In image processing, a watershed is an algorithm for processing grayscale
images. It treats the image grayscale like a topographic map, with the brightness
representing the height. A watershed algorithm finds the ridge lines that are
then used to separate the images into segments. In this section, we will show
how to do watershed image segmentation by using the OpenCV library and
the Scikit-image library. For more details, see the following:

■■ OpenCV library

https://opencv-python-tutroals.readthedocs.io/en/latest/

py_tutorials/py_imgproc/py_watershed/py_watershed.html

■■ Scikit-image library

https://scikit-image.org/docs/stable/index.html

Example 7.26 shows a simple watershed image segmentation example that
uses the OpenCV library.

Figure 7.22: The original image (top) and segmented image (bottom) by using K-means
clustering

https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_watershed/py_watershed.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_watershed/py_watershed.html
https://scikit-image.org/docs/stable/index.html

	 Chapter 7 ■ Object Detections and Image Segmentations	 397

EXAMPLE 7.26  THE WATERSHED DEMO.PY PROGRAM

#Example 7.26 Watershed Image Segmentation with OpenCV
Modified based on:
https://opencv-python-tutroals.readthedocs.io/en/latest/py_
tutorials/py_imgproc/py_watershed/py_watershed.html

import numpy as np
import cv2
from matplotlib import pyplot as plt
import urllib.request as urllib
#from urllib.request import Request, urlopen

#get image by url
#req = urllib.Request('https://opencv-python-tutroals.readthedocs.
io/en/latest/_images/water_coins.jpg', headers={'User-Agent':
'Mozilla/5.0'})
#req = urllib.Request('https://images.wisegeek.com/skin-mole.jpg',
headers={'User-Agent': 'Mozilla/5.0'})
#req = urllib.Request('http://www.anti-aging-skin-care-illusions.com/
images/Dry-Skin.jpg', headers={'User-Agent': 'Mozilla/5.0'})

#req = urllib.Request('https://jooinn.com/images/human-skin-4.jpg',
headers={'User-Agent': 'Mozilla/5.0'})
#req = urllib.Request('https://images.pexels.com/photos/4046561/
pexels-photo-4046561.jpeg?auto=compress&cs=tinysrgb&dpr=2&h=
650&w=940', headers={'User-Agent': 'Mozilla/5.0'})
req = urllib.Request('https://images.pexels.com/photos/4046567/
pexels-photo-4046567.jpeg?auto=compress&cs=tinysrgb&dpr=2&h=
650&w=940', headers={'User-Agent': 'Mozilla/5.0'})
#req = urllib.Request('https://images.pexels.com/photos/2709386/
pexels-photo-2709386.jpeg?auto=compress&cs=tinysrgb&dpr=3&h=
750&w=1260', headers={'User-Agent': 'Mozilla/5.0'})
#req = urllib.Request('https://images.pexels.com/photos/2683373/
pexels-photo-2683373.jpeg?auto=compress&cs=tinysrgb&dpr=1&w=500',
headers={'User-Agent': 'Mozilla/5.0'})
#req = urllib.Request('https://images.pexels.com/photos/952360/
pexels-photo-952360.jpeg?auto=compress&cs=tinysrgb&dpr=2&h=
650&w=940', headers={'User-Agent': 'Mozilla/5.0'})

resp = urllib.urlopen(req)

image = np.asarray(bytearray(resp.read()), dtype="uint8")
img = cv2.imdecode(image, cv2.IMREAD_COLOR)
img = cv2.resize(img, (520,480), interpolation = cv2.INTER_AREA)

cv2.imshow('Original',img)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray,127,255,cv2.THRESH_BINARY_INV+cv2
.THRESH_OTSU)

398	 Part III ■ AI Applications

#thresh = cv2.adaptiveThreshold(gray,255,cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY,11,2)
#thresh = cv2.adaptiveThreshold(gray,255,cv2.ADAPTIVE_THRESH_
GAUSSIAN_C, cv2.THRESH_BINARY,11,2)

cv2.imshow('Thresh',thresh)

noise removal
kernel = np.ones((3,3),np.uint8)
opening = cv2.morphologyEx(thresh,cv2.MORPH_OPEN,kernel,
iterations = 2)

sure background area
sure_bg = cv2.dilate(opening,kernel,iterations=3)
cv2.imshow('Sure BG',sure_bg)

Finding sure foreground area
dist_transform = cv2.distanceTransform(opening,cv2.DIST_L2,5)
ret, sure_fg = cv2.threshold(dist_transform,0.7*dist_transform
.max(),255,0)
cv2.imshow('Sure FG',sure_fg)
Finding unknown region
sure_fg = np.uint8(sure_fg)
unknown = cv2.subtract(sure_bg,sure_fg)

Marker labelling
ret, markers = cv2.connectedComponents(sure_fg)

Add one to all labels so that sure background is not 0, but 1
markers = markers+1

Now, mark the region of unknown with zero
markers[unknown==255] = 0

markers = cv2.watershed(img,markers)
img[markers == -1] = [255,0,0]
cv2.imshow('Watershed',img)

Figure 7.23 shows the original image.
Figure 7.24 shows the normal threshold (left) and segmented image (right)

by using OpenCV watershed image segmentation. We chose a skin image in
the example to show the effect of watershed image segmentation using the
different thresholds techniques.

Figure 7.25 shows the adaptive threshold (left) and segmented image (right)
by using OpenCV watershed image segmentation.

	 Chapter 7 ■ Object Detections and Image Segmentations	 399

Figure 7.26 shows the Gaussian threshold (left) and segmented image (right)
by using OpenCV watershed image segmentation.

EXERCISE 7.29

Modify the earlier program, trying different threshold methods and trying different
images. Run the program and comment on the results.

Figure 7.23: The original image for Scikit watershed image segmentation

Figure 7.24: The normal threshold (left) and segmented image (right) by using OpenCV
watershed image segmentation

400	 Part III ■ AI Applications

Example 7.27 is a simple watershed image segmentation by using the Scikit-
image library.

EXAMPLE 7.27  THE SCIKIT WATERSHED.PY PROGRAM

#Example 7.27 Watershed Image Segmentation with using Scikit-image
import numpy as np
from skimage import data, util, filters, color
from skimage.segmentation import watershed

Figure 7.25: The adaptive threshold (left) and segmented image (right) by using OpenCV
watershed image segmentation

Figure 7.26: The Gaussian threshold (left) and segmented image (right) by using OpenCV
watershed image segmentation

	 Chapter 7 ■ Object Detections and Image Segmentations	 401

import matplotlib.pyplot as plt
import cv2

image = cv2.imread('skin.jpeg',0)
edges = filters.sobel(image)

grid = util.regular_grid(image.shape, n_points=200)

seeds = np.zeros(image.shape, dtype=int)
seeds[grid] = np.arange(seeds[grid].size).reshape(seeds[grid].shape) + 1

w0 = watershed(edges, seeds)

image0 = color.label2rgb(w0, image, bg_label=-1)
cv2.imshow('Classical watershed', image0)

Figure 7.27 show the image segmentation results of using the Scikit-image
library, with 200 points in the util.regular_grid() function.

EXERCISE 7.30

Modify the earlier program, trying different points in the util.regular_grid()
function and trying different images. Run the program and comment on the results.

Figure 7.27: The segmented image by using Scikit-image watershed image segmentation

402	 Part III ■ AI Applications

Example 7.28 is the webcam version of the earlier simple watershed image
segmentation that uses the Scikit-image library.

EXAMPLE 7.28  THE SCIKIT WATERSHED WEBCAM.PY PROGRAM

Example 7.28 Scikit Watershed Webcam
import numpy as np
from skimage import data, util, filters, color
from skimage.segmentation import watershed
import matplotlib.pyplot as plt
import cv2

cap = cv2.VideoCapture(0)
while True:
 ret, frame = cap.read()
 image = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

 edges = filters.sobel(image)

 grid = util.regular_grid(image.shape, n_points=468)

 seeds = np.zeros(image.shape, dtype=int)
 seeds[grid] = np.arange(seeds[grid].size).reshape(seeds[grid]
.shape) + 1

 w0 = watershed(edges, seeds)

 image0 = color.label2rgb(w0, image, bg_label=-1)
 cv2.imshow('Classical watershed', image0)

 if cv2.waitKey(25) & 0xFF == ord('q'):
 cap.release()
 cv2.destroyAllWindows()
 break

Example 7.29 is a simple watershed image segmentation that uses the
Scikit-image library. The full code is saved in a file called plot_watershed
.ipynb. The simplest way to run it is from Google Colab.

EXAMPLE 7.29  THE PLOT_WATERSHED.IPYNB PROGRAM

#Example 7.29 plot_watershed with Scikit-image
#import necessary packages
import numpy as np
import urllib.request as urllib
import cv2
import matplotlib.pyplot as plt

	 Chapter 7 ■ Object Detections and Image Segmentations	 403

from scipy import ndimage as ndi
from skimage.segmentation import watershed
from skimage.feature import peak_local_max

#get image by url
#resp = urllib.urlopen("https://jooinn.com/images/human-skin-4.jpg")

image = np.asarray(bytearray(resp.read()), dtype="uint8")
image = cv2.imdecode(image, cv2.IMREAD_COLOR)

#show image
#cv2.imshow("Image", image)

image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
thresh = cv2.adaptiveThreshold(gray,255,cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY,11,2)

Now we want to separate the two objects in image
Generate the markers as local maxima of the distance to the
background
distance = ndi.distance_transform_edt(thresh)
coords = peak_local_max(distance, footprint=np.ones((3, 3)),
labels=gray)
mask = np.zeros(distance.shape, dtype=bool)
mask[tuple(coords.T)] = True
markers, _ = ndi.label(mask)
labels = watershed(-distance, markers, mask=thresh)

fig, axes = plt.subplots(ncols=3, figsize=(9, 3), sharex=True,
sharey=True)
ax = axes.ravel()

ax[0].imshow(image_rgb, cmap=plt.cm.gray)
ax[0].set_title('Overlapping objects')
ax[1].imshow(-distance, cmap=plt.cm.gray)
ax[1].set_title('Distances')
ax[2].imshow(labels, cmap=plt.cm.nipy_spectral)
ax[2].set_title('Separated objects')

for a in ax:
 a.set_axis_off()

fig.tight_layout()
plt.show()

404	 Part III ■ AI Applications

Figure 7.28 shows the Google Colab outputs of the plot_watershed.ipynb
file.

Example 7.30 is a simple watershed image segmentation by using the SNOW
filter from the PoreSpy library (https://github.com/PMEAL/porespy). PoreSpy
is a popular library used to extract information from 3D images of porous
materials.

EXAMPLE 7.30  THE PORESPY SNOW.PY PROGRAM

#Example 7.30 Image segmentation by using SNOW filter from Porespy
#https://www.researchgate.net/post/Watershed-segmentation-
implementation-using-scikit-image
#pip install porespy
import porespy as ps
import os
import matplotlib.pyplot as plt
import cv2
import numpy as np

Figure 7.28: The Google Colab outputs of the plot_watershed.ipynb file

https://github.com/PMEAL/porespy

	 Chapter 7 ■ Object Detections and Image Segmentations	 405

Import image
file="blueberrys.jpeg"
gray= cv2.imread(file,0)
plt.imshow(gray)
plt.show()
#ret,thresh = cv2.threshold(gray,164,255,cv2.THRESH_BINARY)
thresh = cv2.adaptiveThreshold(gray,255,cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY,11,2)

#cv2.imshow('Thresh',thresh)
plt.imshow(thresh)
plt.show()
Perform SNOW on Binarized image
watershed = ps.filters.snow_partitioning(thresh > 0, randomize=True,
 return_all=True)
Display and Load
plt.imshow(watershed.regions)
plt.show()

Figure 7.29 shows the output of the watershed segmentation by using the
SNOW filter.

7.6  Background Removal

During the COVID-19 pandemic in 2020, many people were forced to work
from home. Online meeting tools such as Zoom, Microsoft Teams, WebEx,
Google Meet, and so on, hence became popular. One of the features of
online meeting software is the ability to set the background. In this sec-
tion, we will show you how to remove a background and set a background
using Python.

7.6.1  Background Removal with OpenCV
Example 7.31 shows some simple code for background subtraction by using
OpenCV. OpenCV provides three different background subtractors; you can
try to see which one works for your video. See Figure 7.30.

406	 Part III ■ AI Applications

Figure 7.29: The output of the watershed segmentation by using SNOW filter. The top is
original grayscale image, the middle is the corresponding threshold, and the bottom is seg-
mented images.

	 Chapter 7 ■ Object Detections and Image Segmentations	 407

EXAMPLE 7.31  THE BACKGROUNDSUBTRACTIONOPENCV.PY PROGRAM

#Example 7.31 OpenCV Background Substractor

importing libraries
import numpy as np
import cv2

creating background subtractor object
fgbg = cv2.bgsegm.createBackgroundSubtractorMOG();
#fgbg = cv2.createBackgroundSubtractorMOG2();
#fgbg = cv2.bgsegm.createBackgroundSubtractorGMG();

#cap = cv2.VideoCapture(0);
cap = cv2.VideoCapture('vtest.avi')

while(1):
 # read frames
 ret, img = cap.read();
 fgmask = fgbg.apply(img);
 output = cv2.bitwise_and(img, img, mask=fgmask)

 cv2.imshow("Video", output)

 k = cv2.waitKey(30) & 0xff;
 if k == 27:
 break;

cap.release();
cv2.destroyAllWindows();

EXERCISE 7.31

Modify the earlier program, trying different background removal methods and trying
different images. Run the program and comment on the results.

After you remove the video background, you can also add the new background.
Example 7.32 is a revised version of the earlier code; it reads the background
from an image file and sets the background to the video. See Figure 7.31.

408	 Part III ■ AI Applications

Figure 7.30: The output of the background subtraction program. The top is the original video,
and the bottom is the video with the background removed.

	 Chapter 7 ■ Object Detections and Image Segmentations	 409

EXAMPLE 7.32  THE BACKGROUNDSUBTRACTIONOPENCV1.PY PROGRAM

#Example 7.32 OpenCV Background Substractor

importing libraries
import numpy as np
import cv2

creating background subtractor object
fgbg = cv2.bgsegm.createBackgroundSubtractorMOG();
#fgbg = cv2.createBackgroundSubtractorMOG2();
#fgbg = cv2.bgsegm.createBackgroundSubtractorGMG();
Kernel for denoise
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3));

#cap = cv2.VideoCapture(0);
cap = cv2.VideoCapture('vtest.avi')
bg=cv2.imread("londoneye.jpg")
while(1):
 # read frames
 ret, img = cap.read();
 fgmask = fgbg.apply(img);
 fgmask = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel);
 output = cv2.bitwise_and(img, img, mask=fgmask)
 #Change the background=======================================
 height,width,depth = output.shape
 dim = (width, height)
 bg = cv2.resize(bg, dim, interpolation = cv2.INTER_AREA)
 fgmask1a = cv2.bitwise_not(fgmask)
 bg2 = cv2.bitwise_and(bg, bg, mask=fgmask1a)
 output = cv2.add(output,bg2)
 cv2.imshow("Video", output)

 k = cv2.waitKey(30) & 0xff;
 if k == 27:
 break;

cap.release();
cv2.destroyAllWindows();

Example 7.33 is an example to evaluate the effect of different OpenCV
background subtraction methods. See Figure 7.32 and Figure 7.33.

410	 Part III ■ AI Applications

EXAMPLE 7.33  THE BACKGROUNDSUBTRACTIONOPENCV2 PROGRAM

https://www.geeksforgeeks.org/background-subtraction-opencv/?ref=rp
OpenCV Background Substraction
Worked on TensorFlow 2.0 23/10/2020

importing libraries
import numpy as np
import cv2

creating object
fgbg1 = cv2.bgsegm.createBackgroundSubtractorMOG();
fgbg2 = cv2.createBackgroundSubtractorMOG2();
fgbg3 = cv2.bgsegm.createBackgroundSubtractorGMG();
Kernel for denoise
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3));

#Create a tracker bars===
def nothing(x):
 # any operation
 pass
cv2.namedWindow("Trackbars")
cv2.createTrackbar("Alpha", "Trackbars", 4, 10, nothing)

capture frames from a camera or a video ======================
#cap = cv2.VideoCapture(0);
cap = cv2.VideoCapture('vtest.avi')
#load background image

Figure 7.31: The output of the background subtraction program with background reset

	 Chapter 7 ■ Object Detections and Image Segmentations	 411

bg = cv2.imread("bg.jpg")
#cv2.imshow("background", bg)
while(1):
 # read frames
 ret, img = cap.read();

 # apply mask for background subtraction =====================
 fgmask1 = fgbg1.apply(img);
 fgmask2 = fgbg2.apply(img);
 fgmask3 = fgbg3.apply(img);

 # apply transformation to remove noise ======================
 fgmask4 = cv2.morphologyEx(fgmask3, cv2.MORPH_OPEN, kernel);

 #Bitwise AND the image and mask
 output = cv2.bitwise_and(img, img, mask=fgmask1)
 #Change the background=======================================
 height,width,depth = output.shape
 dim = (width, height)
 # resize background image
 bg = cv2.resize(bg, dim, interpolation = cv2.INTER_AREA)
 fgmask1a = cv2.bitwise_not(fgmask1)
 bg2 = cv2.bitwise_and(bg, bg, mask=fgmask1a)

 alpha=cv2.getTrackbarPos("Alpha", "Trackbars")/10
 output2 = cv2.addWeighted(output,alpha,bg2,1-alpha,0)
 output3 = cv2.add(output,bg2)

 #Display the images ==
 res1 = np.hstack((fgmask1, fgmask2,fgmask3, fgmask4))
 res2 = np.hstack((img, output,output2,output3))

 cv2.namedWindow("Mask", 0)
 cv2.resizeWindow("Mask", 640, 480)
 cv2.imshow("Mask", res1)

 cv2.namedWindow("Video", 0)
 cv2.resizeWindow("Video", 640, 480)
 cv2.imshow("Video", res2)

 k = cv2.waitKey(30) & 0xff;
 if k == 27:
 break;

cap.release();
cv2.destroyAllWindows();

412	 Part III ■ AI Applications

Figure 7.33: The output of the background subtraction program with background reset

Figure 7.32: The slider for adjusting

	 Chapter 7 ■ Object Detections and Image Segmentations	 413

Example 7.34 is another approach for background removal that uses OpenCV.
In this case, it first uses a threshold to change the color image to a black-and-
white image, then uses the cv.findContours() method to find the contours of
the image, and then uses the cv.copyMakeBorder() method to create borders
around the contours. Finally, it removes the background based on the borders.
See Figure 7.34.

EXAMPLE 7.34  THE BGREMOVAL.PY PROGRAM

Example 7.34 BGRemoval with OpenCV
import cv2 as cv

def remove_background(image, thresh, scale_factor=.25, kernel_
range=range(1, 15), border=None):
 gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)

 im_bw = cv.threshold(gray, thresh, 255, cv.THRESH_BINARY)[1]
 im_bw_inv = cv.bitwise_not(im_bw)

 contour, _ = cv.findContours(im_bw_inv, cv.RETR_CCOMP,
cv.CHAIN_APPROX_SIMPLE)
 for cnt in contour:
 cv.drawContours(im_bw_inv, [cnt], 0, 255, -1)

 nt = cv.bitwise_not(im_bw)
 im_bw_inv = cv.bitwise_or(im_bw_inv, nt)

 border = border or kernel_range[-1]

 small = cv.resize(im_bw_inv, None, fx=scale_factor, fy=scale_factor)
 bordered = cv.copyMakeBorder(small, border, border, border,
border, cv.BORDER_CONSTANT)

 for i in kernel_range:
 kernel = cv.getStructuringElement(cv.MORPH_ELLIPSE, (2*i+1,
2*i+1))
 bordered = cv.morphologyEx(bordered, cv.MORPH_CLOSE, kernel)

 unbordered = bordered[border: -border, border: -border]
 mask = cv.resize(unbordered, (image.shape[1], image.shape[0]))
 fg = cv.bitwise_and(image, image, mask=mask)
 return fg

img = cv.imread('person_football.jpeg')
cv.imshow('image',img)
nb_img = remove_background(img, 100)
cv.imshow('bg rm',nb_img)

414	 Part III ■ AI Applications

Example 7.35 is another example code for background removal from webcam
images by using OpenCV. In this example, it first converts the webcam images
to grayscale, uses the cv2.Canny() method to find the edges using the Canny
Edge filter, and uses the cv2.dilate() and cv2.erode() methods to blur the
image. It then uses the cv.findContours() method to find out all the contours
and sort the contours according to area. It then uses the largest contour to
remove the background.

Figure 7.34: The original image and the image with background removed

	 Chapter 7 ■ Object Detections and Image Segmentations	 415

EXAMPLE 7.35  THE BACKBROUNDREMOVALWEBCAM.PY PROGRAM

#Example 7.35 Webcam Feed BGRemoval with OpenCV
import keyboard # using module keyboard

import cv2
import numpy as np
import imutils

#== Parameters
MASK_COLOR = (0.0,0.0,1.0) # In BGR format

#-- Get the background mask
def getBackgroundMask(img):
 gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

 #-- Edge detection
 edges = cv2.Canny(gray, 10, 100)
 edges = cv2.dilate(edges, None)
 edges = cv2.erode(edges, None)

 #-- Find contours in edges, sort by area
 contour_info = []
 contours, _ = cv2.findContours(edges, cv2.RETR_LIST, cv2
.CHAIN_APPROX_NONE)

 for c in contours:
 contour_info.append((
 c,
 cv2.isContourConvex(c),
 cv2.contourArea(c),
))
 contour_info = sorted(contour_info, key=lambda c: c[2],
reverse=True)
 max_contour = contour_info[0]

 #-- Create empty mask, draw filled polygon on it corresponding to
largest contour ----
 # Mask is black, polygon is white
 mask = np.zeros(edges.shape)
 cv2.fillConvexPoly(mask, max_contour[0], (255))

 #-- Smooth mask, then blur it
 mask = cv2.dilate(mask, None, iterations=10)
 mask = cv2.erode(mask, None, iterations=10)
 mask = cv2.GaussianBlur(mask, (21, 21), 0)
 mask_stack = np.dstack([mask]*3) # Create 3-channel alpha mask
 return mask_stack

416	 Part III ■ AI Applications

camera = cv2.VideoCapture(0)
bolMask = False
while camera.isOpened():
 ok, img = camera.read()
 if not ok:
 break

 if keyboard.is_pressed('t'): # if key 't' is pressed, bolMask =
not bolMask
 bolMask = not bolMask
 if (bolMask==True):
 mask_stack = getBackgroundMask(img)
 #-- Blend masked img into MASK_COLOR background
 mask_stack = mask_stack.astype('float32') / 255.0
 img = img.astype('float32') / 255.0
 masked = (mask_stack * img) + ((1-mask_stack) * MASK_COLOR)
 img = (masked * 255).astype('uint8')

 cv2.imshow('video image', img)
 key = cv2.waitKey(30)
 if key == 27: # press 'ESC' to quit
 break

camera.release()
cv2.destroyAllWindows()

Figure 7.35 shows the output of the earlier code.

Example 7.36 shows the code for background removal from webcam images
and blends the background with another video by using OpenCV.

Figure 7.35: The original webcam image (left) and the image with background removed,
shown in red (right)

	 Chapter 7 ■ Object Detections and Image Segmentations	 417

EXAMPLE 7.36  THE WEBCAMBGVIDEO.PY PROGRAM

Example 7.36 Webcam background blending with video
import cv2
import numpy as np
import time

get captures
cap = cv2.VideoCapture(0)
background_capture = cv2.VideoCapture(r'./londoneye.mp4')
#background = cv2.imread('green.jpg')

counter = -1
while cap.isOpened():
 counter += 1
 start_time_extract_figure = time.time()
 # extract your figure
 _, frame = cap.read()
 frame = cv2.resize(frame, (640, 480), interpolation=cv2.INTER_AREA)
 cv2.imshow('original', frame)
 frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
 mask = np.zeros(frame.shape[:2], np.uint8)
 bgdModel = np.zeros((1, 65), np.float64)
 fgdModel = np.zeros((1, 65), np.float64)
 rect = (10, 10, 300, 400)
 start_time_grabCut = time.time()
 cv2.grabCut(frame, mask, rect, bgdModel, fgdModel, 1, cv2
.GC_INIT_WITH_RECT)
 during_time_grabCut = time.time() - start_time_grabCut
 print('{}-th t_time: {}'.format(counter, during_time_grabCut))
 mask2 = np.where((mask == 2) | (mask == 0), (0,), (1,)).astype('uint8')
 frame = frame * mask2[:, :, np.newaxis]
 elapsed_time_extract_figure = time.time() - start_time_extract_figure
 print('{}-th extract_figure_time: {}'.format(counter,
elapsed_time_extract_figure))

 # extract the background
 start_time_combination = time.time()
 ret, background = background_capture.read()
 background = cv2.resize(background, (640, 480), interpolation=cv2
.INTER_AREA)

 # combine the figure and background using mask instead of iteration
 mask_1 = frame > 0
 mask_2 = frame <= 0
 combination = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) * mask_1 +
background * mask_2
 elapsed_time_combination = time.time() - start_time_combination
 print('{}-th combination_time: {}'.format(counter,
elapsed_time_combination))

418	 Part III ■ AI Applications

 cv2.imshow('combination', combination)

 k = cv2.waitKey(30) & 0xff
 if k == 27:
 break

cap.release()
cv2.destroyAllWindows()

Figure 7.36 shows the original webcam image (top) and the image with the
background removed and blended with another video (bottom).

Figure 7.36: The original webcam image (top) and the image with background removed and
blended with another video (bottom)

	 Chapter 7 ■ Object Detections and Image Segmentations	 419

Example 7.37 shows another version of the earlier code for background removal
from webcam images and blends the background with a green.jpg background
file by using OpenCV. See Figure 7.37.

EXAMPLE 7.37  THE WEBCAMBGFILE.PY PROGRAM

Example 7.37 Webcam background blending with picture
import cv2
import numpy as np
import time

get captures
cap = cv2.VideoCapture(0)
background = cv2.imread('green.jpg')

counter = -1
while cap.isOpened():
 counter += 1
 start_time_extract_figure = time.time()
 # extract your figure
 _, frame = cap.read()
 frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
 mask = np.zeros(frame.shape[:2], np.uint8)
 bgdModel = np.zeros((1, 65), np.float64)
 fgdModel = np.zeros((1, 65), np.float64)
 rect = (20, 20, 300, 400)
 start_time_grabCut = time.time()
 cv2.grabCut(frame, mask, rect, bgdModel, fgdModel, 1, cv2
.GC_INIT_WITH_RECT)
 during_time_grabCut = time.time() - start_time_grabCut
 print('{}-th t_time: {}'.format(counter, during_time_grabCut))
 mask2 = np.where((mask == 2) | (mask == 0), (0,), (1,))
.astype('uint8')
 frame = frame * mask2[:, :, np.newaxis]
 elapsed_time_extract_figure = time.time() - start_time_extract_figure
 print('{}-th extract_figure_time: {}'.format(counter,
elapsed_time_extract_figure))

 # extract the background
 start_time_combination = time.time()
 background = cv2.resize(background, (320, 240), interpolation=cv2
.INTER_AREA)
 # maybe the default size of embedded camera is 640x480

 # combine the figure and background using mask instead of
iteration
 mask_1 = frame > 0
 mask_2 = frame <= 0

420	 Part III ■ AI Applications

 combination = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) * mask_1 +
background * mask_2
 elapsed_time_combination = time.time() - start_time_combination
 print('{}-th combination_time: {}'.format(counter,
elapsed_time_combination))

 cv2.imshow('combination', combination)

 k = cv2.waitKey(30) & 0xff
 if k == 27:
 break

cap.release()
cv2.destroyAllWindows()

In the Hollywood blockbuster movie Harry Potter, Harry has an invisible
cloak that he can hide inside and became invisible. Example 7.38 shows some
example Python code that can achieve this amazing invisible cloak effect based
on the same background removal principle we showed earlier. It first takes 30
frames as a background; then when a person enters, it uses an HSV color mask
to identify the region that matches the color and then replaces the region with
the background to generate an illusion that the person covered by the region
becomes transparent, or invisible. See Figure 7.38.

Figure 7.37: The webcam image with background removed and blended with a green color
image file

	 Chapter 7 ■ Object Detections and Image Segmentations	 421

EXAMPLE 7.38  THE CLOAK.PY PROGRAM

Example 7.38 Harry's Cloak

import cv2
import numpy as np
import time
print(cv2.__version__)

Select Webcam or a video
#capture_video = cv2.VideoCapture("video1.mp4")
capture_video = cv2.VideoCapture(0)

Warm up the Webcam
time.sleep(1)
count = 0
background = 0

Get the background
for i in range(30):
 return_val, background = capture_video.read()
 if return_val == False :
 continue
 background = np.flip(background, axis = 1)

Start the Webcam
while (capture_video.isOpened()):
 return_val, img = capture_video.read()
 if not return_val :
 break

 count = count + 1
 img = np.flip(img, axis = 1)

 # Convert the image from BGR to HSV
 hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

 # Select the Red color range in HSV space
 lower_red = np.array([0,120,70])
 upper_red = np.array([10,255,255])
 mask1 = cv2.inRange(hsv, lower_red, upper_red)

 # mask2
 lower_red = np.array([170,120,70])
 upper_red = np.array([180,255,255])
 mask2 = cv2.inRange(hsv, lower_red, upper_red)

 # Apply the masks to image
 mask1 = mask1 + mask2
 mask1 = cv2.morphologyEx(mask1, cv2.MORPH_OPEN, np.ones((3, 3),np
.uint8), iterations = 2)

422	 Part III ■ AI Applications

 mask1 = cv2.dilate(mask1, np.ones((3, 3), np.uint8),
iterations = 1)
 mask2 = cv2.bitwise_not(mask1)

 # Final Output
 res1 = cv2.bitwise_and(background, background, mask = mask1)
 res2 = cv2.bitwise_and(img, img, mask = mask2)
 final_output = cv2.addWeighted(res1, 1, res2, 1, 0)
 cv2.imshow("INVISIBLE CLOAK", final_output)

 k = cv2.waitKey(30) & 0xff
 if k == 27:
 break

capture_video.release()
cv2.destroyAllWindows()

Figure 7.38: The webcam image with red color notebook (top) and the corresponding image
with the red color notebook made invisible (bottom)

	 Chapter 7 ■ Object Detections and Image Segmentations	 423

7.6.2  Background Removal with PaddlePaddle
PaddlePaddle is a deep learning framework from Baidu. It is powerful and yet
still simple to use; see the following link for its GitHub site.

https://github.com/PaddlePaddle/Paddle

You can use the following command to install PaddlePaddle through a terminal
or Windows Command Prompt:

pip install paddlehub paddlepaddle
hub install deeplabv3p_xception65_humanseg==1.0.0

You can use the following command to check the installation:

C:\python
>>> import paddle
>>> paddle.utils.run_check()

Example 7.39 shows some simple code for photo background removal by
using the PaddlePaddle framework. It has only four lines of code. It performs
background removal on the file ./img/01.jpg and saves the results in the
humanseg_output folder.

EXAMPLE 7.39  THE PADDLEPADDLE1.PY PROGRAM

Example 7.39 paddlepaddle background removal
import os, paddlehub as hub
huseg = hub.Module(name='deeplabv3p_xception65_humanseg')
files = ['./imgs/01.jpg']
results = huseg.segmentation(data={'image': files} ,
visualization=True, output_dir='humanseg_output/')

Example 7.40 shows the improved version of the earlier code. It can get all
the files in a folder and remove their background. It has only five lines of code.

EXAMPLE 7.40  THE PADDLEPADDLE2.PY PROGRAM

Example 7.40 paddlepaddle batch background removal
import os, paddlehub as hub
huseg = hub.Module(name='deeplabv3p_xception65_humanseg')
path = './imgs/'
files = [path + i for i in os.listdir(path)]
results = huseg.segmentation(data={'image': files} ,
visualization=True, output_dir='humanseg_output/')

424	 Part III ■ AI Applications

This further improved version selects all the image files with an extension
of jpg, jpeg, bmp, png, and gif from a folder and removes their background.
See Example 7.41.

EXAMPLE 7.41  THE PADDLEPADDLE3.PY PROGRAM

Example 7.41 paddlepaddle batch background removal
import os, paddlehub as hub
module = hub.Module(name='deeplabv3p_xception65_humanseg')
path = './imgs/'
included_extensions = ['jpg','jpeg', 'bmp', 'png', 'gif']
files = [path + i for i in os.listdir(path)
 if any(i.endswith(ext) for ext in included_extensions)]
results = module.segmentation(data={'image': files} ,
visualization=True, output_dir='humanseg_output/')

Example 7.42 shows some simple code for photo background removal by
using the PaddlePaddle framework.

EXAMPLE 7.42  THE PADDLEPADDLE4.PY PROGRAM

Example 7.42 PaddlePaddle background removal
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from matplotlib import animation
import cv2
import paddlehub as hub
from PIL import Image, ImageSequence
from IPython.display import display, HTML
import numpy as np
import imageio
import os

1. Define the input and output image folder
test_path = 'imgs/'
output_path = 'humanseg_output/'
Get all the input images
test_img_path = ['01.jpg', '02.jpg']
test_img_path = [test_path + img for img in test_img_path]
Display the first image
img = mpimg.imread(test_img_path[0])
plt.figure(figsize=(10,10))
plt.imshow(img)
plt.axis('off')
plt.show()
#2. Get the Deep Learning model

	 Chapter 7 ■ Object Detections and Image Segmentations	 425

PaddleHub DeepLabv3+(deeplabv3p_xception65_humanseg)
module = hub.Module(name="deeplabv3p_xception65_humanseg")
input_dict = {"image": test_img_path}
execute predict and print the result
results = module.segmentation(data=input_dict, visualization=True,
output_dir=output_path)for result in results:
 print(result)
 out_img_path = result['save_path']
 img = mpimg.imread(out_img_path)
 plt.figure(figsize=(10,10))
 plt.imshow(img)
 plt.axis('off')
 plt.show()

EXERCISE 7.32

Modify the earlier program, trying different deep learning models and trying different
images. Run the program and comment on the results.

7.6.3  Background Removal with PixelLib
Learn about using PixelLib background editing in images and videos here:

https://github.com/ayoolaolafenwa/PixelLib

You can download the model here:

https://github.com/ayoolaolafenwa/PixelLib/releases/download/1.1/

xception_pascalvoc.pb

Example 7.43 shows a program that uses PixelLib to blur the background.

EXAMPLE 7.43  THE PIXELLIB BG.PY PROGRAM

Example 7.43 Pixellib background editing
import pixellib
from pixellib.tune_bg import alter_bg

change_bg = alter_bg(model_type = "pb")
change_bg.load_pascalvoc_model("xception_pascalvoc.pb")
change_bg.blur_bg("person1.jpeg", extreme = True, detect = "person",
output_image_name="out.jpg")

PixelLib can also set the background of videos with five lines of code. See
Example 7.44.

https://github.com/ayoolaolafenwa/PixelLib
https://github.com/ayoolaolafenwa/PixelLib/releases/download/1.1/xception_pascalvoc.pb
https://github.com/ayoolaolafenwa/PixelLib/releases/download/1.1/xception_pascalvoc.pb

426	 Part III ■ AI Applications

EXAMPLE 7.44  THE PIXELLIB BG VIDEO PROGRAM

Example 7.44 Pixellib background editing

import pixellib
from pixellib.tune_bg import alter_bg

change_bg = alter_bg(model_type="pb")
change_bg.load_pascalvoc_model("xception_pascalvoc.pb")
change_bg.change_video_bg("person.mp4", "londoneye.jpg", frames_per_
second = 10, output_video_name="output_video.mp4", detect = "person")

Figure 7.39 is the video output of the earlier code.

EXERCISE 7.33

Modify the earlier program, trying deep learning models and trying different videos.
Run the program and comment on the results.

7.7  Depth Estimation

Depth estimation is a technique to estimate the depth information from images.
Depth estimation can be achieved by using a single image or two images, also
called stereo images. When estimating depth from a single image, it is also called
monocular depth estimation. Depth estimation has many practical applications,
such as self-driving technology. See the following site for more details:

https://paperswithcode.com/task/monocular-depth-estimation

7.7.1  Depth Estimation from a Single Image
The following link shows an interesting GitHub project called High Quality
Monocular Depth Estimation via Transfer Learning (arXiv 2018), which can
estimate the depth information from a single image in a video. Just follow the
instructions to run the code.

https://github.com/priya-dwivedi/Deep-Learning/tree/master/depth_

estimation

The following link shows another GitHub project called MonoDepth2, which
is the PyTorch implementation for training and testing depth estimation models.
It also has an IPython notebook for you to run the code easily.

https://github.com/nianticlabs/monodepth2

https://paperswithcode.com/task/monocular-depth-estimation
https://github.com/priya-dwivedi/Deep-Learning/tree/master/depth_estimation
https://github.com/priya-dwivedi/Deep-Learning/tree/master/depth_estimation

	 Chapter 7 ■ Object Detections and Image Segmentations	 427

Figure 7.39: The original video (top) and the video with background removed and replaced
with the London Eye image (bottom)

428	 Part III ■ AI Applications

You can also perform depth estimation with Gluon library. The following
website shows the Gluon examples for depth prediction.

https://cv.gluon.ai/build/examples_depth/index.html

7.7.2  Depth Estimation from Stereo Images
Similarly, you can estimate the depth information by using two images, or
stereo images. See the following link for details on how to create a depth map
using OpenCV:

https://opencv-python-tutroals.readthedocs.io/en/latest/

py_tutorials/py_calib3d/py_depthmap/py_depthmap.html

Example 7.45 shows an example of how to get the depth map from stereo
images.

EXAMPLE 7.45  THE OPENCVDEPTHMAP.PY PROGRAM

Example 7.45 OpenCV Depth Estimation from Stereo Images
import numpy as np
import cv2
from matplotlib import pyplot as plt

imgL = cv2.imread('tsukuba_l.png',0)
imgR = cv2.imread('tsukuba_r.png',0)

stereo = cv2.cv2.StereoBM_create(numDisparities=16, blockSize=15)
disparity = stereo.compute(imgL,imgR)
plt.imshow(disparity,'nipy_spectral')
plt.show()

EXERCISE 7.34

Modify the earlier program so that it allows users to select two image files. Run the
program and comment on the results. Hint: You can use the Tkinter library to select files
through a file open dialog box, as shown here:

import tkinter as tk

from tkinter import filedialog as fd

root = tk.Tk()

root.withdraw()

filenames = fd.askopenfilenames()

https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_calib3d/py_depthmap/py_depthmap.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_calib3d/py_depthmap/py_depthmap.html

	 Chapter 7 ■ Object Detections and Image Segmentations	 429

Example 7.46 shows the webcam version of the earlier code, which takes a
left image and a right image from two webcams, combines them, and creates
a live depth map.

EXAMPLE 7.46  THE OPENCVDEPTHMAPWEBCAM.PY PROGRAM

Example 7.46 depth map using two live webcams
import numpy as np
import cv2
from matplotlib import pyplot as plt

capL = cv2.VideoCapture(0)
capR = cv2.VideoCapture(1)

while capL.isOpened() and capR.isOpened():
 ok, imgL = capL.read()
 if not ok:
 break
 ok, imgR = capR.read()
 if not ok:
 break

 # stereo.compute() requires input images converted to single
channel, i.e. of type CV_8UC1
 imgL=cv2.cvtColor(imgL, cv2.COLOR_BGR2GRAY)
  imgR=cv2.cvtColor(imgR, cv2.COLOR_BGR2GRAY)

 stereo = cv2.cv2.StereoBM_create(numDisparities=16, blockSize=15)
 disparity = stereo.compute(imgL,imgR)

 disparity = (disparity - np.amin(disparity))/(np.amax(disparity)-np
.amin(disparity))*255
 w,h, = imgR.shape
 img = np.zeros([w,h,3])
 img[:,:,0] = np.ones([w,h])*0/255.0
 img[:,:,1] = np.ones([w,h])*0/255.0
 img[:,:,2] = np.ones([w,h])*disparity/255.0

 cv2.imshow('Depth Map',img)
 key = cv2.waitKey(30)
 if key == 27: # press 'ESC' to quit
 break

capL.release()
capR.release()
cv2.destroyAllWindows()

430	 Part III ■ AI Applications

7.8  Augmented Reality

Augmented reality (AR) and virtual reality (VR) are two of the hottest technol-
ogies at the moment. Augmented reality means to blend the virtual object into
real-world video images, while virtual reality means to replace the real world
with a virtual world. This is typically achieved by wearing VR goggles.

Augmented reality can be used in many real-life applications. One of the
examples is Microsoft’s HoloLens 2, which is an amazing kit that can used in
engineering, healthcare, and more. See the following link for more details:

https://www.microsoft.com/en-us/hololens/

The following links show an interesting GitHub site for an augmented-reality
project. This is an interesting two-part tutorial on how to create augmented
reality by using OpenCV. This tutorial shows you how to detect and recognize
the target flat surface in an image, estimate the homography, derive from the
homography the transformation from the target surface coordinate system to
the target image coordinate system, and finally project a 3D model onto the
target surface in the image and draw it.

https://github.com/juangallostra/augmented-reality

https://bitesofcode.wordpress.com/2017/09/12/augmented-reality-

with-python-and-opencv-part-1/

The following link shows another example of augmented reality by using
OpenCV. It is a project called augmented reality using AruCo Markers in OpenCV
from the LearnOpenCV GitHub site. This project shows you how to use the
AruCo markers to replace the image inside a picture to display new images or
videos in the frame.

https://github.com/spmallick/learnopencv/tree/master/Augmented

RealityWithArucoMarkers

ArUco markers are synthetic square markers composed by a wide black
border and an inner binary matrix which determines its identifier (id). See the
following link for more details.

https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html

The following link shows another OpenCV augmented reality example from
the PyImageSearch website. This tutorial shows you how to perform real-time
augmented reality in video streams.

https://www.pyimagesearch.com/2021/01/11/opencv-video-augmented-

reality/

https://www.microsoft.com/en-us/hololens/
https://www.pyimagesearch.com/2021/01/11/opencv-video-augmentedreality/
https://www.pyimagesearch.com/2021/01/11/opencv-video-augmentedreality/
https://github.com/spmallick/learnopencv/tree/master/AugmentedRealityWithArucoMarkers
https://github.com/spmallick/learnopencv/tree/master/AugmentedRealityWithArucoMarkers

	 Chapter 7 ■ Object Detections and Image Segmentations	 431

7.9  Summary

This chapter covered object detection and image segmentation, which are heavily
researched artificial intelligence areas. Image classification means to classify the
whole image into different categories, object detection means to detect and locate
different objects with the image, and image segmentation means to divide the
image into different segments.

Object detection can be achieved by detecting colors, shapes, and contours, and
you can implement this by using the popular OpenCV library. Object detection
can also be achieved by using pretrained deep learning models, such as those
trained on the COCO image dataset. You can detect multiple classes of predefined
objects. You can also retrain or update existing deep learning models on your
own image data to detect new objects, a type of transfer learning. You can per-
form this kind of transfer learning with OpenCV, YOLO, ImageAI, and so on.

Object tracking is also an interesting area, where you can detect and track
objects from a series of images, such as video.

Image segmentation includes image semantic segmentation and image
instance segmentation. Image semantic segmentation divides the image into
different segments according to content and treats multiple objects within a
single category as one entity. Image instance segmentation, on the other hand,
identifies individual objects and divides the image into segments accordingly.

K-means clustering is another popular algorithm for image segmentation.
It is used to divide the image into segments based on how similar the pixel data
is to different centers. The pixel data points in the same cluster are more similar
than those in other clusters.

The watershed algorithm treats the image like a topographic map, with the
brightness of each point representing its height, and finds the lines that run
along the tops of ridges. The watershed algorithm then uses ridges and troughs
to segment the image.

Background removal detects and removes the background of the image.
Depth estimation estimates the depth from single or multiple 2D images.
Augmented reality mixes the computer generated patterns with the live

camera image in real time.

7.10  Chapter Review Questions

Q7.1.	 What is object detection?

Q7.2.	� What is the difference between R-CNN, YOLO, and SSD in object
detection?

Q7.3.	 What is R-CNN?

432	 Part III ■ AI Applications

Q7.4.	 What is Fast R-CNN?

Q7.5.	 What is Faster R-CNN?

Q7.6.	 What is Mask R-CNN?.

Q7.7.	 What is YOLO?

Q7.8.	 What is SSD?

Q7.9.	 What is Haar cascade code?

Q7.10.	 What is the COCO dataset?

Q7.11.	 What is object detection with transfer learning?

Q7.12.	 What is object tracking?

Q7.13.	� What is image semantic segmentation, and what is image instance
segmentation?

Q7.14.	 What is K-means clustering image segmentation?

Q7.15.	 What is watershed image segmentation?

Q7.16.	 What is image background removal?

Q7.17.	 What is image depth estimation?

Q7.18.	 What is augmented reality?

C H A P T E R

433

8

8.1  Introduction

Pose detection, also called human pose detection or human pose estimation, is
a hot research topic that has attracted the attention of the computer vision
community for the past few decades. The key to pose detection is to detect
and locate human joints, also known as keypoints in images or videos, such
as heads, necks, shoulders, hips, elbows, wrists, knees, ankles, and so on.
The pose estimation problem is often referred to as the perspective-n-point problem,
in which the goals are to find the pose of an object with a calibrated camera
and to find the locations of n 3D points on the object and the corresponding
2D projections in the image.

Pose Detection
“Software is eating the world, but AI is going to eat software.”

—Jensen Huang (cofounder and CEO of Nvidia)

C H A P T E R O U T L I N E

8.1.	 Introduction
8.2.	 Hand Gesture Detection
8.3.	 Sign Language Detection
8.4.	 Body Pose Detection
8.5.	 Human Activity Recognition
8.6.	 Summary
8.7.	 Chapter Review Questions

434	 Part III ■ AI Applications

With pose detection, you can do many cool things, such as recognizing
people’s activities, teaching people online (sports, workouts, yoga), and gam-
ing. During the 2020 COVID-19 pandemic, there was a rise of yoga apps that
use pose detection to help teach people yoga online.

In this chapter, we will first show you how to detect and recognize hand
gestures and, related to that, sign language. Then we will introduce body pose
detections and, finally, human activity recognition (HAR).

The following are some pose detection datasets and challenges:

■■ COCO Keypoints challenge

https://cocodataset.org/#keypoints-2020

■■ MPII Human Pose Dataset

http://human-pose.mpi-inf.mpg.de/

■■ VGG Pose Dataset

https://www.robots.ox.ac.uk/~vgg/data/pose_evaluation/

■■ The Cambridge-Imperial APE (Action-Pose-Estimation) Dataset

https://labicvl.github.io/APE.html

See the following links for more information about human pose detection:

https://learnopencv.com/tag/human-pose-estimation/

https://learnopencv.com/deep-learning-based-human-pose-estimation-

using-opencv-cpp-python/

https://github.com/garyzhao/SemGCN

https://docs.openvinotoolkit.org/latest/omz_demos_python_demos_

human_pose_estimation_3d_demo_README.html

8.2  Hand Gesture Detection

Hand gesture detection is one of the most popular solutions for human com-
puter interaction. It has found wide application in video gaming, medicine,
accessibility support, and so on. It has also become popular on devices such
as smart phones, tablets, and laptops. In this section, we will introduce how to
do hand gesture detection by using the OpenCV library and the TensorFlow.
js library.

8.2.1  OpenCV
The following shows an example of hand gesture detection using OpenCV. This
is a two-part tutorial. In Part 1, it basically recognizes a hand by subtracting the

https://cocodataset.org/#keypoints-2020
http://human-pose.mpi-inf.mpg.de/
https://www.robots.ox.ac.uk/~vgg/data/pose_evaluation/
https://labicvl.github.io/APE.html
https://learnopencv.com/tag/human-pose-estimation/
https://learnopencv.com/deep-learning-based-human-pose-estimation-using-opencv-cpp-python/
https://learnopencv.com/deep-learning-based-human-pose-estimation-using-opencv-cpp-python/
https://github.com/garyzhao/SemGCN
https://docs.openvinotoolkit.org/latest/omz_demos_python_demos_human_pose_estimation_3d_demo_README.html
https://docs.openvinotoolkit.org/latest/omz_demos_python_demos_human_pose_estimation_3d_demo_README.html

	 Chapter 8 ■ Pose Detection	 435

background and therefore requires a plain, simple background. It also requires
the hand to be in a certain area of the camera.

https://github.com/Gogul09/gesture-recognition

Example 8.1 shows the segment.py code in Part 1 that can separate the hand
from the background (https://github.com/Gogul09/gesture-recognition/
blob/master/segment.py), with minor modifications.

EXAMPLE 8.1  THE SEGMENT.PY PROGRAM

Example 8.1 segment.py
https://github.com/Gogul09/gesture-recognition/blob/master/segment
.py
With minor modifications.
#---
SEGMENT HAND REGION FROM A VIDEO SEQUENCE
#---

organize imports
import cv2
import imutils
import numpy as np

global variables
bg = None

#--
To find the running average over the background
#--
def run_avg(image, aWeight):
 global bg
 # initialize the background
 if bg is None:
 bg = image.copy().astype("float")
 return

 # compute weighted average, accumulate it and update the
background
 cv2.accumulateWeighted(image, bg, aWeight)

#---
To segment the region of hand in the image
#---
def segment(image, threshold=25):
 global bg
 # find the absolute difference between background and current
frame
 diff = cv2.absdiff(bg.astype("uint8"), image)

https://github.com/Gogul09/gesture-recognition
https://github.com/Gogul09/gesture-recognition/blob/master/segment.py
https://github.com/Gogul09/gesture-recognition/blob/master/segment.py

436	 Part III ■ AI Applications

 # threshold the diff image so that we get the foreground
 thresholded = cv2.threshold(diff, threshold, 255, cv2.THRESH_
BINARY)[1]

 # get the contours in the thresholded image
 #(_, cnts, _) = cv2.findContours(thresholded.copy(), cv2.RETR_
EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
 (cnts, _) = cv2.findContours(thresholded.copy(), cv2.RETR_
EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

 # return None, if no contours detected
 if len(cnts) == 0:
 return
 else:
 # based on contour area, get the maximum contour which is the
hand
 segmented = max(cnts, key=cv2.contourArea)
 return (thresholded, segmented)

#-----------------
MAIN FUNCTION
#-----------------
if __name__ == "__main__":
 # initialize weight for running average
 aWeight = 0.5

 # get the reference to the webcam
 camera = cv2.VideoCapture(0)

 # region of interest (ROI) coordinates
 #top, right, bottom, left = 10, 350, 225, 590
 top, right, bottom, left = 10, 10, 250, 300

 # initialize num of frames
 num_frames = 0

 # keep looping, until interrupted
 while(True):
 # get the current frame
 (grabbed, frame) = camera.read()

 # resize the frame
 frame = imutils.resize(frame, width=700)

 # flip the frame so that it is not the mirror view
 frame = cv2.flip(frame, 1)

 # clone the frame
 clone = frame.copy()

	 Chapter 8 ■ Pose Detection	 437

 # get the height and width of the frame
 (height, width) = frame.shape[:2]

 # get the ROI
 roi = frame[top:bottom, right:left]

 # convert the roi to grayscale and blur it
 gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
 gray = cv2.GaussianBlur(gray, (9, 9), 0)

 # to get the background, keep looking till a threshold is
reached
 # so that our running average model gets calibrated
 if num_frames < 30:
 run_avg(gray, aWeight)
 else:
 # segment the hand region
 hand = segment(gray)

 # check whether hand region is segmented
 if hand is not None:
 # if yes, unpack the thresholded image and
 # segmented region
 (thresholded, segmented) = hand

 # draw the segmented region and display the frame
 cv2.drawContours(clone, [segmented + (right, top)], -1,
(0, 0, 255))
 cv2.imshow("Thesholded", thresholded)

 # draw the segmented hand
 cv2.rectangle(clone, (left, top), (right, bottom), (0,255,0), 2)

 # increment the number of frames
 num_frames += 1

 # display the frame with segmented hand
 cv2.imshow("Video Feed", clone)

 # observe the keypress by the user
 keypress = cv2.waitKey(1) & 0xFF

 # if the user pressed "q", then stop looping
 if keypress == ord("q"):
 break

free up memory
camera.release()
cv2.destroyAllWindows()

438	 Part III ■ AI Applications

Figure 8.1 shows the output of the segment.py code in Part 1 of the tutorial,
which shows how to extract a hand from the image.

In the Part 2 tutorial, we recognize and count the number of fingers. Example
8.2 shows the recognize.py code in Part 2 that can recognize and count the
number of fingers (https://github.com/Gogul09/gesture-recognition/blob/
master/recognize.py), with minor modifications.

EXAMPLE 8.2  THE RECOGNIZE.PY PROGRAM

Example 8.2
https://github.com/Gogul09/gesture-recognition/blob/master/recognize.py
With minor modifications.
#--
SEGMENT, RECOGNIZE and COUNT fingers from a video sequence
#--

organize imports
import cv2
import imutils
import numpy as np
from sklearn.metrics import pairwise

global variables
bg = None

Figure 8.1: The output of the segment.py code in Part 1 of the tutorial of the
Gesture-Recognition project

https://github.com/Gogul09/gesture-recognition/blob/master/recognize.py
https://github.com/Gogul09/gesture-recognition/blob/master/recognize.py

	 Chapter 8 ■ Pose Detection	 439

#--
To find the running average over the background
#--
def run_avg(image, accumWeight):
 global bg
 # initialize the background
 if bg is None:
 bg = image.copy().astype("float")
 return

 # compute weighted average, accumulate it and update the background
 cv2.accumulateWeighted(image, bg, accumWeight)

#---
To segment the region of hand in the image
#---
def segment(image, threshold=25):
 global bg
 # find the absolute difference between background and current frame
 diff = cv2.absdiff(bg.astype("uint8"), image)

 # threshold the diff image so that we get the foreground
 thresholded = cv2.threshold(diff, threshold, 255, cv2.THRESH_BINARY)[1]

 # get the contours in the thresholded image
 #(_, cnts, _) = cv2.findContours(thresholded.copy(), cv2.RETR_
EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
 (cnts, _) = cv2.findContours(thresholded.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)

 # return None, if no contours detected
 if len(cnts) == 0:
 return
 else:
 # based on contour area, get the maximum contour which is the hand
 segmented = max(cnts, key=cv2.contourArea)
 return (thresholded, segmented)

#--
To count the number of fingers in the segmented hand region
#--
def count(thresholded, segmented):
 # find the convex hull of the segmented hand region
 chull = cv2.convexHull(segmented)

 # find the most extreme points in the convex hull
 extreme_top = tuple(chull[chull[:, :, 1].argmin()][0])

440	 Part III ■ AI Applications

 extreme_bottom = tuple(chull[chull[:, :, 1].argmax()][0])
 extreme_left = tuple(chull[chull[:, :, 0].argmin()][0])
 extreme_right = tuple(chull[chull[:, :, 0].argmax()][0])

 # find the center of the palm
 cX = int((extreme_left[0] + extreme_right[0]) / 2)
 cY = int((extreme_top[1] + extreme_bottom[1]) / 2)

 # find the maximum euclidean distance between the center of the palm
 # and the most extreme points of the convex hull
 distance = pairwise.euclidean_distances([(cX, cY)], Y=[extreme_left,
extreme_right, extreme_top, extreme_bottom])[0]
 maximum_distance = distance[distance.argmax()]

 # calculate the radius of the circle with 80% of the max euclidean
distance obtained
 radius = int(0.8 * maximum_distance)

 # find the circumference of the circle
 circumference = (2 * np.pi * radius)

 # take out the circular region of interest which has
 # the palm and the fingers
 circular_roi = np.zeros(thresholded.shape[:2], dtype="uint8")

 # draw the circular ROI
 cv2.circle(circular_roi, (cX, cY), radius, 255, 1)

 # take bit-wise AND between thresholded hand using the circular ROI
as the mask
 # which gives the cuts obtained using mask on the thresholded hand
image
 circular_roi = cv2.bitwise_and(thresholded, thresholded,
mask=circular_roi)

 # compute the contours in the circular ROI
 #(_, cnts, _) = cv2.findContours(circular_roi.copy(), cv2.RETR_
EXTERNAL, cv2.CHAIN_APPROX_NONE)
 (cnts, _) = cv2.findContours(circular_roi.copy(), cv2.RETR_
EXTERNAL, cv2.CHAIN_APPROX_NONE)

 # initalize the finger count
 count = 0

 # loop through the contours found
 for c in cnts:
 # compute the bounding box of the contour
 (x, y, w, h) = cv2.boundingRect(c)

	 Chapter 8 ■ Pose Detection	 441

 # increment the count of fingers only if -
 # 1. The contour region is not the wrist (bottom area)
 # 2. The number of points along the contour does not exceed
 # 25% of the circumference of the circular ROI
 if ((cY + (cY * 0.25)) > (y + h)) and ((circumference * 0.25)
> c.shape[0]):
 count += 1

 return count

#-----------------
MAIN FUNCTION
#-----------------
if __name__ == "__main__":
 # initialize accumulated weight
 accumWeight = 0.5

 # get the reference to the webcam
 camera = cv2.VideoCapture(0)

 # region of interest (ROI) coordinates
 #top, right, bottom, left = 10, 350, 225, 590
 top, right, bottom, left = 10, 10, 250, 300

 # initialize num of frames
 num_frames = 0

 # calibration indicator
 calibrated = False

 # keep looping, until interrupted
 while(True):
 # get the current frame
 (grabbed, frame) = camera.read()

 # resize the frame
 frame = imutils.resize(frame, width=700)

 # flip the frame so that it is not the mirror view
 frame = cv2.flip(frame, 1)

 # clone the frame
 clone = frame.copy()

 # get the height and width of the frame
 (height, width) = frame.shape[:2]

 # get the ROI
 roi = frame[top:bottom, right:left]

442	 Part III ■ AI Applications

 # convert the roi to grayscale and blur it
 gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
 gray = cv2.GaussianBlur(gray, (9, 9), 0)

 # to get the background, keep looking till a threshold is
reached
 # so that our weighted average model gets calibrated
 if num_frames < 30:
 run_avg(gray, accumWeight)
 if num_frames == 1:
 print("[STATUS] please wait! calibrating...")
 elif num_frames == 29:
 print("[STATUS] calibration successfull...")
 else:
 # segment the hand region
 hand = segment(gray)

 # check whether hand region is segmented
 if hand is not None:
 # if yes, unpack the thresholded image and
 # segmented region
 (thresholded, segmented) = hand

 # draw the segmented region and display the frame
 cv2.drawContours(clone, [segmented + (right, top)], -1,
(0, 0, 255))

 # count the number of fingers
 fingers = count(thresholded, segmented)

 cv2.putText(clone, str(fingers), (70, 45), cv2.FONT_
HERSHEY_SIMPLEX, 1, (0,0,255), 2)

 # show the thresholded image
 cv2.imshow("Thesholded", thresholded)

 # draw the segmented hand
 cv2.rectangle(clone, (left, top), (right, bottom), (0,255,0), 2)

 # increment the number of frames
 num_frames += 1

 # display the frame with segmented hand
 cv2.imshow("Video Feed", clone)

 # observe the keypress by the user
 keypress = cv2.waitKey(1) & 0xFF

	 Chapter 8 ■ Pose Detection	 443

 # if the user pressed "q", then stop looping
 if keypress == ord("q"):
 break

free up memory
camera.release()
cv2.destroyAllWindows()

Figure 8.2 shows the output of the recognize.py code in Part 2 of the tuto-
rial, which shows the result of recognizing the number of fingers captured in
the region of interest (ROI).

EXERCISE 8.1

Download the previous Python GitHub project. Run the programs and comment on the
results.

The following shows a similar hand gesture recognition based on OpenCV.
It is based on the same principle of the previous example, and it can recognize
the hand as pointing, stone, paper, scissors; you also need to put the hand in a
certain area of the camera.

https://github.com/ishfulthinking/Python-Hand-Gesture-Recognition

Figure 8.2: The output of the recognize.py code in Part 2 or the tutorial for the Gesture-
Recognition project

https://github.com/ishfulthinking/Python-Hand-Gesture-Recognition

444	 Part III ■ AI Applications

Example 8.3 shows the checkpoint5.py example code based on
(https://github.com/ishfulthinking/Python-Hand-Gesture-Recognition/
blob/master/checkpoint5.ipynb), with minor modifications.

EXAMPLE 8.3  THE CHECKPOINT5.PY PROGRAM

Example 8.3 checkpoint5.py
https://github.com/ishfulthinking/Python-Hand-Gesture-Recognition/
blob/master/checkpoint5.ipynb
With minor modifications.
#!/usr/bin/env python
coding: utf-8

Python Hand Gesture Recognition (Checkpoint 5)

This checkpoint is at the end of Objective 5.

At this point, your code should be fully functional -- it'll recognize
waving, pointing, a peace sign (scissors), and a fist (rock). Congrats
on making it here!

Header: Importing libraries and creating global variables

In[21]:

import numpy as np
import cv2

Hold the background frame for background subtraction.
background = None
Hold the hand's data so all its details are in one place.
hand = None
Variables to count how many frames have passed and to set the size of
the window.
frames_elapsed = 0
FRAME_HEIGHT = 480
FRAME_WIDTH = 640
Humans come in a ton of beautiful shades and colors.
Try editing these if your program has trouble recognizing your skin
tone.
CALIBRATION_TIME = 30
BG_WEIGHT = 0.5
OBJ_THRESHOLD = 18

HandData: A class to hold all the hand's details and flags

In[22]:

https://github.com/ishfulthinking/Python-Hand-Gesture-Recognition/blob/master/checkpoint5.ipynb
https://github.com/ishfulthinking/Python-Hand-Gesture-Recognition/blob/master/checkpoint5.ipynb

	 Chapter 8 ■ Pose Detection	 445

class HandData:
 top = (0,0)
 bottom = (0,0)
 left = (0,0)
 right = (0,0)
 centerX = 0
 prevCenterX = 0
 isInFrame = False
 isWaving = False
 fingers = None
 gestureList = []

 def __init__(self, top, bottom, left, right, centerX):
 self.top = top
 self.bottom = bottom
 self.left = left
 self.right = right
 self.centerX = centerX
 self.prevCenterX = 0
 isInFrame = False
 isWaving = False

 def update(self, top, bottom, left, right):
 self.top = top
 self.bottom = bottom
 self.left = left
 self.right = right

 def check_for_waving(self, centerX):
 self.prevCenterX = self.centerX
 self.centerX = centerX

 if abs(self.centerX - self.prevCenterX > 3):
 self.isWaving = True
 else:
 self.isWaving = False

write_on_image(): Write info related to the hand gesture and
outline the region of interest

In[23]:

Here we take the current frame, the number of frames elapsed, and how
many fingers we've detected
so we can print on the screen which gesture is happening (or if the
camera is calibrating).
def write_on_image(frame):
 text = "Searching..."

446	 Part III ■ AI Applications

 if frames_elapsed < CALIBRATION_TIME:
 text = "Calibrating..."
 elif hand == None or hand.isInFrame == False:
 text = "No hand detected"
 else:
 if hand.isWaving:
 text = "Waving"
 elif hand.fingers == 0:
 text = "Rock"
 elif hand.fingers == 1:
 text = "Pointing"
 elif hand.fingers == 2:
 text = "Scissors"

 cv2.putText(frame, text, (10,20), cv2.FONT_HERSHEY_COMPLEX, 0.4,(0
, 0 , 0),2,cv2.LINE_AA)
 cv2.putText(frame, text, (10,20), cv2.FONT_HERSHEY_COMPLEX,
0.4,(255,255,255),1,cv2.LINE_AA)

 # Highlight the region of interest.
 cv2.rectangle(frame, (region_left, region_top), (region_right,
region_bottom), (255,255,255), 2)

get_region(): Separate the region of interest and preps it for
edge detection

In[24]:

def get_region(frame):
 # Separate the region of interest from the rest of the frame.
 region = frame[region_top:region_bottom, region_left:region_right]
 # Make it grayscale so we can detect the edges more easily.
 region = cv2.cvtColor(region, cv2.COLOR_BGR2GRAY)
 # Use a Gaussian blur to prevent frame noise from being labeled as
an edge.
 region = cv2.GaussianBlur(region, (5,5), 0)

 return region

get_average(): Create a weighted average of the background for
image differencing

In[25]:

	 Chapter 8 ■ Pose Detection	 447

def get_average(region):
 # We have to use the global keyword because we want to edit the
global variable.
 global background
 # If we haven't captured the background yet, make the current region
the background.
 if background is None:
 background = region.copy().astype("float")
 return
 # Otherwise, add this captured frame to the average of the
backgrounds.
 cv2.accumulateWeighted(region, background, BG_WEIGHT)

segment(): Use image differencing to separate the hand from the
background

In[26]:

Here we use differencing to separate the background from the object of
interest.
def segment(region):
 global hand
 # Find the absolute difference between the background and the
current frame.
 diff = cv2.absdiff(background.astype(np.uint8), region)

 # Threshold that region with a strict 0 or 1 ruling so only the
foreground remains.
 thresholded_region = cv2.threshold(diff, OBJ_THRESHOLD, 255, cv2
.THRESH_BINARY)[1]

 # Get the contours of the region, which will return an outline of
the hand.
 #(_, contours, _) = cv2.findContours(thresholded_region.copy(), cv2
.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
 (contours, _) = cv2.findContours(thresholded_region.copy(), cv2
.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

 # If we didn't get anything, there's no hand.
 if len(contours) == 0:
 if hand is not None:
 hand.isInFrame = False
 return
 # Otherwise return a tuple of the filled hand (thresholded_region),
along with the outline (segmented_region).
 else:
 if hand is not None:
 hand.isInFrame = True

448	 Part III ■ AI Applications

 segmented_region = max(contours, key = cv2.contourArea)
 return (thresholded_region, segmented_region)

get_hand_data(): Find the extremities of the hand and put them in
the global hand object

In[27]:

def get_hand_data(thresholded_image, segmented_image):
 global hand

 # Enclose the area around the extremities in a convex hull to
connect all outcroppings.
 convexHull = cv2.convexHull(segmented_image)

 # Find the extremities for the convex hull and store them as points.
 top = tuple(convexHull[convexHull[:, :, 1].argmin()][0])
 bottom = tuple(convexHull[convexHull[:, :, 1].argmax()][0])
 left = tuple(convexHull[convexHull[:, :, 0].argmin()][0])
 right = tuple(convexHull[convexHull[:, :, 0].argmax()][0])

 # Get the center of the palm, so we can check for waving and find
the fingers.
 centerX = int((left[0] + right[0]) / 2)

 # We put all the info into an object for handy extraction (get it?
HANDy?)
 if hand == None:
 hand = HandData(top, bottom, left, right, centerX)
 else:
 hand.update(top, bottom, left, right)

 # Only check for waving every 6 frames.
 if frames_elapsed % 6 == 0:
 hand.check_for_waving(centerX)

 # We count the number of fingers up every frame, but only change
hand.fingers if
 # 12 frames have passed, to prevent erratic gesture counts.
 hand.gestureList.append(count_fingers(thresholded_image))
 if frames_elapsed % 12 == 0:
 hand.fingers = most_frequent(hand.gestureList)
 hand.gestureList.clear()

count_fingers(): Count the number of fingers using a line
intersecting fingertips

In[28]:

	 Chapter 8 ■ Pose Detection	 449

def count_fingers(thresholded_image):

 # Find the height at which we will draw the line to count fingers.
 line_height = int(hand.top[1] + (0.2 * (hand.bottom[1] - hand.
top[1])))

 # Get the linear region of interest along where the fingers would
be.
 line = np.zeros(thresholded_image.shape[:2], dtype=int)

 # Draw a line across this region of interest, where the fingers
should be.
 cv2.line(line, (thresholded_image.shape[1], line_height), (0, line_
height), 255, 1)

 # Do a bitwise AND to find where the line intersected the hand --
this is where the fingers are.
 line = cv2.bitwise_and(thresholded_image, thresholded_image, mask =
line.astype(np.uint8))

 # Get the line's new contours. The contours are basically just
little lines formed by gaps
 # in the big line across the fingers, so each would be a finger
unless it's very wide.
 #(_, contours, _) = cv2.findContours(line.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_NONE)
 (contours, _) = cv2.findContours(line.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_NONE)

 fingers = 0

 # Count the fingers by making sure the contour lines are "finger-
sized", i.e. not too wide.
 # This prevents a "rock" gesture from being mistaken for a finger.
 for curr in contours:
 width = len(curr)

 if width < 3 * abs(hand.right[0] - hand.left[0]) / 4 and width > 5:
 fingers += 1

 return fingers

most_frequent(): Returns the value in a list that appears most
frequently

In[29]:

450	 Part III ■ AI Applications

def most_frequent(input_list):
 dict = {}
 count = 0
 most_freq = 0

 for item in reversed(input_list):
 dict[item] = dict.get(item, 0) + 1
 if dict[item] >= count :
 count, most_freq = dict[item], item

 return most_freq

Main function: Get input from camera and call functions to
understand it

In[30]:

Our region of interest will be the top right part of the frame.
region_top = 0
region_bottom = int(2 * FRAME_HEIGHT / 3)
region_left = int(FRAME_WIDTH / 2)
region_right = FRAME_WIDTH

frames_elapsed = 0

capture = cv2.VideoCapture(0)

while (True):
 # Store the frame from the video capture and resize it to the window
size.
 ret, frame = capture.read()
 frame = cv2.resize(frame, (FRAME_WIDTH, FRAME_HEIGHT))
 # Flip the frame over the vertical axis so that it works like a
mirror, which is more intuitive to the user.
 frame = cv2.flip(frame, 1)

 # Separate the region of interest and prep it for edge detection.
 region = get_region(frame)
 if frames_elapsed < CALIBRATION_TIME:
 get_average(region)
 else:
 region_pair = segment(region)
 if region_pair is not None:
 # If we have the regions segmented successfully, show them
in another window for the user.
 (thresholded_region, segmented_region) = region_pair

	 Chapter 8 ■ Pose Detection	 451

 cv2.drawContours(region, [segmented_region], -1, (255, 255,
255))
 cv2.imshow("Segmented Image", region)

 get_hand_data(thresholded_region, segmented_region)

 # Write the action the hand is doing on the screen, and draw the
region of interest.
 write_on_image(frame)
 # Show the previously captured frame.
 cv2.imshow("Camera Input", frame)
 frames_elapsed += 1
 # Check if user wants to exit.
 if (cv2.waitKey(1) & 0xFF == ord('x')):
 break

When we exit the loop, we have to stop the capture too.
capture.release()
cv2.destroyAllWindows()

Figure 8.3 shows the output.

EXERCISE 8.2

Download the previous Python GitHub project. Run the programs and comment on the
results. Then add a three-finger salute gesture, as shown in the blockbuster movie The
Hunger Games.

Figure 8.3: The output of the checkpoint5.py code for the Python-Hand-Gesture-
Recognition project

452	 Part III ■ AI Applications

The following website shows another hand gesture example project called:
Hand Gesture Recognition. This Python project first creates three tem-
plate images to present three hand signs for victory, like, and respect. Then it
uses a webcam to capture the hand in the image and uses OpenCV’s cv2
.matchTemplate() function to find the best match with the hand sign template
image.

https://github.com/adilsofficial/HandGesture

The following shows a GitHub project called Training a Neural Network to
Detect Gestures with OpenCV in Python; it basically builds Microsoft Kinect
functionality with just a webcam.

https://github.com/athena15/project_kojak

8.2.2  TensorFlow.js
Google’s TensorFlow.js is a library for machine learning in JavaScript. With the
TensorFlow.js library, you can develop ML models in JavaScript and use ML
directly in the browser or in Node.js.

The following shows the GitHub site for Google’s TensorFlow.js MediaPipe
Handpose Project. It has an impressive live demo website (see Figure 8.4),
which can use your webcam to detect hand poses in real time.

https://github.com/tensorflow/tfjs-models/tree/master/handpose

Figure 8.4: The live demo website for the MediaPipe Handpose project
(Source: https://storage.googleapis.com/tfjs-models/demos/handpose/
index.html)

https://github.com/adilsofficial/HandGestureThe
https://github.com/adilsofficial/HandGestureThe
https://github.com/athena15/project_kojak
https://github.com/tensorflow/tfjs-models/tree/master/handpose
https://storage.googleapis.com/tfjs-models/demos/handpose/index.html
https://storage.googleapis.com/tfjs-models/demos/handpose/index.html

	 Chapter 8 ■ Pose Detection	 453

EXERCISE 8.3

Visit the previous live handpose demo website and try it with your own webcam. Also
try different hands with different backgrounds. Comment on the results.

TensorFlow.js provides models for a range of applications; such as image
classifications, object detection, body segmentation, pose detection, hand pose
detection and so on. See the following link for details.

https://www.tensorflow.org/js/models

There is also a Hand Gesture Recognition Database and corresponding pro-
jects on Kaggle. For more information, see the following:

https://www.kaggle.com/gti-upm/leapgestrecog

https://www.kaggle.com/benenharrington/hand-gesture-recognition-

database-with-cnn

8.3  Sign Language Detection

Related to hand gesture detection is sign language detection. A good starting
point is Kaggle, which has a Sign Language MNIST dataset and a collection of
sign language projects; see the following link for details.

https://www.kaggle.com/datamunge/sign-language-mnist/kernels

The following shows an interesting Kaggle project called “CNN using Keras
(100% Accuracy).” This repository uses CNN Keras and achieved 100 percent
accuracy on the Sign Language MNIST dataset.

https://www.kaggle.com/madz2000/cnn-using-keras-100-accuracy

EXERCISE 8.4

From a web browser, log in to your Kaggle account, locate the previous Kaggle project,
and copy and add it to your own account. Run the code and comment on the results.

Figure 8.5 shows another example of the sign language project called Sign
Language Recognition Using OpenCV.

The following is the corresponding GitHub site of the project, where you can
get all the source code:

https://github.com/Arshad221b/Sign-Language-Recognition

https://www.tensorflow.org/js/models
https://www.kaggle.com/gti-upm/leapgestrecog
https://www.kaggle.com/benenharrington/hand-gesture-recognition-database-with-cnn
https://www.kaggle.com/benenharrington/hand-gesture-recognition-database-with-cnn
https://www.kaggle.com/datamunge/sign-language-mnist/kernels
https://www.kaggle.com/madz2000/cnn-using-keras-100-accuracy
https://github.com/Arshad221b/Sign-Language-Recognition

454	 Part III ■ AI Applications

8.4  Body Pose Detection

In this section, we will show how to detect human body poses by using differ-
ent libraries, such as OpenPose, OpenCV, Gluon, PoseNet, ML5JS, MediaPipe,
and so on.

8.4.1  OpenPose
OpenPose, an open source library for body pose detection developed at
Carnegie Mellon University, is one of the most accurate libraries for human pose
estimation. It is the first real-time multiperson system to jointly detect human
body, hand, facial, and foot keypoints (in total 135 keypoints) on single images.

OpenPose uses a convolutional neural network–based approach and
attacks the pose estimation problem using a multistage classifier. Each stage
improves the results of the previous one. The first stage takes the input image
and predicts the possible locations of each keypoint in the image with a
confidence score, called the confidence map. Each subsequent stage takes not
only the image data but also the confidence map of the previous stage. This
improves the prediction after each step.

Figure 8.5: A project called Sign Language Recognition Using OpenCV for the Sign Language
MNIST dataset
(Source: https://www.arshad-kazi.com/sign-language-recognition-using-
cnn-and-opencv/)

https://www.arshad-kazi.com/sign-language-recognition-using-cnn-and-opencv/
https://www.arshad-kazi.com/sign-language-recognition-using-cnn-and-opencv/

	 Chapter 8 ■ Pose Detection	 455

A confidence map is good for single-person pose estimation, but not so good
in multiperson pose estimation, where overlapping body parts make it difficult
to uniquely identify the limbs of each person. To solve this problem, OpenPose
introduces the idea of part affinity maps, where another convolutional neural
network branch is introduced that predicts the location and orientation of the
limbs.

In the final stage, it just connects these points using greedy inference to gen-
erate the pose keypoints for all the people in the image.

The following shows the GitHub site of the OpenPose project, where you can
just follow the instructions to run the code.

https://github.com/CMU-Perceptual-Computing-Lab/openpose

EXERCISE 8.5

Download the previous Python GitHub project. Run the programs and comment on the
results.

8.4.2  OpenCV
The following website shows an interesting tutorial on how to perform human
pose estimation by using OpenCV and deep learning networks. In this tutorial,
it uses a pretrained Caffe model that won the COCO keypoints challenge in
2016 for detecting keypoint locations.

https://learnopencv.com/deep-learning-based-human-pose-estimation-

using-opencv-cpp-python/

The following shows the corresponding IPython Notebook on its GitHub
site, where you can try the example code.

https://github.com/spmallick/learnopencv/blob/master/OpenPose/

OpenPose_Notebook.ipynb

EXERCISE 8.6

From a web browser, log in to your Google Colab account, and upload the previous
IPython Notebook. Run the code and comment on the results.

8.4.3  Gluon
Gluon is another open source library that can be used for pose estimation. The
following link shows the Gluon website for pose estimation examples.

https://cv.gluon.ai/build/examples_pose/index.html

https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://learnopencv.com/deep-learning-based-human-pose-estimation-using-opencv-cpp-python/
https://learnopencv.com/deep-learning-based-human-pose-estimation-using-opencv-cpp-python/
https://github.com/spmallick/learnopencv/blob/master/OpenPose/OpenPose_Notebook.ipynb
https://github.com/spmallick/learnopencv/blob/master/OpenPose/OpenPose_Notebook.ipynb
https://cv.gluon.ai/build/examples_pose/index.html

456	 Part III ■ AI Applications

The following shows the Gluon example of a simple pose demo.

https://cv.gluon.ai/build/examples_pose/demo_simple_pose.html

The following shows the Gluon webcam demo example for pose estimation.

https://cv.gluon.ai/build/examples_pose/cam_demo.html

EXERCISE 8.7

Download the previous Gluon webcam demo code. Run the code and comment on the
results.

8.4.4  PoseNet
Google’s PoseNet is a library for running real-time pose estimation in the
browser using the TensorFlow.js library. The recently released version 2.0 has
a new ResNet model and API.

The following link shows the TensorFlow.js site for PoseNet.

https://github.com/tensorflow/tfjs-models/tree/master/posenet

PoseNet also has an impressive web demo site, where you can run the
pose detection on your own webcam; see Figure 8.6. The demo supports both
MobileNet and ResNet50.

Figure 8.6: The demo website for TensorFlow.js PoseNet
(Source: https://storage.googleapis.com/tfjs-models/demos/posenet/
camera.html)

https://cv.gluon.ai/build/examples_pose/demo_simple_pose.html
https://cv.gluon.ai/build/examples_pose/cam_demo.html
https://github.com/tensorflow/tfjs-models/tree/master/posenet
https://storage.googleapis.com/tfjs-models/demos/posenet/camera.html
https://storage.googleapis.com/tfjs-models/demos/posenet/camera.html

	 Chapter 8 ■ Pose Detection	 457

EXERCISE 8.8

From a web browser, go to the previous PoseNet demo website, and try it on your own
webcam. Also try different models, such as MobileNet and ResNet 50, and try single-
pose and multipose detection. Comment on the results.

8.4.5  ML5JS
ML5JS is a user-friendly machine learning library, which allows you to run a
range of machine learning algorithms through the web browser. The following
is the ML5JS website, where you can get all the instructions.

https://ml5js.org/

The following shows the ML5JS - PoseNet website, where you can run
Google’s PoseNet through a simple, friendly web browser.

https://learn.ml5js.org/#/reference/posenet

The following shows an example of running ML5JS - PoseNet through a
webcam.

https://github.com/ml5js/ml5-library/tree/main/examples/p5js/

PoseNet/PoseNet_webcam

It essentially has just two files.

index.html
sketch.js

The index.html file is for creating the web page (Figure 8.7), and the sketch
.js file is for running the machine learning code for PoseNet (Figure 8.8). To
run the code, just use a web browser to open the index.html file, as shown in
Figure 8.9. Simple! As you can see, you don’t need to install any libraries; every-
thing is automatically handled by the sketch.js file.

EXERCISE 8.9

Download the index.html file and the sketch.js file to your local computer, and
then open the index.html file from a web browser. Comment on the results. Then
modify the sketch.js file so that it displays the key pose points on the web page, as
shown in Figure 8.9.

https://ml5js.org/
https://learn.ml5js.org/#/reference/posenet
https://github.com/ml5js/ml5-library/tree/main/examples/p5js/PoseNet/PoseNet_webcam
https://github.com/ml5js/ml5-library/tree/main/examples/p5js/PoseNet/PoseNet_webcam

458	 Part III ■ AI Applications

Figure 8.8: The sketch.js file of ML5JS - PoseNet webcam example
(Source: https://github.com/ml5js/ml5-library/blob/main/examples/p5js/
PoseNet/PoseNet_webcam/sketch.js)

Figure 8.7: The index.html file of ML5JS - PoseNet webcam example
(Source: https://github.com/ml5js/ml5-library/blob/main/examples/p5js/
PoseNet/PoseNet_webcam/index.html)

https://github.com/ml5js/ml5-library/blob/main/examples/p5js/PoseNet/PoseNet_webcam/sketch.js
https://github.com/ml5js/ml5-library/blob/main/examples/p5js/PoseNet/PoseNet_webcam/sketch.js
https://github.com/ml5js/ml5-library/blob/main/examples/p5js/PoseNet/PoseNet_webcam/index.html
https://github.com/ml5js/ml5-library/blob/main/examples/p5js/PoseNet/PoseNet_webcam/index.html

	 Chapter 8 ■ Pose Detection	 459

ML5JS also allows you to run the examples online, through the https://
editor.p5js.org website. Figure 8.10 shows all the ML5JS examples available
on the https://editor.p5js.org website.

Figure 8.11 shows the ML5JS PoseNet webcam example on the https://
editor.p5js.org website.

8.4.6  MediaPipe
Google’s MediaPipe is a library that offers cross-platform, customizable
ML solutions for live and streaming media. Example solutions include face
detection, face mesh, iris within an eye, hands, pose, holistic, hair segmentation,
object detection, box tracking, instant motion tracking, and so on. The follow-
ing link shows the GitHub website for the MediaPipe pose project.

https://google.github.io/mediapipe/solutions/pose.html

Figure 8.9: The ML5JS - PoseNet webcam example through a web browser

https://editor.p5js.org
https://editor.p5js.org
https://editor.p5js.org
https://editor.p5js.org
https://editor.p5js.org
https://google.github.io/mediapipe/solutions/pose.html

460	 Part III ■ AI Applications

Figure 8.10: The ML5JS examples on the https://editor.p5js.org website
(Source: https://editor.p5js.org/ml5/sketches/)

Figure 8.11: The ML5JS PoseNet webcam example on the https://editor.p5js.org
website
(Source: https://editor.p5js.org/ml5/sketches/rP8x1mML0O)

https://editor.p5js.org
https://editor.p5js.org/ml5/sketches/
https://editor.p5js.org
https://editor.p5js.org/ml5/sketches/rP8x1mML0O

	 Chapter 8 ■ Pose Detection	 461

EXERCISE 8.10

Download the previous Python GitHub project. Run the programs and comment on the
results.

8.5  Human Activity Recognition

This section covers human activity recognition.

ActionAI
ActionAI is an open source library for human activity recognition. See the fol-
lowing link for the GitHub site of ActionAI.

https://github.com/smellslikeml/ActionAI

EXERCISE 8.11

Download the previous Python GitHub project. Run the programs and comment on the
results.

Gluon Action Detection
The following link shows the Gluon examples for the action recognition.

https://cv.gluon.ai/build/examples_action_recognition/index.html

EXERCISE 8.12

From the previous Gluon examples for action recognition, choose an example, and
download the project code. Run the programs and comment on the results.

Accelerometer Data HAR
The following website shows an interesting tutorial on using long short-term
memory (LSTM) recurrent neural networks to perform human activity recog-
nition based on the University of California, Irvine (UCI) smart phone accel-
erometer dataset.

https://machinelearningmastery.com/how-to-develop-rnn-models-for-

human-activity-recognition-time-series-classification/

An accelerometer is a device that measures dynamic acceleration or proper
acceleration. Acceleration is the rate of change of velocity. Dynamic acceleration

https://github.com/smellslikeml/ActionAI
https://cv.gluon.ai/build/examples_action_recognition/index.html
https://machinelearningmastery.com/how-to-develop-rnn-models-for-human-activity-recognition-time-series-classification/
https://machinelearningmastery.com/how-to-develop-rnn-models-for-human-activity-recognition-time-series-classification/

462	 Part III ■ AI Applications

is the acceleration of a body in its own coordinate, which is different from fixed
coordinate acceleration. For example, an accelerometer resting on the earth’s
surface will measure an acceleration of g ≈ 9.81 m/s2 (Earth’s gravity), while
an accelerometer in free fall will measure zero. An accelerometer measures
in meters per second squared (m/s2) or in gravitational forces (G-forces, g).
A gyroscope is a device used for measuring orientation and angular velocity.
A conventional gyroscope typically contains a spinning wheel in which the
axis of rotation is free to assume any orientation by itself. The microelectro-
mechanical system (MEMS) gyroscopes generally use a vibrating mechanical
element as a sensing element for detecting the angular velocity. They do not
have rotating parts, which allows an easy miniaturization and manufacturing.
The microelectromechanical system accelerometers and gyroscopes are small,
are inexpensive, and are commonly available in modern smart phones.

In this HAR recognition tutorial, a group of 30 volunteers (19–48 years)
performed six activities with a smartphone on their waists. Their movement
was recorded as the x, y, and z accelerometer data (linear acceleration) and
gyroscopic data (angular velocity) from the smart phone, at 50 Hz (i.e., 50 data
points per second). The preprocessed, denoised data was split into fixed
windows of 2.56 seconds (128 data points) with 50 percent overlap. The data
was also randomly partitioned into two sets, 70 percent for training and
30 percent for test.

These were the six activities performed:

■■ Walking

■■ Walking upstairs

■■ Walking downstairs

■■ Sitting

■■ Standing

■■ Laying

EXERCISE 8.13

From a web browser, go to the previous website, follow the instructions, run the
example code, and comment on the results.

The following website shows another interesting HAR project based on the
same UCI smart phone accelerometer dataset, also using LSTM recurrent neural
networks.

https://github.com/guillaume-chevalier/LSTM-Human-Activity-

Recognition

https://github.com/guillaume-chevalier/LSTM-Human-Activity-Recognition
https://github.com/guillaume-chevalier/LSTM-Human-Activity-Recognition

	 Chapter 8 ■ Pose Detection	 463

Compared to classical ML methods, this example using recurrent neural
networks requires no feature engineering. Data can be fed directly into the
neural network like a black box. This project is built on TensorFlow 1.x.

A modified LSTM.ipynb has been created based on the original (https://
github.com/guillaume-chevalier/LSTM-Human-Activity-Recognition/blob/

master/LSTM.ipynb). To run the code, just log in to your Google Colab, upload
the file, and run the code.

EXERCISE 8.14

From a web browser, log in to your Google Colab, and upload the file LSTM.ipynb.
Run the programs and comment on the results.

The following link shows another GitHub project for human activity recog-
nition; it is implemented with a CNN in TensorFlow.

https://aqibsaeed.github.io/2016-11-04-human-activity-recognition-

cnn/

EXERCISE 8.15

Download the previous Python GitHub project. Run the programs and comment on the
results.

The following link shows a GitHub project for the HAR project. In this
project, it compares the accuracy of different deep learning networks, such as
CNN, LSTM, CNN+LSTM, CNN+Inception, and Xgboost. Xgboost gives the
highest accuracy of 96 percent.

https://github.com/JohnnyHaan/HumanActivityRecognition_HAR

EXERCISE 8.16

Download the previous Python GitHub project. Run the programs and comment on the
results.

The following shows the GitHub project for the health data science HAR.
This project discusses the HAR problem using deep learning algorithms and
compares the results with standard machine learning algorithms that use
engineered features.

https://github.com/healthDataScience/deep-learning-HAR

https://github.com/guillaume-chevalier/LSTM-Human-Activity-Recognition/blob/master/LSTM.ipynb
https://github.com/guillaume-chevalier/LSTM-Human-Activity-Recognition/blob/master/LSTM.ipynb
https://github.com/guillaume-chevalier/LSTM-Human-Activity-Recognition/blob/master/LSTM.ipynb
https://aqibsaeed.github.io/2016-11-04-human-activity-recognition-cnn/
https://aqibsaeed.github.io/2016-11-04-human-activity-recognition-cnn/
https://github.com/JohnnyHaan/HumanActivityRecognition_HAR
https://github.com/healthDataScience/deep-learning-HAR

464	 Part III ■ AI Applications

EXERCISE 8.17

Download the previous Python GitHub project. Run the programs and comment on the
results.

8.6  Summary

This chapter covered pose detection, or pose estimation, which is defined as
the problem of locating human joints, also known as keypoints, such as elbows,
wrists, shoulders, waist, and legs, in images or videos.

Hand gesture detection is for detecting and recognizing the different hand
gestures.

Sign language detection is for detecting sign language.
Body pose detection, human pose detection, or human pose estimation, is

for detecting and recognizing human body positions.
Human activity recognition is for detecting and recognizing human activities

via camera or accelerometer data.

8.7  Chapter Review Questions

Q8.1.	 What is pose detection?

Q8.2.	 What is hand gesture detection?

Q8.3.	 What is sign language detection?

Q8.4.	 What is body pose detection?

Q8.5.	 What is OpenPose?

Q8.6.	 What PoseNet?

Q8.7.	 What is ML5JS?

Q8.8.	 What is MediaPipe?

Q8.9.	 What is human activity recognition?

Q8.10.	 What is ActionAI?

C H A P T E R

465

9

9.1  Introduction

Over the years, there have been many exciting developments in the field of
deep learning, such as generative adversarial networks (GANs) and neural-
style transfer. In this chapter, we will first introduce GAN and neural-style
transfer and then introduce adversarial machine learning and music generation.

GAN and Neural-Style Transfer
“A year spent in artificial intelligence is enough to make one believe in God.”

—Alan Perlis (American computer scientist)

C H A P T E R O U T L I N E

9.1.	 Introduction
9.2.	 Generative Adversarial Networks
9.3.	 Neural-Style Transfer
9.4.	 Adversarial Machine Learning
9.5.	 Music Generation
9.6.	 Summary
9.7.	 Chapter Review Questions

466	 Part III ■ AI Applications

9.2  Generative Adversarial Network

A generative adversarial network (GAN) is probably one of the most exciting
developments in deep learning. A GAN is a class of new deep learning neural
networks designed by Ian Goodfellow and his colleagues from the Université
de Montréal in 2014. Ian Goodfellow was doing his PhD in machine learning
under the supervision of Yoshua Bengio and Aaron Courville.

In a GAN architecture, two neural networks (agents) compete against each
other in the form of a zero-sum game, where one agent’s gain is another agent’s
loss. A GAN is an approach to generate new images using deep learning
methods, such as convolutional neural networks.

Figure 9.1 shows the schematic diagram of a GAN, including two key
components: Generator and Discriminator. In this example, both Gener-
ator and Discriminator are built on convolutional neural networks. A GAN
uses the Generator to generate a fake image from a random noise input, and
it uses the Discriminator to compare the fake image with the real image. It then
feeds the comparison results back and fine-tunes the Generator. After a number
of iterations, the Generator will be able to generate realistic images.

Figure 9.2 shows the Wikipedia page for a GAN and a realistic image
generated by the GAN. You can see more of this kind of images by visiting the
This Person Does Not Exist website (https://thispersondoesnotexist.com/).

The following website shows a simple tutorial on how to develop a GAN for
a 1D function from scratch with Keras.

https://machinelearningmastery.com/how-to-develop-a-generative-

adversarial-network-for-a-1-dimensional-function-from-scratch-in-

keras/

Figure 9.1: The schematic diagram of a GAN including two key components: Generator and
Discriminator

https://thispersondoesnotexist.com/
https://machinelearningmastery.com/how-to-develop-a-generative-adversarial-network-for-a-1-dimensional-function-from-scratch-in-keras/
https://machinelearningmastery.com/how-to-develop-a-generative-adversarial-network-for-a-1-dimensional-function-from-scratch-in-keras/
https://machinelearningmastery.com/how-to-develop-a-generative-adversarial-network-for-a-1-dimensional-function-from-scratch-in-keras/

	 Chapter 9 ■ GAN and Neural-Style Transfer	 467

EXERCISE 9.1

From a web browser, go to the previous website, follow the instructions, run the code,
and comment on the results.

9.2.1  CycleGAN
The Cycle Generative Adversarial Network (CycleGAN) is an approach to
training a deep convolutional neural network for image-to-image translation
tasks. CycleGAN uses a cycle consistency loss to enable training without the
need for paired data. The following is the GitHub site of Torch implementation
of the CycleGAN project.

https://github.com/junyanz/CycleGAN

The following is their PyTorch implementation:

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

With CycleGAN, you can turn horses to zebras or turn zebras to horses, you
can turn paintings to photos or turn photos to paintings, and you can turn a
summer scene in the photo to a winter scene or turn a winter scene to a summer
scene. It is really cool!

Figure 9.2: The Wikipedia page for the GAN and a very realistic image generated by GAN
(Source: https://en.wikipedia.org/wiki/Generative_adversarial_network)

https://github.com/junyanz/CycleGAN
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://en.wikipedia.org/wiki/Generative_adversarial_network

468	 Part III ■ AI Applications

EXERCISE 9.2

Download the previous Python GitHub project. Run the programs and comment on the
results.

The following is the TensorFlow tutorial site for CycleGAN. It also has demo
example code, which you can download or run in Google Colab.

https://www.tensorflow.org/tutorials/generative/cyclegan

EXERCISE 9.3

Download the previous Python GitHub project. Run the programs and comment on the
results.

The following link shows a simple tutorial on how to develop a CycleGAN
for image-to-image translation with Keras.

https://machinelearningmastery.com/cyclegan-tutorial-with-keras/

An IPython Notebook called CycleGAN.ipynb has been created based on the
previous tutorial code. To use the code, just log in to your Google Colab, and
upload the file.

EXERCISE 9.4

From a web browser, go to Google Colab, upload the CycleGAN.ipynb file, run the
code, and comment on the results.

The following link shows another CycleGAN project implemented with
PyTorch, which is remarkably simple and has only a few lines to use:

https://cyxu.tv/portfolio/simplified-cyclegan-implementation-in-

pytorch/

#Clone the project
git clone https://github.com/cy-xu/simple_CycleGAN
cd simple_CycleGAN

pip install -r requirements.txt

#Download a CycleGAN dataset from the authors (e.g. horse2zebra):
bash ./util/download_cyclegan_dataset.sh horse2zebra
#Train a model (different from original implementation):
python simple_cygan.py train
#Test the model:
python simple_cygan.py test

https://www.tensorflow.org/tutorials/generative/cyclegan
https://machinelearningmastery.com/cyclegan-tutorial-with-keras/
https://cyxu.tv/portfolio/simplified-cyclegan-implementation-in-pytorch/
https://cyxu.tv/portfolio/simplified-cyclegan-implementation-in-pytorch/

	 Chapter 9 ■ GAN and Neural-Style Transfer	 469

9.2.2  StyleGAN
The style-based GAN architecture (StyleGAN) is a novel GAN introduced by
Nvidia in December 2018. A StyleGAN yields state-of-the-art results in data-
driven unconditional generative image modeling. StyleGAN2 is the second
version of StyleGAN.

The following is the GitHub site for a StyleGAN2 project implemented in
TensorFlow. With StyleGAN and StyleGAN2, you can turn a person in the
photo from young to old and from female to male. It does this by projecting
the photo images into latent space, which contains a compressed represen-
tation of the image. From latent space, you can change the variables such as
age and gender.

https://github.com/NVlabs/stylegan2

The following are two interesting IPython Notebooks for StyleGAN2; you
can simply upload them into Google Colab to run them:

https://github.com/Puzer/stylegan-encoder/blob/master/Play_with_

latent_directions.ipynb

https://github.com/pbaylies/stylegan-encoder/blob/master/Style

GAN_Encoder_Tutorial.ipynb

EXERCISE 9.5

From a web browser, log in to your Google Colab account, upload the previous IPython
Notebooks, run the code, and comment on the results.

1. StyleGAN_Encoder_Notebook.ipynb  Figure 9.3 shows an interesting
Google Colab Notebook called 1. StyleGAN_Encoder_Notebook.ipynb for
StyleGAN implemented in TensorFlow. See the following links for more
details of this example code:

https://colab.research.google.com/drive/1jrSki9OXahtnS2Okcf7_

ubvLkPnboJey

https://www.youtube.com/watch?v=dCKbRCUyop8

To run the code, just log in to your Google Colab and upload the previous
IPython Notebook.

Upload a high-quality photo into a subfolder called raw_images. Run the
following commands in the IPython Notebook to convert the raw photo images
to aligned photo images:

!python align_images.py raw_images/ aligned_images/ --output_size=1024

https://github.com/NVlabs/stylegan2
https://github.com/Puzer/stylegan-encoder/blob/master/Play_with_latent_directions.ipynb
https://github.com/Puzer/stylegan-encoder/blob/master/Play_with_latent_directions.ipynb
https://github.com/pbaylies/stylegan-encoder/blob/master/StyleGAN_Encoder_Tutorial.ipynb
https://github.com/pbaylies/stylegan-encoder/blob/master/StyleGAN_Encoder_Tutorial.ipynb
https://colab.research.google.com/drive/1jrSki9OXahtnS2Okcf7_ubvLkPnboJey
https://colab.research.google.com/drive/1jrSki9OXahtnS2Okcf7_ubvLkPnboJey
https://www.youtube.com/watch?v=dCKbRCUyop8

470	 Part III ■ AI Applications

Run the following commands in the IPython Notebook to convert the aligned
photo images into latent photo images:

!python encode_images.py --optimizer=lbfgs --face_mask=True
--iterations=6 --use_lpips_loss=0 --use_discriminator_loss=0 --output_
video=True aligned_images/ generated_images/ latent_representations/

Figure 9.4 shows the original photo image (right) and latent (encoded) photo
image generated by StyleGAN (left).

A latent photo image is generated by a StyleGAN that is as close as possible
to real photo images. With latent photo images, you can vary the different

Encoded img 0 Original img 0

Figure 9.4: The original photo image (right) and latent (encoded) photo image generated by
StyleGAN (left)

Figure 9.3: The Google Colab Notebook 1. StyleGAN_Encoder_Notebook.ipynb for
StyleGAN implemented in TensorFlow
(Source: https://colab.research.google.com/drive/1jrSki9OXahtnS2Okcf7_
ubvLkPnboJey)

https://colab.research.google.com/drive/1jrSki9OXahtnS2Okcf7_ubvLkPnboJey
https://colab.research.google.com/drive/1jrSki9OXahtnS2Okcf7_ubvLkPnboJey

	 Chapter 9 ■ GAN and Neural-Style Transfer	 471

parameters, such as age and gender, to generate images at different ages and
different genders.

Figure 9.5 shows the different ages of the latent photo, from young to old.
Figure 9.6 shows the different genders of the latent photo, from female to

male.

Figure 9.5: The different ages of the latent photo image, from young to old

Figure 9.6: The different genders of the latent photo image, from female to male

472	 Part III ■ AI Applications

StyleGAN_Encoder_Tutorial.ipynb  The following link shows another
interesting example, which has an IPython Notebook called StyleGAN_
Encoder_Tutorial.ipynb:

https://github.com/pbaylies/stylegan-encoder/blob/master/

StyleGAN_Encoder_Tutorial.ipynb

To use this example code, log in to your Google Colab, and upload the
previous IPython Notebook; then upload two high-quality photo images into
a subfolder called raw_images. Figure 9.7 shows two example photo images
uploaded and displayed in Google Colab.

Then run the following commands in the IPython Notebook to convert the
raw photo images into aligned photo images:

!python align_images.py raw_images/ aligned_images/

Run the following commands in the IPython Notebook to convert the aligned
photo images into latent photo images. The latent photo images are the images
reconstructed by the GAN.

!python encode_images.py --batch_size=2 --output_video=True aligned_
images/ generated_images/ latent_representations/

Figure 9.8 shows the two corresponding generated latent photo images. As you
can see, they really look like the original photo images, as shown in Figure 9.8.

Figure 9.7: The two photo images uploaded to Google Colab

https://github.com/pbaylies/stylegan-encoder/blob/master/StyleGAN_Encoder_Tutorial.ipynb
https://github.com/pbaylies/stylegan-encoder/blob/master/StyleGAN_Encoder_Tutorial.ipynb

	 Chapter 9 ■ GAN and Neural-Style Transfer	 473

Figure 9.9 shows the second latent photo image blended with the first latent
photo image. Figure 9.10 shows the first latent photo image blended with the
second latent photo image.

Figure 9.8: The two generated latent photo images

Figure 9.9: The second latent photo image blended with the first latent photo image

474	 Part III ■ AI Applications

9.2.3  Pix2Pix
The Pix2Pix model is a type of conditional GAN for image-to-image translation.
Pix2Pix is the brainchild of the Dutch public broadcasting network NPO. It was
developed as part of the NPO’s desire to create its own artificial intelligence
system and see how well machines would do at analyzing human creations and
turning them into lifelike paintings.

Pix2Pix uses a range of features, including an algorithm to interpret
information, a discriminator that can analyze both the original and the output
when it’s created, and a neural network that it relies on to guess what the image
should look like. For example, Pix2Pix can convert a simple line drawing into
an oil painting, based on its understanding of shapes, human drawings, and
the real world. And if you’re an accomplished artist, it might actually spit out
something interesting.

The following is the GitHub site for the Pix2Pix project, implemented with
Torch, which shows examples of how to convert labels to street scenes, satellite
aerial images to street maps, and sketches to photos.

https://github.com/phillipi/pix2pix

EXERCISE 9.6

Download the previous GitHub project, follow the instructions, run the code, and com-
ment on the results.

Figure 9.10: The first latent photo image blended with the second latent photo image

https://github.com/phillipi/pix2pix

	 Chapter 9 ■ GAN and Neural-Style Transfer	 475

The following website is an interesting tutorial on how to develop a Pix2Pix
GAN for image-to-image translation.

https://machinelearningmastery.com/how-to-develop-a-pix2pix-gan-

for-image-to-image-translation/

EXERCISE 9.7

From a web browser, go to the previous website, follow the instructions, run the code,
and comment on the results.

9.2.4  PULSE
Self-Supervised Photo Upsampling via Latent Space Exploration of Generative
Models (PULSE) is an impressive library that can turn low-resolution images
into high-resolution images. It uses a low-resolution image as the input and
uses the StyleGAN generative model to search the high-resolution natural
image manifold for images that are perceptually realistic and downscale
correctly.

The following is the GitHub site for the PULSE project.
https://github.com/adamian98/pulse

EXERCISE 9.8

Download the previous GitHub project, follow the instructions, run the code, and com-
ment on the results.

9.2.5  Image Super-Resolution
Image Super-Resolution (ISR) is a project aimed to upscale and improve the
quality of low-resolution images by using novel residual dense networks. The
following is the GitHub site for the ISR project.

https://github.com/idealo/image-super-resolution

This project contains Keras implementations of different residual dense net-
works for single ISR as well as scripts to train these networks using content and
adversarial loss components.

To use the ISR library, you will need to install it first.

pip install ISR

https://machinelearningmastery.com/how-to-develop-a-pix2pix-gan-for-image-to-image-translation/
https://machinelearningmastery.com/how-to-develop-a-pix2pix-gan-for-image-to-image-translation/
https://github.com/adamian98/pulse
https://github.com/idealo/image-super-resolution

476	 Part III ■ AI Applications

Example 9.1 shows the Python code that uses ISR to magnify images using
deep learning models. It opens a small fly image called pexels-thierry-
fillieul-1046492.jpg (from www.pixels.com) and amplifies the image with
super resolution. When you run it for the first time, it takes a while to download
the model. It will be much faster the second time.

EXAMPLE 9.1  THE ISR1.PY PROGRAM

#Example 9.1 ISR to magnify images
#https://github.com/idealo/image-super-resolution
#pip install ISR

import numpy as np
from PIL import Image

#pip install 'h5py<3.0.0'
#pip install h5py==2.10.0
#import h5py
#h5py.run_tests()

img = Image.open(pexels-thierry-fillieul-1046492.jpg')
img.show()
lr_img = np.array(img)
from ISR.models import RDN

rdn = RDN(weights='psnr-small')
#rdn = RDN(weights='psnr-large')
#rdn = RDN(weights='noise-cancel')
sr_img = rdn.predict(lr_img)
sr_img =Image.fromarray(sr_img)
sr_img.show()

Figure 9.11 shows the output of Example 9.1 with the original image and the
amplified image (top) with super resolution (bottom).

Figure 9.11: The output of Example 9.1 with the original image and the amplified image (top)
with super resolution (bottom)

http://www.pixels.com

	 Chapter 9 ■ GAN and Neural-Style Transfer	 477

If you are using version h5py 3.0.0 and higher, you may need to down-grade
it to version 2, such as 2.10.0. You can downgrade the h5py library by the
following pip commands:

pip install 'h5py<3.0.0'

or

pip install h5py==2.10.0

EXERCISE 9.9

Run the previous program on your own images and comment on the results. Try differ-
ent RDN weights, such as psnr-small, psnr-large, noise-cancel, and comment
on the effects.

Example 9.2 is the webcam version of the previous ISR program.

EXAMPLE 9.2  THE ISR2.PY PROGRAM

#Example 9.2 ISR webcam
#https://github.com/idealo/image-super-resolution
#pip install ISR

import numpy as np
from PIL import Image
from imutils.video import VideoStream
import cv2
import imutils

#pip install 'h5py<3.0.0'
#pip install h5py==2.10.0
#import h5py
#h5py.run_tests()

from ISR.models import RDN

#rdn = RDN(weights='psnr-small')
#rdn = RDN(weights='psnr-large')
rdn = RDN(weights='noise-cancel')

vs = VideoStream(src=0).start()
while True:
 frame = vs.read()
 #frame = imutils.resize(frame, width=50)
 lr_img = np.array(frame)
 sr_img = rdn.predict(lr_img)
 #sr_img =Image.fromarray(sr_img)

478	 Part III ■ AI Applications

 cv2.imshow("Original", frame)
 cv2.imshow("ISR", sr_img)
 key = cv2.waitKey(1) & 0xFF
 # if the `q` key was pressed, break from the loop
 if key == ord("q"):
 break

cv2.destroyAllWindows()
vs.stop()

See Figure 9.12 for the output.

EXERCISE 9.10

From a web browser, go to the previous website, follow the instructions, run the code,
and comment on the results.

9.2.6  2D to 3D
“PIFuHD - Multi-Level Pixel-Aligned Implicit Function for High-Resolution
3D Human Digitization” (CVPR 2020), developed by Facebook, is a library
that can convert 2D images into 3D images. It can generate an impressive 3D
human shape construction from a single photo by using deep neural networks.

The following is the GitHub site for the PIFuHD project.

https://github.com/facebookresearch/pifuhd

Figure 9.12: The webcam output of low-resolution image and high-resolution image

https://github.com/facebookresearch/pifuhd

	 Chapter 9 ■ GAN and Neural-Style Transfer	 479

It also has a Google Colab Notebook example for you to play with, see the
link below.

https://colab.research.google.com/drive/11z58bl3meSzo6kFqkahMa35

G5jmh2Wgt?usp=sharing

9.3  Neural-Style Transfer

Neural-style transfer is an optimization technique that uses deep learning to
compose one image in the style of another image. It typically takes two images
as inputs; one image is used as a content image and another as a style refer-
ence image (such as an artwork by a famous painter) and blends them together
so the output image looks like the content image, but in the style of the style
reference image.

The following is the Keras website for neural-style transfer.

https://keras.io/examples/generative/neural_style_transfer/

It also has a Google Colab Notebook example; see the link below.

https://colab.research.google.com/github/keras-team/keras-io/blob/

master/examples/generative/ipynb/neural_style_transfer.ipynb

Figure 9.13 shows an article about painting like Van Gogh with convolutional
neural networks.

Figure 9.13: An article on how to paint like Van Gogh by using neural-style transfer
(Source: http://www.subsubroutine.com/sub-subroutine/2016/11/12/
painting-like-van-gogh-with-convolutional-neural-networks)

https://colab.research.google.com/drive/11z58bl3meSzo6kFqkahMa35G5jmh2Wgt?usp=sharing
https://colab.research.google.com/drive/11z58bl3meSzo6kFqkahMa35G5jmh2Wgt?usp=sharing
https://keras.io/examples/generative/neural_style_transfer/
https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/generative/ipynb/neural_style_transfer.ipynb
https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/generative/ipynb/neural_style_transfer.ipynb
http://www.subsubroutine.com/sub-subroutine/2016/11/12/painting-like-van-gogh-with-convolutional-neural-networks
http://www.subsubroutine.com/sub-subroutine/2016/11/12/painting-like-van-gogh-with-convolutional-neural-networks

480	 Part III ■ AI Applications

The following link shows an article on how to do neural-style transfer with
Baidu’s PaddlePaddle library:

https://www.pythonf.cn/read/103549

Figure 9.14 shows an IPython Notebook example on how to do neural-style
transfer with Baidu’s PaddlePaddle library. It is based on Baidu’s AIStudio,
which you can register or use your GitHub account to log in.

If you are interested in trying different painting styles, you may try Pinter-
est (Figure 9.15), where you can find different styles of painting from different
artists, such as Picasso and Van Gogh.

Example 9.3 shows a Python code that uses the PaddleHub framework to
perform neural-style transfer with only a few lines of code.

EXAMPLE 9.3  THE PADDLE1.PY PROGRAM

#Example 9.3 Neural-style Transfer with PaddleHub

import cv2
import paddlehub as hub

stylepro_artistic = hub.Module(name="stylepro_artistic")
result = stylepro_artistic.style_transfer(
 images=[{
 'content': cv2.imread('people1.jpeg'),
 'styles': [cv2.imread('style2.jpg')],
 'weights':[1]

Figure 9.14: An IPython Notebook example on how to do neural-style transfer with Baidu’s
PaddlePaddle library
(Source: https://aistudio.baidu.com/aistudio/projectdetail/439779)

https://www.pythonf.cn/read/103549
https://aistudio.baidu.com/aistudio/projectdetail/439779

	 Chapter 9 ■ GAN and Neural-Style Transfer	 481

 }],
 alpha = 1.0,
 use_gpu = False,
 visualization=True,
 output_dir='result')
import matplotlib.pyplot as plt
plt.imshow(result[0]['data'])
plt.show()

See Figure 9.16 for the output.

Figure 9.15: The Pinterest website that has different styles of painting from different artists,
such as Picasso and Van Gogh
(Source: https://www.pinterest.co.uk/pin/29203097574051641/)

Figure 9.16: The output of the PaddlePaddle neural-style transfer example. The left is a Picasso
painting, used as a style. The middle is the original photo. The right is a style-transferred photo.

https://www.pinterest.co.uk/pin/29203097574051641/

482	 Part III ■ AI Applications

EXERCISE 9.11

Modify the previous Python program, try different styles on different photos, run the
code, and comment on the results.

PaddleHub can also work on video. Just read out all the frames in the video,
do the neural-style transfer for all the frames, and then put the frames back
together as a video.

Example 9.4a shows how to read out all the frames in the video file work/
person.mp4 and save the frames as JPEG images in the folder work/target.

EXAMPLE 9.4A  THE PADDLE2.PY PROGRAM

#Example 9.4a
Read out all the frames in the video
import cv2
from tqdm import tqdm
video = cv2.VideoCapture("work/person.mp4")
fps = video.get(cv2.CAP_PROP_FPS)
frameCount = video.get(cv2.CAP_PROP_FRAME_COUNT)
size = (int(video.get(cv2.CAP_PROP_FRAME_WIDTH)), int(video.get(cv2
.CAP_PROP_FRAME_HEIGHT)))
print("Total Frames:",frameCount)
success, frame = video.read()
index = 0
for i in tqdm(range(int(frameCount)),desc='Progress'):
 if success:
 cv2.imwrite('work/target/'+str(index)+'.jpg', frame)
 success, frame = video.read()
 index += 1

Example 9.4b shows how to perform the neural-style transfer for all the frames
and save all the transferred frames as JPG files in the subfolder work/result;
this could take a long time.

EXAMPLE 9.4B  THE PADDLE2B.PY PROGRAM

#Example 9.4b
Perform the Neural Style Transfer for all the frames
import cv2
import paddlehub as hub
from tqdm import tqdm
stylepro_artistic = hub.Module(name="stylepro_artistic")
video = cv2.VideoCapture("work/person.mp4")
fps = video.get(cv2.CAP_PROP_FPS)
frameCount = video.get(cv2.CAP_PROP_FRAME_COUNT)

	 Chapter 9 ■ GAN and Neural-Style Transfer	 483

size = (int(video.get(cv2.CAP_PROP_FRAME_WIDTH)), int(video.get(cv2
.CAP_PROP_FRAME_HEIGHT)))
print("Total Frames:",frameCount)
success, frame = video.read()
file_paths = []
index = 0
for i in tqdm(range(int(frameCount))):
 if success and index > 33:
 result = stylepro_artistic.style_transfer(
 images=[{
 'content': frame,
 'styles': [cv2.imread('work/style.jpg')]
 }],
 visualization=True,
 output_dir='work/result')
 file_paths.append(result[0]['save_path'])
 elif success:
 filep = 'work/result/'+str(index)+'.jpg'
 cv2.imwrite(filep, frame)
 file_paths.append(filep)
 success, frame = video.read()
 index += 1

Example 9.4c shows how to put all the transferred frames saved in the previous
code back into a video.

EXAMPLE 9.4C  THE PADDLE2C.PY PROGRAM

Example 9.4c
Next put all the frames back into a video
import os
import cv2
import datetime
file_dict = {}
video = cv2.VideoCapture("work/person.mp4")
fps = video.get(cv2.CAP_PROP_FPS)
frameCount = video.get(cv2.CAP_PROP_FRAME_COUNT)
size = (int(video.get(cv2.CAP_PROP_FRAME_WIDTH)),
int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)))
for i in os.listdir('work/ result/'):
 filename, file_extension = os.path.splitext(i)
 if file_extension != '.jpg':
 continue
 file_dict['work/ result/'+i] = float(i.replace('ndarray_','')
.replace('.jpg',''))
file_dict = sorted(file_dict.items(),key = lambda x:x[1])
videoWriter = cv2.VideoWriter('trans.avi', cv2.VideoWriter_
fourcc(*"MJPG"), fps, size)
flag = True

484	 Part III ■ AI Applications

for i in file_dict:
 if flag:
 for j in range(34):
 videoWriter.write(cv2.imread('work/target/0.jpg'))
 flag = False
 videoWriter.write(cv2.imread(i[0]))
videoWriter.release()
cv2.destroyAllWindows()

Figure 9.17 shows the output of the previous code with the original video
frame (left), the Picasso painting used as a style (middle), and the style trans-
ferred frame image (right).

EXERCISE 9.12

Modify the previous Python codes, merge them into one Python program, try different
styles on different videos, run the code, and comment on the results.

9.4  Adversarial Machine Learning

Adversarial machine learning is a research area that attempts to fool machine
learning models by supplying deceptive input. It arranges the input data to
exploit specific vulnerabilities and compromise the results. For example, it can
modify the input image with small, intentional feature perturbations that cause
a machine learning model to make a false prediction.

For more details, see the following:

https://en.wikipedia.org/wiki/Adversarial_machine_learning

https://openai.com/blog/adversarial-example-research/

Figure 9.18 shows an article on breaking neural networks with adversarial
attacks, in which it added a small noise (0.007x) to a panda image, which causes
the machine learning model to falsely classify it as Gibbon with 99.3 percent
confidence.

Figure 9.17: The original video frame (left), the Picasso painting used as a style (middle), and the
style transferred frame image (right)

https://en.wikipedia.org/wiki/Adversarial_machine_learning
https://openai.com/blog/adversarial-example-research/

	 Chapter 9 ■ GAN and Neural-Style Transfer	 485

Figure 9.19 shows another article on what adversarial machine learning is; a
slightly modified tortoise photo makes the classifier falsely identify it as a rifle.

Figure 9.18: An article on breaking neural networks with adversarial attacks
(Source: https://towardsdatascience.com/breaking-neural-networks-with-
adversarial-attacks-f4290a9a45aa)

Figure 9.19: An article on what adversarial machine learning is
(Source: https://thenextweb.com/neural/2020/07/24/what-is-adversarial-
machine-learning-syndication/)

https://towardsdatascience.com/breaking-neural-networks-with-adversarial-attacks-f4290a9a45aa
https://towardsdatascience.com/breaking-neural-networks-with-adversarial-attacks-f4290a9a45aa
https://thenextweb.com/neural/2020/07/24/what-is-adversarial-machine-learning-syndication/
https://thenextweb.com/neural/2020/07/24/what-is-adversarial-machine-learning-syndication/

486	 Part III ■ AI Applications

Figure 9.20 shows another article on adversarial machine learning; by wear-
ing a patterned patch, you can successfully avoid being identified as a person.

9.5  Music Generation

Music generation is also an exciting research area. It typically trains a deep
learning neural network model on a collection of Musical Instrument Digital
Interface (MIDI) files, such as music by Mozart. The training is focused on
patterns of harmony, rhythm, and style. After training, it can then predict the
new music notes.

The following is an interesting article on how to use LSTM networks to train
and create music. It is based on the Music21 library (https://web.mit.edu/
music21/).

https://www.toutiao.com/i6797601979804680717/?channel=news_tech

The corresponding code is saved in a file called Music21_Midi.ipynb. The
simplest way is to upload it to your Google Colab account and run it on GPU,
as the training will take some time; see Figure 9.21.

Figure 9.20: An article on adversarial machine learning
(Source: https://blog.floydhub.com/introduction-to-adversarial-machine-
learning/)

https://web.mit.edu/music21/
https://web.mit.edu/music21/
https://www.toutiao.com/i6797601979804680717/?channel=news_tech
https://blog.floydhub.com/introduction-to-adversarial-machine-learning/
https://blog.floydhub.com/introduction-to-adversarial-machine-learning/

	 Chapter 9 ■ GAN and Neural-Style Transfer	 487

EXERCISE 9.13

From a web browser, visit the following website, choose a different classical music
piano dataset, modify the previous program accordingly, run the code, and comment
on the results.

http://www.piano-midi.de/

WaveNet is another powerful generative model developed by Google Deep-
Mind for creating your own audio; see the following link for more details about
the DeepMind WaveNet website. However, DeepMind does not provide any
source code for the WaveNet.

https://deepmind.com/blog/article/wavenet-generative-model-raw-audio

There are several attempts for implementing WaveNet. The following
GitHub repository, the WaveNet Keras implementation, contains a basic
implementation of WaveNet, as described in the paper https://arxiv.org/
pdf/1609.03499.pdf published by DeepMind.

https://github.com/peustr/wavenet

Figure 9.22 shows the Google Colab Notebook example for the WaveNet
Keras implementation. You can find the full code in a file called WaveNet_Keras
.ipynb.

The following is another GitHub project called “A TensorFlow implemen-
tation of DeepMind’s WaveNet.” This project is a TensorFlow implementation
of the WaveNet generative neural network architecture for audio generation.

https://github.com/ibab/tensorflow-wavenet

Figure 9.21: The Google Colab Notebook for the Music21_Midi.ipynb file

http://www.piano-midi.de/
https://deepmind.com/blog/article/wavenet-generative-model-raw-audio
https://arxiv.org/pdf/1609.03499.pdf
https://arxiv.org/pdf/1609.03499.pdf
https://github.com/peustr/wavenet
https://github.com/ibab/tensorflow-wavenet

488	 Part III ■ AI Applications

Apart from generating music, WaveNet can be used to generate text and
images. See the following GitHub repositories:

https://github.com/Zeta36/tensorflow-tex-wavenet

https://github.com/Zeta36/tensorflow-image-wavenet

Figure 9.23 shows the Google Colab Notebook example for using WaveNet
for text generation. You can find the full code in a file called WaveNet_Text
.ipynb.

Figure 9.23: The Google Colab Notebook for the WaveNet_Text.ipynb file

Figure 9.22: The Google Colab Notebook for the WaveNet_Keras.ipynb file

https://github.com/Zeta36/tensorflow-tex-wavenet
https://github.com/Zeta36/tensorflow-image-wavenet

	 Chapter 9 ■ GAN and Neural-Style Transfer	 489

EXERCISE 9.14

From a web browser, log in to your Google Colab account, upload the WaveNet_
Text.ipynb file, run the code, and comment on the results.

9.6  Summary

This chapter covered some of the exciting topics of AI, such as generative adver-
sarial network (GAN), neural-style transfer, adversarial machine learning, and
music generation.

A generative adversarial network (GAN) is arguably one of the most exciting
AI research topics, which uses a Generator and a Discriminator to generate real-
istic output (typically images). The commonly implemented types of GANs are
CycleGAN and StyleGAN.

Pix2Pix is a type of conditional GAN for image-to-image translation.
Neural-style transfer is an optimization technique to take two images,

a content image and a style reference image, and blend them together into
one image.

Adversarial machine learning is a technique that attempts to fool a machine
learning model by supplying deceptive input.

Music generation is also an exciting research area, where training can be done
on a collection of music files to generate new music notes from them.

9.7  Chapter Review Questions

Q9.1.	� What is a generative adversarial network (GAN), and how does it
work?

Q9.2.	 What is a CycleGAN?

Q9.3.	 What is a StyleGAN?

Q9.4.	 What is Pix2Pix?

Q9.5.	 What is PULSE?

Q9.6.	 What is neural-style transfer?

Q9.7.	 What is adversarial machine learning?

Q9.8.	 In what ways can you fool the image classification models?

Q9.9.	 How do you avoid being detected in face or person detection?

Q9.10.	 What is music generation?

C H A P T E R

491

10

C H A P T E R O U T L I N E

10.1 Introduction
10.2 Text Summarization
10.3 Text Sentiment Analysis
10.4 Text/Poem Generation
10.5 Text to Speech and Speech to Text
10.6 Machine Translation
10.7 Optical Character Recognition
10.8 QR Code
10.9 PDF and DOCX Files
10.10 Chatbots and Question Answering
10.11 Summary
10.12 Chapter Review Questions

Natural Language Processing
“Some people call this artificial intelligence, but the reality is this technology

will enhance us. So instead of artificial intelligence, I think we’ll
augment our intelligence.”

—Ginni Rometty (American business executive, former chairman,
president, and CEO of IBM)

10.1  Introduction

Natural language processing (NLP) is another popularly researched subfield of
artificial intelligence. It is all about developing applications and services that

492	 Part III ■ AI Applications

are able to process and understand the human language, retrieve meaningful
pieces of information from it, or even generate text output/conversations. Some
practical examples of NLP are text summarization, text sentiment analysis, text
generation, speech recognition, translation, chatbot, and so on. NLP has been
widely used in business, finance, insurance, and healthcare.

The development of NLP can be generally divided into three stages:

■■ Symbolic NLP (1950s to the early 1990s): This is rule-based NLP, where
the computer processes the language by applying a collection of rules.

■■ Statistical NLP (1990s to 2010s): This is the process that uses large amounts
of data and machine learning algorithms to train NLP models. Once
trained, the model will be able to process the text automatically.

■■ Neural NLP (2010s to the present): This is when deep learning neural
networks are used in natural language processing.

NLP has the following common tasks:

■■ Lexical analysis: It divides a whole chunk of text into paragraphs, sen-
tences, and words, through identifying and analyzing words’ structure.

■■ Syntactic analysis: This involves the analysis of words in a sentence for
grammar and arranging words in a manner that shows the relationship
among the words.

■■ Semantic analysis: This extracts the language-independent meaning
from the text.

■■ Disclosure analysis: Disclosure integration takes into account the context
of the text. It considers the meaning of the sentence before it ends. For
example: “He works at Google.” In this sentence, “he” must be referenced
in the sentence before it.

■■ Pragmatic analysis: Pragmatic analysis deals with overall communica-
tion and interpretation of language. It deals with deriving meaningful
use of language in various situations.

The following are popular and easy-to-use NLP libraries.

10.1.1  Natural Language Toolkit
Natural Language Toolkit (NLTK) is a suite of Python libraries for symbolic and
statistical natural language processing. NLTK is generally used as an education
and research tool. It’s not usually used on production applications. However,
it can be used to build exciting programs due to its ease of use.

NLTK supports the following features:

■■ Tokenization

■■ Part-of-speech tagging (POS)

	 Chapter 10 ■ Natural Language Processing	 493

■■ Named entity recognition (NER)

■■ Classification

■■ Sentiment analysis

■■ Packages of chatbots

NLTK can be used in the following examples:

■■ Recommendation systems

■■ Sentiment analysis

■■ Building chatbots

10.1.2  spaCy
spaCy is a free open source NLP library, written in the programming languages
Python and Cython. It is designed to be fast and production-ready. spaCy focuses
on providing software for production usage.

spaCy supports the following features:

■■ Tokenization

■■ Part-of-speech tagging

■■ Named entity recognition

■■ Classification

■■ Sentiment analysis

■■ Dependency parsing

■■ Word vectors

spaCy can be used in the following examples:

■■ Autocomplete and autocorrect

■■ Analyzing reviews

■■ Summarization

10.1.3  Gensim
Gensim is an NLP Python framework generally used in unsupervised topic
modeling and similarity detection. It is not a general-purpose NLP library,
but it now supports a variety of other NLP tasks such as converting words to
vectors (word2vec), document to vectors (doc2vec), finding text similarity, and
text summarization.

Gensim supports the following features:

■■ Latent semantic analysis

494	 Part III ■ AI Applications

■■ Non-negative matrix factorization

■■ TF-IDF

Gensim can be used in the following examples:

■■ Converting documents to vectors

■■ Finding text similarity

■■ Text summarization

10.1.4  TextBlob
TextBlob is a simple Python library designed for processing textual data.
TextBlob supports complex analysis and operations on textual data, such as
part-of-speech tagging, noun phrase extraction, sentiment analysis, classification,
translation, and more.

TextBlob supports the following features:

■■ Part-of-speech tagging

■■ Noun phrase extraction

■■ Sentiment analysis

■■ Classification

■■ Language translation

■■ Parsing

■■ Wordnet integration

TextBlob can be used in the following examples:

■■ Sentiment analysis

■■ Spelling correction

■■ Translation and language detection

10.2  Text Summarization

Text summarization is one of the most important tasks in NLP; it is a technique
for generating a concise and precise summary of long texts without losing the
overall meaning.

Example 10.1 shows some Python example code of using the SpaCy library
for NLP. To use the SpaCy library, you will need to install it.

pip install spacy

	 Chapter 10 ■ Natural Language Processing	 495

To download the English dictionary, use this:

python -m spacy download en_core_web_sm

For Windows users, you also need to download and install Microsoft Visual
C++ Redistributable.

https://aka.ms/vs/16/release/vc_redist.x64.exe

The following example, based on spaCy, first reads a piece of text and
then finds out all the sentences, tokens (or keywords), and lemmas. In NLP,
lemmatization is the process of reducing inflected forms of a word while still
ensuring that the reduced form belongs to the language. This reduced form
or root word is called a lemma. Finally, it finds out the most frequently used
words and unique words.

EXAMPLE 10.1:  THE SPACY1.PY PROGRAM
Example 10.1 spaCy example – finding common and unique words from texts
pip install spacy
python -m spacy download en_core_web_sm
https://aka.ms/vs/16/release/vc_redist.x64.exe

import spacy
nlp = spacy.load('en_core_web_sm')

introduction_text = ('London is the capital of the UK,'
 ' with a population of nearly 9 millions people.'
 ' London is one of the most diverse cities in the
world.'
 ' London has over 100 museums, galleries and
exhibitions.'
 ' London has 40 universities and higher education
institutions.'
 ' London has over 15,500 restaurants, serving Italian,
Indian, Thai and Chinese cuisines.'
 ' London is also one of the world''s capitals of
finance, fashion, arts and entertainment.')

#file_name = 'london.txt'
#introduction_text = open(file_name).read()

introduction_doc = nlp(introduction_text)

print("#Sentences ===")
sentences = list(introduction_doc.sents)
print(len(sentences))
for sentence in sentences:
 print (sentence)

496	 Part III ■ AI Applications

Extract tokens for the given doc
print("#Tokens ==")
for token in introduction_doc:
 print (token, token.idx)
print("#Tokens not in the stop list ===================================")
for token in introduction_doc:
 if not token.is_stop:
 print (token)

print("#Lemmatization ===")
for token in introduction_doc:
 print (token, token.lemma_)

print("#Word Frequency ===")
from collections import Counter
Remove stop words and punctuation symbols
words = [token.text for token in introduction_doc
 if not token.is_stop and not token.is_punct]
word_freq = Counter(words)
5 commonly occurring words with their frequencies
common_words = word_freq.most_common(5)
print (common_words)

print("#Unique words ===")
unique_words = [word for (word, freq) in word_freq.items() if freq == 1]
print (unique_words)

The following are the selected outputs, which show the sentences, tokens,
lemmatization, and word frequency.

#Sentences ===
6
London is the capital of the UK, with a population of nearly 9 millions
people.
London is one of the most diverse cities in the world.
London has over 100 museums, galleries and exhibitions.
London has 40 universities and higher education institutions.
London has over 15,500 restaurants, serving Italian, Indian, Thai and
Chinese cuisines.
London is also one of the worlds capitals of finance, fashion, arts and
entertainment.
#Tokens ==
London 0
is 7
the 10
capital 14
of 22

	 Chapter 10 ■ Natural Language Processing	 497

the 25
UK 29
, 31
with 33
a 38
population 40
of 51
nearly 54
9 61
millions 63
... ...
.
#Lemmatization ===
London London
is be
the the
capital capital
... ...
. .
#Word Frequency ===
[('London', 6), ('capital', 1), ('UK', 1), ('population', 1), ('nearly',
1)]
#Unique words ===
['capital', 'UK', 'population', 'nearly', '9', 'millions', 'people',
'diverse', 'cities', 'world', '100', 'museums', 'galleries', 'exhibitions',
'40', 'universities', 'higher', 'education', 'institutions', '15,500',
'restaurants', 'serving', 'Italian', 'Indian', 'Thai', 'Chinese',
'cuisines', 'worlds', 'capitals', 'finance', 'fashion', 'arts',
'entertainment']

EXERCISE 10.1

Modify the previous code, try different text, run the code, and comment on the results.

Example 10.2 shows some more Python example code of using the SpaCy
library for text summarization. It works in several steps. Step 1 is to get all
the keywords. Step 2 is to calculate the sentence strength according to most
common words. Step 3 is to summarize the text using the top three sentences
based on their sentence strength.

EXAMPLE 10.2:  THE SPACY2.PY PROGRAM
#Example 10.2 Summarizing based on sentence strength
pip install spacy
python -m spacy download en_core_web_sm
https://aka.ms/vs/16/release/vc_redist.x64.exe

498	 Part III ■ AI Applications

import spacy
from spacy.lang.en.stop_words import STOP_WORDS
from string import punctuation
from collections import Counter
from heapq import nlargest

#nlp = spacy.load('en')
nlp = spacy.load('en_core_web_sm')

introduction_text = ('London is the capital of the UK,'
 ' with a population of nearly 9 millions
people.'
 ' London is one of the most diverse cities in
the world.'
 ' London has over 100 museums, galleries and
exhibitions.'
 ' London has 40 universities and higher
education institutions.'
 ' London has over 15,500 restaurants, serving
Intalian, Indian, Thai and Chinese cuisines.'
 ' London is also one of the world''s capitals of
finance, fashion, arts and entertainment.')

doc = nlp(introduction_text)

print("1. Keywords ==")
keyword = []
stopwords = list(STOP_WORDS)
pos_tag = ['PROPN','ADJ','NOUN','VERB']
for token in doc:
 if(token.text in stopwords or token.text in punctuation):
 continue
 if(token.pos_ in pos_tag):
 keyword.append(token.text)
print(keyword)

freq_word = Counter(keyword)
print(freq_word.most_common(5))

print("2. Sentence Strength =====================================")
sent_strength = {}
for sent in doc.sents:
 for word in sent:
 if word.text in freq_word.keys():
 if sent in sent_strength.keys():
 sent_strength[sent]+=freq_word[word.text]
 else:
 sent_strength[sent]=freq_word[word.text]
print(sent_strength)

	 Chapter 10 ■ Natural Language Processing	 499

print("6. Summary ===")
summerized_sentences = nlargest(3,sent_strength,key=sent_strength.
get)
print(summerized_sentences)

EXERCISE 10.2

Modify the previous code, try different text, run the code, and comment on the results.

Example 10.3 shows a Python example code of using the Gensim library
for text summarization and keywords. It summarizes the text by 50 percent
(summarize(text, ratio = 0.5)). Again, you will need to install the Gensim
library first.

pip install gensim

EXAMPLE 10.3:  THE GENSIM.PY PROGRAM
Example 10.3: The Gensim.py Program
https://radimrehurek.com/gensim/
pip install gensim==3.8
Note summarization has been removed from gensim>4.0
from gensim.summarization import summarize
How to create a dictionary from a list of sentences?
text ='''
 Artificial intelligence (AI), is intelligence demonstrated by
machines,
 unlike the natural intelligence displayed by humans and animals.
 Leading AI textbooks define the field as the study of "intelligent
agents":
 any device that perceives its environment and takes actions that
maximize its
 chance of successfully achieving its goals.[3] Colloquially, the
term
 "artificial intelligence" is often used to describe machines (or
computers)
 that mimic "cognitive" functions that humans associate with the
human mind,
 such as "learning" and "problem solving".[4]
'''

print(summarize(text, ratio = 0.5))

from gensim.summarization import keywords
print(keywords(text))

500	 Part III ■ AI Applications

This is the output of the example, which shows the summarization and key-
words:

Artificial intelligence (AI), is intelligence demonstrated by
machines,
unlike the natural intelligence displayed by humans and animals.
Leading AI textbooks define the field as the study of "intelligent
agents":
"artificial intelligence" is often used to describe machines (or
computers)

intelligent
artificial intelligence
cognitive
humans
human
machines

EXERCISE 10.3

Modify the previous code, try different summarization ratios and different text, run the
code, and comment on the results.

Example 10.4 shows some Python example code of how to read the content of
a Wikipedia page and perform text summarization by using the Gensim library.

EXAMPLE 10.4:  THE GENSIMWIKI.PY PROGRAM
Example 10.4: Summarize Wiki page with gensim
#!pip install wikipedia

from gensim.summarization.summarizer import summarize
from gensim.summarization import keywords
import wikipedia

wikisearch = wikipedia.page("Artificial_intelligence")
wikicontent = wikisearch.content

Summary (0.5% of the original content).
summ = summarize(wikicontent, ratio = 0.05)
print(summ)

This is a selection of the output of the example, which shows the 0.05 percent
summarization:

Colloquially, the term "artificial intelligence" is often used to
describe machines (or computers) that mimic "cognitive" functions that
humans associate with the human mind, such as "learning" and "problem
solving".As machines become increasingly capable, tasks considered to

	 Chapter 10 ■ Natural Language Processing	 501

require "intelligence" are often removed from the definition of AI, a
phenomenon known as the AI effect.

... ...

Dick considers the idea that our understanding of human subjectivity is
altered by technology created with artificial intelligence.

Example 10.5 shows another version of the previous Python example code,
which reads the content of a Wikipedia page, saves the content in a text file,
reads the content of the text file, and performs text summarization by using
the Gensim library.

EXAMPLE 10.5:  THE GENSIMWIKI2.PY PROGRAM
Example 10.5: Summarize Wiki page with gensim
#!pip install wikipedia

from gensim.summarization.summarizer import summarize
from gensim.summarization import keywords
import wikipedia

wikisearch = wikipedia.page("Artificial_intelligence")
wikicontent = wikisearch.content

Save the content to a text file
with open("wiki.txt", 'w', encoding='utf-8') as f:
 print(wikicontent, file=f)

from smart_open import smart_open
text = " ".join((line for line in smart_open('wiki.txt',
encoding='utf-8')))

Summary (0.5% of the original content).
summ = summarize(text, ratio = 0.05)
print(summ)

EXERCISE 10.4

Modify the previous code, try different summarization ratios and different Wikipedia
topics, run the code, and comment on the results.

Example 10.6 shows some Python example code of how to use the TextBlob
library to analyze the text; to display the tags, nouns, words, and sentences;
and to do sentiment analysis.

502	 Part III ■ AI Applications

EXAMPLE 10.6:  THE TEXTBLOB.PY PROGRAM
#Example 10.6 TextBlob
https://textblob.readthedocs.io/en/dev/
#!pip install textblob
#!pip install nltk
#!python -m textblob.download_corpora

from textblob import TextBlob

text = '''
Artificial intelligence (AI), is intelligence demonstrated by
machines,
 unlike the natural intelligence displayed by humans and animals.
 Leading AI textbooks define the field as the study of "intelligent
agents":
 any device that perceives its environment and takes actions that
maximize its
 chance of successfully achieving its goals.[3] Colloquially, the
term
 "artificial intelligence" is often used to describe machines (or
computers)
 that mimic "cognitive" functions that humans associate with the
human mind,
 such as "learning" and "problem solving".[4]
'''

blob = TextBlob(text)
print(blob.tags)
print(blob.noun_phrases)

#Tokenization
print(blob.words)
print(blob.sentences)

#Sentiment Analsys
blob = TextBlob("This is a cool gadget!")
print(blob.sentiment)
blob = TextBlob("I am not really interested!")
print(blob.sentiment)

This is the output of the example, which shows the summarization and key-
words:

[('Artificial', 'JJ'), ('intelligence', 'NN'), ('AI', 'NNP'), ('is', 'VBZ'),
('intelligence', 'NN'), ('demonstrated', 'VBN'), ('by', 'IN'), ('machines',
'NNS'), ('unlike', 'IN'), ('the', 'DT'), ('natural', 'JJ'), ('intelligence',
'NN'), ('displayed', 'VBN'), ('by', 'IN'), ('humans', 'NNS'), ('and', 'CC'),
('animals', 'NNS'), ('Leading', 'VBG'), ('AI', 'NNP'), ('textbooks', 'NNS'),
('define', 'VBP'), ('the', 'DT'), ('field', 'NN'), ('as', 'IN'), ('the', 'DT'),

	 Chapter 10 ■ Natural Language Processing	 503

('study', 'NN'), ('of', 'IN'), ('intelligent', 'JJ'), ('agents', 'NNS'),
('any', 'DT'), ('device', 'NN'), ('that', 'WDT'), ('perceives', 'VBZ'), ('its',
'PRP$'), ('environment', 'NN'), ('and', 'CC'), ('takes', 'VBZ'), ('actions',
'NNS'), ('that', 'IN'), ('maximize', 'VB'), ('its', 'PRP$'), ('chance', 'NN'),
('of', 'IN'), ('successfully', 'RB'), ('achieving', 'VBG'), ('its', 'PRP$'),
('goals', 'NNS'), ('[', 'RB'), ('3', 'CD'), (']', 'NNP'), ('Colloquially',
'NNP'), ('the', 'DT'), ('term', 'NN'), ('artificial', 'JJ'), ('intelligence',
'NN'), ('is', 'VBZ'), ('often', 'RB'), ('used', 'VBN'), ('to', 'TO'),
('describe', 'VB'), ('machines', 'NNS'), ('or', 'CC'), ('computers', 'NNS'),
('that', 'IN'), ('mimic', 'JJ'), ('cognitive', 'JJ'), ('functions', 'NNS'),
('that', 'WDT'), ('humans', 'NNS'), ('associate', 'VBP'), ('with', 'IN'),
('the', 'DT'), ('human', 'JJ'), ('mind', 'NN'), ('such', 'JJ'), ('as', 'IN'),
('learning', 'VBG'), ('and', 'CC'), ('problem', 'NN'), ('solving', 'NN'), ('[',
'RB'), ('4', 'CD'), (']', 'NNS')]
['artificial', 'ai', 'natural intelligence', 'ai', 'intelligent agents',
'colloquially', 'artificial intelligence', 'describe machines', 'human mind']

['Artificial', 'intelligence', 'AI', 'is', 'intelligence', 'demonstrated',
'by', 'machines', 'unlike', 'the', 'natural', 'intelligence', 'displayed',
'by', 'humans', 'and', 'animals', 'Leading', 'AI', 'textbooks', 'define',
'the', 'field', 'as', 'the', 'study', 'of', 'intelligent', 'agents', 'any',
'device', 'that', 'perceives', 'its', 'environment', 'and', 'takes', 'actions',
'that', 'maximize', 'its', 'chance', 'of', 'successfully', 'achieving', 'its',
'goals', '3', 'Colloquially', 'the', 'term', 'artificial', 'intelligence',
'is', 'often', 'used', 'to', 'describe', 'machines', 'or', 'computers', 'that',
'mimic', 'cognitive', 'functions', 'that', 'humans', 'associate', 'with',
'the', 'human', 'mind', 'such', 'as', 'learning', 'and', 'problem', 'solving',
'4']

[Sentence("
Artificial intelligence (AI), is intelligence demonstrated by machines,
 unlike the natural intelligence displayed by humans and animals."),
Sentence("Leading AI textbooks define the field as the study of "intelligent
agents":
 any device that perceives its environment and takes actions that maximize its
 chance of successfully achieving its goals."), Sentence("[3] Colloquially,
the term
 "artificial intelligence" is often used to describe machines (or computers)
 that mimic "cognitive" functions that humans associate with the human mind,
 such as "learning" and "problem solving"."), Sentence("[4]")]

Sentiment(polarity=0.4375, subjectivity=0.65)
Sentiment(polarity=-0.15625, subjectivity=0.5)

Example 10.7 shows some Python example code that can read an RSS (RDF
Site Summary or Really Simple Syndication) news feed from the Google and
BBC websites. You will need to install a few libraries to be able to parse XML/
HMTL:

pip install beautifulsoup4
pip install lxml

504	 Part III ■ AI Applications

EXAMPLE 10.7:  THE GOOGLENEWS.PY PROGRAM
#Example 10.7 Read RSS news feeds
https://www.w3resource.com/python-exercises/basic/python-basic-1-
exercise-8.php
pip install BeautifulSoup4
pip install lxml

import bs4
from bs4 import BeautifulSoup as soup
from urllib.request import urlopen

url="https://news.google.com/news/rss"
url="http://feeds.bbci.co.uk/news/rss.xml"
Client=urlopen(url)
page=Client.read()
Client.close()

soup_page=soup(page,"xml")
news_list=soup_page.findAll("item")
word = "UK"
Print news contains key words
for news in news_list:
 if word in news.title.text:
 #print(news)
 print(news.title.text)
 print(news.description.text)
 print(news.link.text)
 print(news.pubDate.text)
 print("="*80)

The following is a selection of the output. As you can see, it reads and dis-
plays all the latest BBC news feeds that contain the keyword “UK” in the title.

Climate change: Is the UK on track to meet its targets?
As the UK prepares to host a global climate summit, is the government on
track to meet its own commitments?
https://www.bbc.co.uk/news/58160547?at_medium=RSS&at_campaign=KARANGA
Fri, 22 Oct 2021 13:19:46 GMT
===
Is the UK's green plan enough to halt climate change?
Support for roads, aviation and fossil fuel drilling could undermine UK's
green credentials at COP26.
https://www.bbc.co.uk/news/science-environment-
58973826?at_medium=RSS&at_campaign=KARANGA
Wed, 20 Oct 2021 09:10:54 GMT
===
What is net zero and how are the UK and other countries doing?

	 Chapter 10 ■ Natural Language Processing	 505

Experts have recommended developed countries adopt targets to reduce
emissions to net zero by 2050.
https://www.bbc.co.uk/news/science-environment-
58874518?at_medium=RSS&at_campaign=KARANGA
Tue, 19 Oct 2021 15:31:27 GMT
===
What is Covid Plan B and what are the rules across the UK this winter?
Health service figures are calling for stricter Covid restrictions in
England to protect the NHS.
https://www.bbc.co.uk/news/explainers-52530518?at_medium=RSS&at_
campaign=KARANGA
Mon, 25 Oct 2021 08:19:01 GMT
===
Covid-19 in the UK: How many coronavirus cases are there in my area?
Explore the data on coronavirus in the UK and find out how many cases there
are in your area.
https://www.bbc.co.uk/news/uk-51768274?at_medium=RSS&at_campaign=KARANGA
Mon, 25 Oct 2021 16:42:40 GMT
===
Covid: Why are UK cases so high?
The UK has higher infections than most of its neighbours, as scientists
fear a difficult winter.
https://www.bbc.co.uk/news/health-58954793?at_medium=RSS&at_campaign=KARANGA
Fri, 22 Oct 2021 13:37:29 GMT
===

EXERCISE 10.5

Modify the previous code, try different RSS news feeds and searching different news,
run the code, and comment on the results.

If you have a list of keywords, you can use regular expression library or
the any() function to search the text to see if it contains the keywords. See
Example 10.8.

EXAMPLE 10.8:  THE GOOGLENEWS1.PY PROGRAM
#Example 10.8 Search keywords in news feed import re

search_list = ['bbc', 'google', 'yahoo']
long_string = 'Read RSS news from bbc and '
if re.compile('|'.join(search_list),re.IGNORECASE).
search(long_string):
 print("Key words present")
else:
 print("Key words not present")

506	 Part III ■ AI Applications

results = any(item in long_string for item in search_list)
print(results)

Example 10.9 is another example of reading and displaying news feeds from
Google and BBC. You will need to install the feedparser library first by typing
this:

pip install feedparser

EXAMPLE 10.9:  THE GOOGLENEWS2.PY PROGRAM
Example 10.9 feedparser to read news feeds
https://codeloop.org/how-to-read-google-rss-feeds-in-python/
pip install feedparser
import feedparser

def getHeadlines(rss_url):
 headlines = []
 feed = feedparser.parse(rss_url)
 for newsitem in feed['items']:
 #print(newsitem)
 item = newsitem['title']+"\n"+newsitem['link']+"\
n"+newsitem['published']
 headlines.append(item)
 return headlines

allheadlines = []
newsurls = {
 'googlenews': 'https://news.google.com/news/rss/',
 'bbcnews':"http://feeds.bbci.co.uk/news/rss.xml"
}

for key, url in newsurls.items():
 allheadlines.extend(getHeadlines(url))

for hl in allheadlines:
 print(hl)
 print("="*80)

The following is a selection of the output. As you can see, it reads and dis-
plays all the latest news feeds.

{"Five dead in US Capitol riot after Donald Trump's supporters storm
Washington - everything we know - The Telegraph", 'https://news.google
.com/__i/rss/rd/articles/CBMibGh0dHBzOi8vd3d3LnRlbGVncmFwaC5jby51
ay9uZXdzLzIwMjEvMDEvMDgvdXMtY2FwaXRvbC1yaW90LXByb3Rlc3Qtd2hhdC1oYXBw
ZW5lZC13aG8tZGllZC10cnVtcC1zdXBwb3J0ZXJzL9IBcGh0dHBzOi8vd3d3LnRlbGVncm
FwaC5jby51ay9uZXdzLzIwMjEvMDEvMDgvdXMtY2FwaXRvbC1yaW90LXByb3Rlc3Qtd2hhd

	 Chapter 10 ■ Natural Language Processing	 507

C1oYXBwZW5lZC13aG8tZGllZC10cnVtcC1zdXBwb3J0ZXJzL2FtcC8?oc=5', 'Fri, 08
Jan 2021 08:34:00 GMT'}
==

... ...

==
Covid-19 in the UK: How many coronavirus cases are there in your area?
https://www.bbc.co.uk/news/uk-51768274
Thu, 07 Jan 2021 17:45:07 GMT
==
Jimmy Carter: The story behind the Premier League's first British Asian
player
https://www.bbc.co.uk/sport/football/55536025
Wed, 06 Jan 2021 00:00:03 GMT
==

The following is an example of NLP by using the NLTK library. You will
need to install the NLTK library and the WordCloud library first by typing this:

pip install nltk
pip install wordcloud

Example 10.10 reads the text from a text file called london.txt, gets all the
sentences, gets all the words, and plots the most frequently used words as a
word cloud.

EXAMPLE 10.10:  THE NLTK 1.PY PROGRAM
Example 10.10 NLTK example with wordcloud
pip install wordcloud

#Open the text file :
text_file = open("london.txt")

#Read the data :
text = text_file.read()

#Import required libraries :
import nltk
from nltk import sent_tokenize
from nltk import word_tokenize

import nltk
nltk.download("popular")

#Tokenize the text by sentences :
sentences = sent_tokenize(text)

508	 Part III ■ AI Applications

#How many sentences are there? :
print (len(sentences))

#Print the sentences :
print(sentences)

#Tokenize the text with words :
words = word_tokenize(text)

#Print words :
print (words)

#Import required libraries :
from nltk.probability import FreqDist

#Find the frequency :
fdist = FreqDist(words)

#Print 10 most common words :
print(fdist.most_common(10))

#Library to form wordcloud :
from wordcloud import WordCloud
import matplotlib.pyplot as plt
wordcloud = WordCloud().generate(text)

#Plot the wordcloud :
plt.figure(figsize = (12, 12))
plt.imshow(wordcloud)

#To remove the axis value :
plt.axis("off")
plt.show()

Figure 10.1 shows the word cloud output of the previous NLTK example
code.

EXERCISE 10.6

Modify the previous code, try different text and generate your own word cloud, run the
code, and comment on the results.

10.3  Text Sentiment Analysis

Text sentiment analysis is another important natural language processing task.
Text sentiment analysis analyzes the text, such as movie reviews or Twitter
messages, and tries to predict the emotion (positive, negative, and neutral)
of the text.

	 Chapter 10 ■ Natural Language Processing	 509

Example 10.11 shows an example of text sentiment analysis by using the
NLTK library.

As you can see in the example, the NLTK library makes it simple to analyze
text sentiment; it takes only three lines of code.

EXAMPLE 10.11:  THE NLTK SENTIMENT.PY PROGRAM
Example 10.11 NLTK Sentiment
from nltk.sentiment import SentimentIntensityAnalyzer
sia = SentimentIntensityAnalyzer()
print(sia.polarity_scores("London is really beautiful!"))

This is the output of the code, which shows the text is positive, with more
than 59.9 percent confidence.

{'neg': 0.0, 'neu': 0.401, 'pos': 0.599, 'compound': 0.6689}

EXERCISE 10.7

Modify the previous code, use a while loop to input a sentence from the keyboard and
perform sentiment analysis, run the code, and comment on the results. Hint: Use line
= input("Enter your sentence: ") to get text from keyboard.

The following link shows an interesting NLP tutorial on sentiment analysis
(opinion mining) with Python. It also shows an example of sentiment analysis

Figure 10.1: The word cloud output of the NLTK example code

510	 Part III ■ AI Applications

on women’s clothing review. Sentiment analysis has been widely used in market
monitoring, keeping track of feedback from the customers, recommendation
systems, and so on.

https://pub.towardsai.net/sentiment-analysis-opinion-mining-with-

python-nlp-tutorial-d1f173ca4e3c

It also provides an IPython Notebook and corresponding Google Colab
Notebook.

https://colab.research.google.com/drive/1eosolvfJqXi9xQHMLtmE91_

pfq_RM8zF?usp=sharing

https://github.com/towardsai/tutorials/tree/master/sentiment_

analysis_tutorial

10.4  Text/Poem Generation

Text generation and poem generation are interesting NLP applications. The
following is an example of using the LSTM model to train on the Alice in
Wonderland text and to generate new text based on the trained model. It has two
Python programs, modified based on the example code (https://machinelearning
mastery.com/text-generation-lstm-recurrent-neural-networks-python-

keras/).
The first Python program is to train a character-by-character LSTM model

on Alice in Wonderland text, which can be downloaded from Project Gutenberg.
See Example 10.12.

https://www.gutenberg.org/ebooks/11

EXAMPLE 10.12:  THE WONDERLAND1.PY PROGRAM
Example 10.12 Train a character-by-character LSTM prediction model
Modified based on:
https://machinelearningmastery.com/text-generation-lstm-recurrent-
neural-networks-python-keras/
Text Generation With LSTM Recurrent Neural Networks in Python with
Keras
Larger LSTM Network to Generate Text for Alice in Wonderland
import numpy
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import LSTM
from keras.callbacks import ModelCheckpoint
from keras.utils import np_utils

load ascii text and covert to lowercase
prepare the dataset of input to output pairs encoded as integers
def get_textdata(filename):

https://pub.towardsai.net/sentiment-analysis-opinion-mining-with-python-nlp-tutorial-d1f173ca4e3c
https://pub.towardsai.net/sentiment-analysis-opinion-mining-with-python-nlp-tutorial-d1f173ca4e3c
https://colab.research.google.com/drive/1eosolvfJqXi9xQHMLtmE91_pfq_RM8zF?usp=sharing
https://colab.research.google.com/drive/1eosolvfJqXi9xQHMLtmE91_pfq_RM8zF?usp=sharing
https://github.com/towardsai/tutorials/tree/master/sentiment_analysis_tutorial
https://github.com/towardsai/tutorials/tree/master/sentiment_analysis_tutorial
https://machinelearningmastery.com/text-generation-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/text-generation-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/text-generation-lstm-recurrent-neural-networks-python-keras/

	 Chapter 10 ■ Natural Language Processing	 511

 raw_text = open(filename, 'r', encoding='utf-8').read()
 raw_text = raw_text.lower()
 # create mapping of unique chars to integers
 chars = sorted(list(set(raw_text)))
 char_to_int = dict((c, i) for i, c in enumerate(chars))
 # summarize the loaded data
 n_chars = len(raw_text)
 n_vocab = len(chars)
 print ("Total Characters: ", n_chars)
 print ("Total Vocab: ", n_vocab)

 seq_length = 100
 dataX = []
 dataY = []
 for i in range(0, n_chars - seq_length, 1):
 seq_in = raw_text[i:i + seq_length]
 seq_out = raw_text[i + seq_length]
 dataX.append([char_to_int[char] for char in seq_in])
 dataY.append(char_to_int[seq_out])
 n_patterns = len(dataX)
 print ("Total Patterns: ", n_patterns)
 # reshape X to be [samples, time steps, features]
 X = numpy.reshape(dataX, (n_patterns, seq_length, 1))
 # normalize
 X = X / float(n_vocab)
 # one hot encode the output variable
 y = np_utils.to_categorical(dataY)
 return X, y

define the LSTM model
def get_model(X, y):
 model = Sequential()
 model.add(LSTM(256, input_shape=(X.shape[1], X.shape[2]),
return_sequences=True))
 model.add(Dropout(0.2))
 model.add(LSTM(256))
 model.add(Dropout(0.2))
 model.add(Dense(y.shape[1], activation='softmax'))
 model.compile(loss='categorical_crossentropy',
optimizer='adam')
 # define the checkpoint
 filepath="weights-improvement-{epoch:02d}-{loss:.4f}-bigger.
hdf5"
 checkpoint = ModelCheckpoint(filepath, monitor='loss',
verbose=1, save_best_only=True, mode='min')
 callbacks_list = [checkpoint]
 return model,callbacks_list

Main function

512	 Part III ■ AI Applications

filename = "wonderland.txt"
X,y = get_textdata(filename)
model,callbacks_list = get_model(X, y)
fit the model
model.fit(X, y, epochs=50, batch_size=64, callbacks=callbacks_list)

The second Python program, shown in Example 10.13, uses a trained LSTM
model to generate new text.

EXAMPLE 10.13:  THE WONDERLAND2.PY PROGRAM
Example 10.13 Text generation from model trained in Example 10.12
Modified based on:
https://machinelearningmastery.com/text-generation-lstm-recurrent-
neural-networks-python-keras/
Text Generation With LSTM Recurrent Neural Networks in Python with
Keras
Larger LSTM Network to Generate Text for Alice in Wonderland
import numpy
import sys
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import LSTM
from keras.callbacks import ModelCheckpoint
from keras.utils import np_utils

load ascii text and covert to lowercase
prepare the dataset of input to output pairs encoded as integers
def get_textdata(filename):
 raw_text = open(filename, 'r', encoding='utf-8').read()
 raw_text = raw_text.lower()
 # create mapping of unique chars to integers
 chars = sorted(list(set(raw_text)))
 char_to_int = dict((c, i) for i, c in enumerate(chars))
 int_to_char = dict((i, c) for i, c in enumerate(chars))
 # summarize the loaded data
 n_chars = len(raw_text)
 n_vocab = len(chars)
 print ("Total Characters: ", n_chars)
 print ("Total Vocab: ", n_vocab)

 seq_length = 100
 dataX = []
 dataY = []
 for i in range(0, n_chars - seq_length, 1):
 seq_in = raw_text[i:i + seq_length]

	 Chapter 10 ■ Natural Language Processing	 513

 seq_out = raw_text[i + seq_length]
 dataX.append([char_to_int[char] for char in seq_in])
 dataY.append(char_to_int[seq_out])
 n_patterns = len(dataX)
 print ("Total Patterns: ", n_patterns)
 # reshape X to be [samples, time steps, features]
 X = numpy.reshape(dataX, (n_patterns, seq_length, 1))
 # normalize
 X = X / float(n_vocab)
 # one hot encode the output variable
 y = np_utils.to_categorical(dataY)
 return X, y, dataX,int_to_char,n_vocab

define the LSTM model
def get_model(X, y):
 model = Sequential()
 model.add(LSTM(256, input_shape=(X.shape[1], X.shape[2]),
return_sequences=True))
 model.add(Dropout(0.2))
 model.add(LSTM(256))
 model.add(Dropout(0.2))
 model.add(Dense(y.shape[1], activation='softmax'))
 model.compile(loss='categorical_crossentropy', optimizer='adam')
 # define the checkpoint
 filepath="weights-improvement-{epoch:02d}-{loss:.4f}-bigger.
hdf5"
 checkpoint = ModelCheckpoint(filepath, monitor='loss',
verbose=1, save_best_only=True, mode='min')
 callbacks_list = [checkpoint]
 return model,callbacks_list
def get_prediction(filename,dataX,int_to_char,n_vocab):
 model.load_weights(filename)
 model.compile(loss='categorical_crossentropy', optimizer='adam')
 # pick a random seed
 start = numpy.random.randint(0, len(dataX)-1)
 pattern = dataX[start]
 print ("Seed:")
 print ("\"", ''.join([int_to_char[value] for value in pattern]),
"\"")
 # generate characters
 for i in range(1000):
 x = numpy.reshape(pattern, (1, len(pattern), 1))
 x = x / float(n_vocab)
 prediction = model.predict(x, verbose=0)
 index = numpy.argmax(prediction)
 result = int_to_char[index]
 seq_in = [int_to_char[value] for value in pattern]
 sys.stdout.write(result)
 pattern.append(index)
 pattern = pattern[1:len(pattern)]

514	 Part III ■ AI Applications

 print ("\nDone.")
Main function
filename = "wonderland.txt"
X,y,dataX,int_to_char,n_vocab = get_textdata(filename)
model,callbacks_list = get_model(X, y)

load the network weights and get prediction
filename = "weights-improvement-49-1.3079-bigger.hdf5"
get_prediction(filename,dataX,int_to_char,n_vocab)

The training of the previous example takes a long time on a standard desktop
computer. There is also an IPython Notebook of the previous two examples
called Wonderland1.ipynb, which you can upload to your Google Colab to run
it on a GPU and TPU, which will be much faster.

Figure 10.2 (top) shows the training of the LSTM model on the Alice in Won-
derland text. As you can see, it takes 50 epochs, and an intermediate model is
saved at each epoch. Figure 10.2 (bottom) shows the using the trained model
for text generation, or predictions. Just make sure the model filename matched
one of the saved intermediate models.

EXERCISE 10.8

Modify the previous two Python programs, try different LSTM parameters and training
the model on different texts, run the code, and comment on the results.

The following is an interesting Backus-Naur (context-free grammars) poetry
generator; it also has a live demo page.

https://github.com/schollz/poetry-generator

EXERCISE 10.9

Clone the previous GitHub repository, follow the instructions, run the code, and com-
ment on the results.

The following is the corresponding live demo of the Poetry generator web-
site, which can generate different types of poems, with source code provided.

http://www.poetrygenerator.ninja/

Figure 10.3 is an interesting Chinese poem generator, which is trained on
thousands of poems from the Tang Dynasty of ancient China and can generate
really realistic, random, new poems.

https://github.com/schollz/poetry-generator

	 Chapter 10 ■ Natural Language Processing	 515

Text to speech means to convert the text into voice, and speech to text is to
detect the voice and convert it to text. By combining text to speech and speech
to text, you can create really cool and useful applications.

10.5.1  Text to Speech
Example 10.14 shows a Python example code that can convert text into speech.
You need to install the Pyttsx3 library.

pip install pyttsx3

Figure 10.2: The training of the LSTM model for the Alice in Wonderland text (top) and using the
trained model for text generation (bottom)

516	 Part III ■ AI Applications

EXAMPLE 10.14:  THE TEXTTOSPEECH1.PY PROGRAM
#Example 10.14 Text to Speech
#pip install pyttsx3

import pyttsx3

text = "Welcome to London!"

engine = pyttsx3.init()
engine.say(text)
engine.runAndWait()

EXERCISE 10.10

Modify the previous code, use a while loop to input a sentence from keyboard and
perform text to speech, run the code, and comment on the results. Hint: Use line =
input("Enter your sentence: ") to get text from keyboard.

Figure 10.3: The GitHub site for the Poems_generator_Keras.project
(Source: https://github.com/youyuge34/Poems_generator_Keras)10.5 Text to
Speech and Speech to Text

	 Chapter 10 ■ Natural Language Processing	 517

Example 10.15 shows a revised version of the previous program, which reads
the text from a text file and then converts it to speech.

EXAMPLE 10.15:  THE TEXTTOSPEECH2.PY PROGRAM
#Example 10.15 Text to Speech 2
#pip install pyttsx3
#pip install googletrans==3.1.0a0

import pyttsx3

file_name = 'Bolna.txt'
text = open(file_name).read()

engine = pyttsx3.init()
engine.say(text)
engine.runAndWait()

EXERCISE 10.11

Modify the previous code, try different text files, run the code, and comment on the
results.

10.5.2  Speech to Text
Example 10.16 shows some Python example code that can recognize speech
from a microphone. You need to install the PyAudio library.

EXAMPLE 10.16:  THE SPEECH RECOGNITION.PY PROGRAM
#Example 10.16 Speech Recognition through Microphone
#pip3 install pyaudio
#pip install googletrans==3.1.0a0

import speech_recognition as sr
print(sr.__version__)

r = sr.Recognizer()
with sr.Microphone() as source:
 print(source)
 audio_data = r.record(source, duration=5)
 #audio_data = r.listen(source,timeout=1,phrase_time_limit=10)
 print("Recognizing...")
 # convert speech to text
 text = r.recognize_google(audio_data)
 #text = r.recognize_google(audio_data, language="es-ES")
 print(text)

518	 Part III ■ AI Applications

Example 10.17 shows a Python example code that can recognize speech from
an audio file. You need to install the SpeechRecognition and PyAudio libraries.

pip install SpeechRecognition
pip install pyaudio

EXAMPLE 10.17:  THE SPEECH RECOGNITION 1.PY PROGRAM
Example 10.17 Speech Recognition from an audio file
pip install SpeechRecognition

pip install pyaudio
https://www.lfd.uci.edu/~gohlke/pythonlibs/#pyaudio
PyAudio-0.2.11-cp37-cp37m-win_amd64.whl
pip install PyAudio-0.2.11-cp37-cp37m-win_amd64.whl

import speech_recognition as sr
print(sr.__version__)

r = sr.Recognizer()
'''
recognize_bing(): Microsoft Bing Speech
recognize_google(): Google Web Speech API
recognize_google_cloud(): Google Cloud Speech - requires installation
of the google-cloud-speech package
recognize_houndify(): Houndify by SoundHound
recognize_ibm(): IBM Speech to Text
recognize_sphinx(): CMU Sphinx - requires installing PocketSphinx
recognize_wit(): Wit.ai
'''
#mic = sr.Microphone()
#print(sr.Microphone.list_microphone_names())
#===
harvard = sr.AudioFile('harvard.wav')
with harvard as source:
 audio = r.record(source)
 #audio = r.record(source, duration=4)
 #audio = r.record(source, offset=4, duration=3)

print(type(audio))
print(r.recognize_google(audio))

EXERCISE 10.12

Modify the previous code, try a different speech recognition API, run the code, and
comment on the results.

	 Chapter 10 ■ Natural Language Processing	 519

If you have the MP4 format video file, you need first to convert it to MP3
format audio file and then convert the MP3 format audio file to a WAV format
audio file, before you do the speech recognition. You can use the FFmeg library
to do that. For more details, see the following:

https://ffmpeg.org/

Just download the FFmeg latest release and unzip it to a folder. Then you can
run the following commands to convert MP4 to MP3 to WAV:

E:\ffmpeg\bin\ffmpeg -i Goal-GAN.mp4 Bolna.mp3
E:\ffmpeg\bin\ffmpeg -i Bolna.mp3 Bolna.wav

EXERCISE 10.13

Modify the previous code, try to convert different MP4 video files, run the code, and
comment on the results.

Example 10.17a shows how to use some Python code with the os library.

EXAMPLE 10.17A:  THE COVERT_WAV_1.PY PROGRAM
Example 10.17a Convert an mp4 file to a wav file

import os

cmd1 = "E:\\ffmpeg\\bin\\ffmpeg -i Goal-GAN.mp4 Bolna.mp3"
failure = os.system(cmd1)
if failure:
 print ('Execution of "%s" failed!\n' % cmd1)

cmd2 = "E:\\ffmpeg\\bin\\ffmpeg -i Bolna.mp3 Bolna.wav"
failure = os.system(cmd2)
if failure:
 print ('Execution of "%s" failed!\n' % cmd2)

Example 10.17b shows how to use some Python code with the subprocess
library.

EXAMPLE 10.17B:  THE COVERT_WAV_2.PY PROGRAM
Example 10.17b Convert an mp4 file to a wav file
import subprocess

cmd1 = "E:\\ffmpeg\\bin\\ffmpeg -i Goal-GAN.mp4 Bolna.mp3"

520	 Part III ■ AI Applications

failure = subprocess.call(cmd1, shell=True)
if failure:
 print ('Execution of "%s" failed!\n' % cmd1)

cmd2 = "E:\\ffmpeg\\bin\\ffmpeg -i Bolna.mp3 Bolna.wav"
failure = subprocess.call(cmd2, shell=True)
if failure:
 print ('Execution of "%s" failed!\n' % cmd2)

Example 10.18 shows some Python example code that can recognize speech
from an MP4 video file. Again, you need to install the SpeechRecognition and
PyAudio libraries.

EXAMPLE 10.18:  THE SPEECH RECOGNITION 3.PY PROGRAM
#Example 10.18 Speech Recognition from MP4

import os
import speech_recognition as sr

cmd1 = "E:\\ffmpeg\\bin\\ffmpeg -i Goal-GAN.mp4 Bolna.mp3"
failure = os.system(cmd1)
if failure:
 print ('Execution of "%s" failed!\n' % cmd1)

cmd2 = "E:\\ffmpeg\\bin\\ffmpeg -i Bolna.mp3 Bolna.wav"
failure = os.system(cmd2)
if failure:
 print ('Execution of "%s" failed!\n' % cmd2)

r = sr.Recognizer()
audio = sr.AudioFile('Bolna.wav')

with audio as source:
 audio = r.record(source, duration=100)
print(r.recognize_google(audio))

file1 = open("Bolna.txt","w")
file1.writelines(r.recognize_google(audio))
file1.close() #to change file access modes

EXERCISE 10.14

Modify the previous code, try different MP4 videos, run the code, and comment on the
results.

	 Chapter 10 ■ Natural Language Processing	 521

Example 10.19 shows how to record audio from a microphone and save it to
an audio file. You need to install the wave and PyAudio libraries.

EXAMPLE 10.19:  THE SAVE_RECORDING_TO_AUDIO_FILE.PY PROGRAM
Example 10.19 Save microphone recording to wav audio file
#https://realpython.com/playing-and-recording-sound-
python/#recording-audio
import pyaudio
import wave

chunk = 1024 # Record in chunks of 1024 samples
sample_format = pyaudio.paInt16 # 16 bits per sample
channels = 2
fs = 44100 # Record at 44100 samples per second
seconds = 3
filename = "output.wav"

p = pyaudio.PyAudio() # Create an interface to PortAudio

print('Recording')

stream = p.open(format=sample_format,
 channels=channels,
 rate=fs,
 frames_per_buffer=chunk,
 input=True)

frames = [] # Initialize array to store frames

Store data in chunks for 3 seconds
for i in range(0, int(fs / chunk * seconds)):
 data = stream.read(chunk)
 frames.append(data)

Stop and close the stream
stream.stop_stream()
stream.close()
Terminate the PortAudio interface
p.terminate()

print('Finished recording')

Save the recorded data as a WAV file
wf = wave.open(filename, 'wb')
wf.setnchannels(channels)
wf.setsampwidth(p.get_sample_size(sample_format))
wf.setframerate(fs)
wf.writeframes(b''.join(frames))
wf.close()

522	 Part III ■ AI Applications

10.6  Machine Translation

Machine translation is an important application for natural language
processing. Example 10.20 shows example code that uses Google Translate
to translate the text into another language. You need to install the google-
trans library by typing the following:

pip install googletrans==3.1.0a0

EXAMPLE 10.20:  THE GOOGLETRANSLATE1.PY PROGRAM
#Example 10.20 Google Translate
#pip install googletrans==3.1.0a0

text = "Welcome to London!"

#translates into the mentioned language
from googletrans import Translator
p = Translator()
translates the text into german language
k = p.translate(text,dest='ja')
print(k)

EXERCISE 10.15

Modify the previous code, try different text and different languages, run the code, and
comment on the results.

EXERCISE 10.16

Modify the previous code, read the text from a text file, translate it into another lan-
guage, run the code, and comment on the results.

Example 10.21 shows a revised version of the previous program, which can
detect the language of the text and also translate the text into another language.

EXAMPLE 10.21:  THE GOOGLETRANSLATE2.PY PROGRAM
#Example 10.21 language detection and translation
#pip install googletrans==3.1.0a0
from googletrans import Translator

translator = Translator()
translator = Translator(service_urls=[
 'translate.google.com',

	 Chapter 10 ■ Natural Language Processing	 523

 'translate.google.co.kr',
])

translator.detect('이 문장은 한글로 쓰여졌습니다.')

translator.translate('안녕하세요.')
<Translated src=ko dest=en text=Good evening. pronunciation=Good
evening.>

EXERCISE 10.17

Modify the previous code, try different texts and different languages, run the code, and
comment on the results.

10.7  Optical Character Recognition

Example 10.22 shows some Python example code that can read text from an
image file, i.e., optical character recognition (OCR). You need to install the
pytesseract library, which is a wrapper of the Google tesseract program,
which you can install from here:

https://github.com/tesseract-ocr/tesseract

https://tesseract-ocr.github.io/tessdoc/Downloads

EXAMPLE 10.22:  THE GOOGLEOCR1.PY PROGRAM
Example 10.22 OCR and Google Translate
import the following libraries
will convert the image to text string
import pytesseract

adds image processing capabilities
from PIL import Image

converts the text to speech
import pyttsx3

#translates into the mentioned language
from googletrans import Translator

opening an image from the source path
img = Image.open('text1.png')

https://github.com/tesseract-ocr/tesseract
https://tesseract-ocr.github.io/tessdoc/Downloads

524	 Part III ■ AI Applications

describes image format in the output
print(img)
path where the tesseract module is installed
pytesseract.pytesseract.tesseract_cmd ='C:/Program Files (x86)/
Tesseract-OCR/tesseract.exe'
converts the image to result and saves it into result variable
result = pytesseract.image_to_string(img)
print(result)
write text in a text file and save it to source path
with open('abc.txt',mode ='w') as file:

 file.write(result)
 print(result)

p = Translator()
translates the text into german language
k = p.translate(result,dest='german')
print(k)
engine = pyttsx3.init()

an audio will be played which speaks the text if pyttsx3 recognizes
it
engine.say(k.text)
engine.runAndWait()

EXERCISE 10.18

Modify the previous code, try different OCR images, run the code, and comment on the
results.

10.8  QR Code

A quick response (QR) code is a two-dimensional version of the barcode able
to store up to 7,089 digits or 4,296 characters, including punctuation marks and
special characters. The code can equally encode words and phrases such as the
Internet addresses. As more data is added, a QR code’s structure becomes more
complex. A QR code’s structure also provides redundancies that allow up to 30
percent of the code structure to be damaged without affecting its readability
on scanners.

QR codes were invented by Masahiro Hara and his team from Denso Wave,
a subsidiary manufacturing company in Japan, in 1994. QR codes offer a better,
faster, stronger technology to the barcode to process higher amounts of charac-
ters in tracking vehicles and parts in a company.

	 Chapter 10 ■ Natural Language Processing	 525

Example 10.23 shows a Python example code that can generate a QR code
image that is linked to a URL. You need to install the qrcode library.

pip install qrcode

EXAMPLE 10.23:  THE QRCODE1.PY PROGRAM
Example 10.23 QR code generation
https://pypi.org/project/qrcode/
https://en.wikipedia.org/wiki/QR_code
pip install qrcode

import qrcode

#Create a QRcode
qr = qrcode.QRCode(
 version=1,
 box_size=10,
 border=5)
qr.add_data("https://www.bioxsystems.com/")
qr.make(fit=True)
img = qr.make_image(fill='black', back_color='white')
img.save('qrcode001.png')

Figure 10.4 shows the QR code image generated by the example.

EXERCISE 10.19

Modify the previous code, try to generate the QR code for different websites, run the
code, and comment on the results.

Figure 10.4: The QR code image generated by the example

526	 Part III ■ AI Applications

Example 10.24 shows a Python example code that can read a QR code image
and decode its URL. You need to install the qrcode library.

EXAMPLE 10.24:  THE QRCODE2.PY PROGRAM
Detect QRCode using the cv2 QRCode detector
import cv2

img = cv2.imread('qrcode001.png')
detector = cv2.QRCodeDetector()

detect and decode
data, bbox, straight_qrcode = detector.detectAndDecode(img)
if there is a QR code
if bbox is not None:
 print(f"QRCode data:\n{data}")
 # display the image with lines
 # length of bounding box
 n_lines = len(bbox)
 for i in range(n_lines):
 point1 = tuple(bbox[i][0].astype(int))
 point2 = tuple(bbox[i][2].astype(int))
 cv2.rectangle(img, point1, point2, (255, 0, 0), 2)# display
the result
cv2.imshow("img", img)
cv2.waitKey(0)
cv2.destroyAllWindows()

The following is the output of the program:

QRCode data:
https://www.bioxsystems.com/

EXERCISE 10.20

Modify the previous code so that it can take the QR code filename from the command
line, run the code, and comment on the results. Hint: The following is Python example
code to get command-line parameters:

cmd.py - Command line example
import sys
print 'Number of arguments:', len(sys.argv), 'arguments.'
print 'Argument List:', str(sys.argv)
This is how to test the code:
python cmd.py arg1 arg2 arg3

	 Chapter 10 ■ Natural Language Processing	 527

10.9  PDF and DOCX Files

Example 10.25 shows some Python example code that can read image files and
convert them to PDF files.

EXAMPLE 10.25:  THE PDF1.PY PROGRAM
Example 10.25 Image to PDF
--- Save one image to pdf ---
#https://datatofish.com/images-to-pdf-python/
from PIL import Image

image1 = Image.open(r'images\000_000.jpg')
im1 = image1.convert('RGB')
im1.save(r'myFirstImage1.pdf')

--- Save several images to pdf ------------------------------------
image1 = Image.open(r'images\000_000.jpg')
image2 = Image.open(r'images\000_010.jpg')
image3 = Image.open(r'images\000_020.jpg')
im1 = image1.convert('RGB')
im2 = image2.convert('RGB')
im3 = image3.convert('RGB')
imagelist = [im2,im3]
im1.save(r'mySecondImage1.pdf',save_all=True, append_images=
imagelist)

EXERCISE 10.21

Modify the previous code, try different image files, run the code, and comment on the
results.

Example 10.26 shows a Python example code that can convert a PDF file in a
directory and save it to a DOCX file by using the PDF2DOCX library.

EXAMPLE 10.26:  THE PDF2.PY PROGRAM
Example 10.26 Convert pdf to word

from pdf2docx import Converter

pdf_file = 'source.pdf'
docx_file = 'source1.docx'

528	 Part III ■ AI Applications

convert pdf to docx
cv = Converter(pdf_file)
cv.convert(docx_file) # all pages by default
cv.close()

Example 10.26a shows a variation of the previous Python example code that
can convert all PDF files in a directory to DOCX files by using the PDF2DOCX
and GLOB libraries.

EXAMPLE 10.26A:  THE PDF2A.PY PROGRAM
Example 10.26a Convert pdf to word

from pdf2docx import Converter
import glob
import os

pdfs_path = "" # folder where the .pdf files are stored
for i, pdf_file in enumerate(glob.iglob(pdfs_path+"*.pdf")):
 print(pdf_file)
 filename = pdf_file.split('\\')[-1]
 in_file = os.path.abspath(pdf_file)
 docx_file = os.path.abspath(filename[0:-4]+ ".docx")
 print(in_file)
 cv = Converter(in_file)
 cv.convert(docx_file)
 cv.close()

Example 10.27 shows another Python example code that can select and con-
vert a PDF file to a DOC file by using the PyPDF2 and Tkinter libraries.

EXAMPLE 10.27:  THE PDF3.PY PROGRAM
Example 10.27 Convert pdf to word

from tkinter import *
from tkinter import filedialog
from tkinter.filedialog import askopenfilename,asksaveasfile
from PyPDF2 import PdfFileReader

Select an input pdf file
input_file = askopenfilename(defaultextension=".pdf",
 filetypes=[("Pdf files","*.pdf")])
text = ""

pdfFile = open(input_file, 'rb')

	 Chapter 10 ■ Natural Language Processing	 529

creating a pdf reader object
read_pdf = PdfFileReader(pdfFile)

c = read_pdf.numPages
for i in range(c):
 page = read_pdf.getPage(i)
 text+=(page.extractText())

closing the pdf file object
pdfFile.close()

Select an output Doc file
wordfile = asksaveasfile(mode='w',defaultextension=".doc",
 filetypes=[("word file","*.doc"),
 ("text file","*.txt")])

convert the pdf file to doc file
wordfile.write(text)
wordfile.close()
print("saved: ",wordfile)

Example 10.28 shows a Python example code that can merge PDF files to
one file.

EXAMPLE 10.28:  THE PDF4.PY PROGRAM
Example 10.28 Merge pdf files
https://stackoverflow.com/questions/3444645/merge-pdf-files
#
from PyPDF2 import PdfFileMerger

#pdfs = ['file1.pdf', 'file2.pdf', 'file3.pdf', 'file4.pdf']
pdfs = ['file1.pdf', 'file2.pdf']
merger = PdfFileMerger()

for pdf in pdfs:
 merger.append(pdf)

merger.write("result.pdf")
merger.close()

EXERCISE 10.22

Modify the previous code, try to merge different PDF files, run the code, and comment
on the results.

530	 Part III ■ AI Applications

10.10  Chatbots and Question Answering

Chatbots and question answering have many practical applications and have
been implemented in many online banking, online shopping, flight and hotel
booking websites, and so on. In this section, we will take a look at how to create
chatbot and question answering applications in Python.

10.10.1  ChatterBot
ChatterBot is a simple, user-friendly library that allows you to develop your
own chatbot and question answering applications. It supports SQL (Structured
Query Language) databases such as MongoDB and can be used to process and
evaluate mathematical and time-based questions. To use it, you will need to
install the following libraries and packages:

pip install spacy
pip install https://github.com/explosion/spacy-models/releases/download/
en_core_web_sm-2.2.0/en_core_web_sm-2.2.0.tar.gz
python -m spacy download en
pip install chatterbot, chatterbot_corpus

See the following link for more details.

https://chatterbot.readthedocs.io/en/stable/examples.html

Example 10.29 shows some Python example code of a basic ChatterBot demo.

EXAMPLE 10.29:  THE CHATTERBOT1.PY PROGRAM
Example 10.29 Chatterbot basic demo
https://chatterbot.readthedocs.io/en/stable/setup.html
https://chatterbot.readthedocs.io/en/stable/examples.html

pip install spacy
pip install https://github.com/explosion/spacy-models/releases/
download/en_core_web_sm-2.2.0/en_core_web_sm-2.2.0.tar.gz
python -m spacy download en
pip install chatterbot_corpus

from chatterbot import ChatBot
from chatterbot.trainers import ChatterBotCorpusTrainer

chatbot = ChatBot('Ron Obvious')

Create a new trainer for the chatbot
trainer = ChatterBotCorpusTrainer(chatbot)

	 Chapter 10 ■ Natural Language Processing	 531

Train the chatbot based on the english corpus
trainer.train("chatterbot.corpus.english")

Get a response to an input statement
#chatbot.get_response("Hello, how are you today?")

while True:
 message = input('You:')
 if message.strip()!= 'Bye':
 reply = chatbot.get_response(message)
 print('ChatBot:',reply)
 if message.strip()=='Bye':
 print('ChatBot:Bye')
 break

Example 10.30 shows some Python example code of a ChatterBot best match
demo.

EXAMPLE 10.30:  THE CHATTERBOT2.PY PROGRAM
https://chatterbot.readthedocs.io/en/stable/setup.html
https://chatterbot.readthedocs.io/en/stable/examples.html

from chatterbot import ChatBot
from chatterbot.trainers import ListTrainer

Create a new instance of a ChatBot
bot = ChatBot(
 'Example Bot',
 storage_adapter='chatterbot.storage.SQLStorageAdapter',
 logic_adapters=[
 {
 'import_path': 'chatterbot.logic.BestMatch',
 'default_response': 'I am sorry, but I do not
understand.',
 'maximum_similarity_threshold': 0.90
 }
]
)

trainer = ListTrainer(bot)

Train the chat bot with a few responses
trainer.train([
 'How can I help you?',
 'I want to create a chat bot',
 'Have you read the documentation?',
 'No, I have not',

532	 Part III ■ AI Applications

 'This should help get you started: http://chatterbot.rtfd.org/en/
latest/quickstart.html'
])

Get a response for some unexpected input
response = bot.get_response('can I help you')
print(response)
response = bot.get_response('read the documentation')
print(response)
response = bot.get_response('How do I make an omelette?')
print(response)

EXERCISE 10.23

Modify the previous code, try your own questions and answers, run the code, and com-
ment on the results.

10.10.2  Transformers
Transformers are new types of recurrent neural networks that are particu-
larly suitable for natural language processing. Transformers have become
the state-of-the-art approach in natural language processing since 2017. With
transformers you can build chatbot and question answering applications easily.

Example 10.31 shows an example of text sentiment analysis by using the
Transformers library.

pip install transformers

As you can see in the example, the Transformers library makes it simple to
analyze text sentiment; it takes only three lines of code.

EXAMPLE 10.31:  THE TRANSFORMERS1.PY PROGRAM
Example 10.31 Sentiment analylsis with transformers
https://github.com/huggingface/transformers
from transformers import pipeline

Allocate a pipeline for sentiment-analysis
classifier = pipeline('sentiment-analysis')
classifier('We are very happy to visit London.')

This is the output of the code, which shows the text is positive, with more
than 99.9 percent confidence.

[{'label': 'POSITIVE', 'score': 0.9998719096183777}]

Example 10.32 shows some Python example code of using transformers for
question answering.

	 Chapter 10 ■ Natural Language Processing	 533

EXAMPLE 10.32:  THE TRANSFORMERS2.PY PROGRAM
Example 10.32 Q&A with transformers
from transformers import pipeline
question_answerer = pipeline('question-answering')
question_answerer({
 'question': 'What is the name of the company?',
 'context': 'We created Biox Systems Ltd company back in the year
of 2000.'
})

This is the output of the example, which shows the answer to the question:

{'answer': 'Biox Systems Ltd',
 'end': 27,
 'score': 0.7553602457046509,
 'start': 11}

EXERCISE 10.24

Modify the previous code, try different text and different questions, run the code, and
comment on the results.

Example 10.33 shows another version of the previous Python example; in this
case, it asks the user to input the question from the keyboard.

EXAMPLE 10.33:  THE TRANSFORMERS3.PY PROGRAM
Example 10.33 open question answering with transformers
from transformers import pipeline

context = '''
We created Biox Systems Ltd company back in the year of 2000.
'''
Question = input('Ask a question:')
question_answerer = pipeline('question-answering')
result = question_answerer(question=Question, context=context)
print("Answer:", result['answer'])
print("Score:", result['score'])

EXERCISE 10.25

Modify the previous code, read the text from a text file, use a while loop to ask user to
input the questions, run the code, and comment on the results.

534	 Part III ■ AI Applications

Example 10.34 shows another Python example on text generation by using
Generative Pre-trained Transformer 2 (GPT-2) model Transformers. GPT-2 is
a large transformer-based language model developed by OpenAI. The latest
version is GPT-3. GPT-2 has 1.5 billion parameters and is trained on a dataset
of 8 million web pages. GPT-2 is trained to predict the next word, given the
previous words within the text. Access to GPT-3 is limited, access to GPT-2
is free.

EXAMPLE 10.34:  THE TRANSFORMERS4.PY PROGRAM
Example 10.34 Text Generation with transformers (GPT-2 Model)
pip install transformers
from transformers import pipeline, set_seed
generator = pipeline('text-generation', model='gpt2')
set_seed(20)
generator("I feel amazing about", max_length=20,
num_return_sequences=5)

The following is the output of the code, very impressive results.

[{'generated_text': 'I feel amazing about how this whole project is
making sense and I am incredibly proud of how it got'},
 {'generated_text': 'I feel amazing about this. I am a proud believer.
You can do great things, but I'},
 {'generated_text': 'I feel amazing about my relationship with women,"
said her former assistant, who declined to be identified,'},
 {'generated_text': "I feel amazing about this, and I think there's good
reason for it. We love these guys"},
 {'generated_text': 'I feel amazing about that," she said. "I\'d rather
sleep with somebody who\'s more comfortable'}]

EXERCISE 10.26

Modify the previous code, use different phrases or sentences for text generation, run
the code, and comment on the results.

See the following link for details about GPT-2 model.
https://huggingface.co/transformers/model_doc/gpt2.html

10.10.3  J.A.R.V.I.S.
J.A.R.V.I.S. (Just A Rather Very Intelligent System) is an artificial intelligence
system in the Hollywood blockbuster movie Iron Man that can hold conversa-
tions and answer questions.

	 Chapter 10 ■ Natural Language Processing	 535

Example 10.35 shows some PySimpleGUI-based Python J.A.R.V.I.S. example
code that allows users to ask a question, searches WolframAlpha and Wiki-
pedia, and then returns the answers. When you run the code, please replace
“XXX-XXXX” with your own WolframAlpha ID. For more details on how to
get the ID, check the following:

https://products.wolframalpha.com/simple-api/documentation/

EXAMPLE 10.35:  THE JAVIS 1.PY PROGRAM
Example 10.35 Jarvis 1.py
pip install wolframalpha
pip install pyttsx3

import wolframalpha
client = wolframalpha.Client("XXX-XXXX")

import wikipedia

import PySimpleGUI as sg
sg.theme('LightGreen')

searchpanel = [[sg.InputText()],[sg.Button('Search'),
sg.Button('Cancel')]]
resultspanel =[[sg.Text('Wolfram Result:', size =(20, 1))],
 [sg.Multiline("", key='Wolfram')],
 [sg.Text('Wikipedia Result:', size =(20, 1))],
 [sg.Multiline("", key='Wikipedia')],
 [sg.Frame('Search the Web:', searchpanel, font='Any
12', title_color='blue')],
]
layout = [[sg.Column(resultspanel)]]
window = sg.Window('Javis 1 ',location=(100, 100))
window.Layout(layout).Finalize()

#layout =[[sg.Text('Enter a command'), sg.InputText()],[sg
.Button('Ok'), sg.Button('Cancel')]]
#window = sg.Window('PyDa', layout)

import pyttsx3
engine = pyttsx3.init()

searching = False
while True:
 event, values = window.read(timeout=20, timeout_key='timeout')
 if event == sg.WIN_CLOSED:
 break

https://products.wolframalpha.com/simple-api/documentation/

536	 Part III ■ AI Applications

 elif event == 'Search':
 searching = True
 if event in (None, 'Cancel'):
 break
 if searching:
 wiki_res = wikipedia.summary(values[0], sentences=2)
 wolfram_res = next(client.query(values[0]).results).text
 engine.say(wiki_res)
 engine.say(wolfram_res)
 #sg.PopupNonBlocking("Wikipedia Result: "+wiki_res)
 window['Wolfram'].update(wolfram_res)
 window['Wikipedia'].update(wiki_res)

 engine.runAndWait()
 searching = False
 print (values[0])

window.close()

Figure 10.5 shows the output of the previous PySimpleGUI-based example
program, which shows the questions and the answers from WolframAlpha and
from Wikipedia.

EXERCISE 10.27

Modify the previous code to allow users to ask the questions using their voice through
a microphone, run the code, and comment the results. Hint: See the speech to text
examples.

Example 10.36 shows more J.A.R.V.I.S. Python example code that can hold
voice conversations with a user.

Figure 10.5: The PySimpleGUI-based example program

	 Chapter 10 ■ Natural Language Processing	 537

EXAMPLE 10.36:  THE JARVIS DEMO.PY PROGRAM
Example 10.36 Jarvis conversation
Modified based on:
https://www.geeksforgeeks.org/personal-voice-assistant-in-python/
pip install speechrecognition
pip install playsound
pip install gtts
pip install selenium
pip install pyaudio

importing speech recognition package from google api
import speech_recognition as sr
import playsound # to play saved mp3 file
from gtts import gTTS # google text to speech

import os # to save/open files
import wolframalpha # to calculate strings into formula
from selenium import webdriver # to control browser operations
#driver = webdriver.Firefox(executable_path=r'E:\\geckodriver.exe')

num = 1
def assistant_speaks(output):
 global num

 # num to rename every audio file
 # with different name to remove ambiguity
 num += 1
 print("PerSon : ", output)

 toSpeak = gTTS(text = output, lang ='en', slow = False)
 # saving the audio file given by google text to speech
 file = str(num)+".mp3 "
 toSpeak.save(file)

 # playsound package is used to play the same file.
 playsound.playsound(file, True)
 os.remove(file)

def get_audio():

 rObject = sr.Recognizer()
 audio = ''

 with sr.Microphone() as source:
 print("Speak...")

 # recording the audio using speech recognition

538	 Part III ■ AI Applications

 audio = rObject.listen(source, phrase_time_limit = 5)
 print("Stop.") # limit 5 secs

 try:

 text = rObject.recognize_google(audio, language
='en-US')
 print("You : ", text)
 return text

 except:

 assistant_speaks("Could not understand your audio,
PLease try again !")
 return 0

def process_text(input):
 try:
 if 'search' in input:
 # a basic web crawler using selenium
 driver = webdriver.Chrome()
 driver.implicitly_wait(1)
 driver.maximize_window()

 indx = input.lower().split().index('google')
 query = input.split()[indx + 1:]
 driver.get("https://www.google.com/search?q
=" + '+'.join(query))
 return

 elif "calculate" in input.lower():

 # write your wolframalpha app_id here
 app_id = "XXX-XXXX"
 client = wolframalpha.Client(app_id)

 indx = input.lower().split().
index('calculate')
 query = input.split()[indx + 1:]
 res = client.query(' '.join(query))
 answer = next(res.results).text
 assistant_speaks("The answer is " + answer)
 return

 elif 'open microsoft word' in input:

 # another function to open
 # different application availaible
 assistant_speaks("Opening Microsoft Word")

	 Chapter 10 ■ Natural Language Processing	 539

 os.startfile('C:\ProgramData\Microsoft\
Windows\Start Menu\Programs\Microsoft Office\\Microsoft Word 2010
.lnk')
 return

 else:
 assistant_speaks("....")

 except :

 assistant_speaks("I don't understand, please try
again.")

Driver Code
if __name__ == "__main__":
 assistant_speaks("What's your name, Human?")
 name ='Human'
 name = get_audio()
 assistant_speaks("Hello, " + name + '.')

 while(1):

 assistant_speaks("What can i do for you?")
 text = get_audio().lower()

 if text == 0:
 continue

 if "exit" in str(text) or "bye" in str(text) or
"sleep" in str(text):
 assistant_speaks("Ok bye, "+ name+'.')
 break

 # calling process text to process the query
 process_text(text)

The following is the output, which shows the conversation between the
program and a user:

PerSon : What's your name, Human?
Speak...
Stop.
You : Perry
PerSon : Hello, Perry.
PerSon : What can i do for you?
Speak...
Stop.
You : search python
PerSon : I don't understand, please try again.

540	 Part III ■ AI Applications

PerSon : What can i do for you?
Speak...
Stop.
You : open Microsoft Word
PerSon : Opening Microsoft Word
PerSon : What can i do for you?
Speak...
Stop.
You : calculate 2 + 3
PerSon : The answer is 5
PerSon : What can i do for you?
Speak...
Stop.
You : search
PerSon : I don't understand, please try again.
PerSon : What can i do for you?
Speak...
Stop.
You : bye
PerSon : Ok bye, Perry.

EXERCISE 10.28

Modify the previous code, add a graphical user interface to the program using libraries
such as PySimpleGUI, run the code, and comment on the results.

10.10.4  Chatbot Resources and Examples
The following is the list of interesting Chatbot resources and example projects:

■■ Build Your Own AI (ARTIFICIAL INTELLIGENCE) Assistant 101

https://www.instructables.com/id/Build-Your-Own-AI-Artificial-

Intelligence-Assistan/

■■ Leon

https://github.com/leon-ai/leon

■■ Wit.Ai

https://wit.ai/

■■ Mycroft – Open Source Voice Assistant (include Raspberry Pi version)

https://mycroft.ai/

https://mycroft-ai.gitbook.io/docs/using-mycroft-ai/get-mycroft/

picroft

https://www.instructables.com/id/Build-Your-Own-AI-Artificial-Intelligence-Assistan/
https://www.instructables.com/id/Build-Your-Own-AI-Artificial-Intelligence-Assistan/
https://github.com/leon-ai/leon
https://mycroft-ai.gitbook.io/docs/using-mycroft-ai/get-mycroft/picroft
https://mycroft-ai.gitbook.io/docs/using-mycroft-ai/get-mycroft/picroft

	 Chapter 10 ■ Natural Language Processing	 541

■■ Open Assistant

https://openassistant.org/

■■ 10+ Top Open source Voice Assistants Projects

https://www.google.com/amp/s/medevel.com/10-open-source-voice-

assistants/amp/

■■ The Top 18 Personal Assistant Open Source Projects

https://awesomeopensource.com/projects/personal-assistant

■■ Healthcare. ai

https://healthcareai-py.readthedocs.io/en/master/

■■ GEEKSFORGEEKS Personal Voice Assistant in Python

https://www.google.com/amp/s/www.geeksforgeeks.org/personal-

voice-assistant-in-python/amp/

■■ Simple AI Chatbot

https://techwithtim.net/tutorials/ai-chatbot/part-1/

■■ How To Convert Your Computer Into JARVIS

https://www.youtube.com/watch?v=fm8MGPKgUPk

https://mega-voice-command.com/

https://jarvis.ai-dot.net/betaRelease/publish.html

■■ MELISSA, A LOVELY VIRTUAL ASSISTANT!

https://www.youtube.com/watch?v=r1yoaq3BcUA

https://github.com/Melissa-AI

10.11  Summary

This chapter covered the topics of natural language processing, which is a
popular research field about developing applications and services that are able
to understand the human language.

NLP typically includes lexical analysis, syntactic analysis, semantic analysis,
disclosure analysis, and pragmatic analysis. The most commonly used NLP
libraries are Natural Language Toolkit (NLTK), SpaCy, Gensim, and TextBlob.

Text summarization summarizes the given long text into shorter text. Text
sentiment analysis analyzes the text, such as customer feedback and social
media comments, to determine whether the user sentiment is positive, nega-
tive, or neutral.

https://www.google.com/amp/s/medevel.com/10-open-source-voice-assistants/amp/
https://www.google.com/amp/s/medevel.com/10-open-source-voice-assistants/amp/
https://awesomeopensource.com/projects/personal-assistant
https://healthcareai-py.readthedocs.io/en/master/
https://www.google.com/amp/s/www.geeksforgeeks.org/personal-voice-assistant-in-python/amp/
https://www.google.com/amp/s/www.geeksforgeeks.org/personal-voice-assistant-in-python/amp/
https://techwithtim.net/tutorials/ai-chatbot/part-1/
https://mega-voice-command.com/
https://jarvis.ai-dot.net/betaRelease/publish.html
https://github.com/Melissa-AI

542	 Part III ■ AI Applications

Text generation generates new text based on the existing texts. Poem gen-
eration generates new poems based on the existing poems. Text to speech is
the process of converting text data into voice data. Speech to text converts the
voice data into text data; this includes voice detection, voice analysis, and voice
recognition. Translation translates one human language to another language.

Optical character recognition detects and recognizes the characters and
words in an image. A QR code is a 2D version of barcode for fast, conve-
nient storing of information.

PDF and DOCX files can be easily converted to each other, as well as merged
together with Python libraries.

Chatbots and question answering applications are commonly used in many
online commercial websites. There are many examples and resources in Python
of chatbot and question answering.

10.12  Chapter Review Questions

Q10.1.	 What is natural language processing (NLP)?

Q10.2.	� Describe the differences between rule-based NLP and statistical
NLP.

Q10.3.	� Explain the concepts of syntactic analysis, semantic analysis, disclo-
sure analysis, and pragmatic analysis in the context of natural lan-
guage processing.

Q10.4.	 What is text summarization?

Q10.5.	 What is text sentiment analysis?

Q10.6.	 What is text generation and poem generation?

Q10.7.	 What is text to speech, and what is speech to text?

Q10.8.	 What is machine translation?

Q10.9.	 What is optical character recognition?

Q10.10.	What is a QR code?

Q10.11.	 What is chatbot, and what is question answering?

C H A P T E R

543

11

C H A P T E R O U T L I N E

11.1 Introduction
11.2 Regression
11.3 Time-Series Analysis
11.4 Predictive Maintenance Analysis
11.5 Anomaly Detection and Fraud Detection
11.6 COVID-19 Data Visualization and Analysis
11.7 KerasClassifier and KerasRegressor
11.8 SQL and NoSQL Databases
11.9 Immutable Database
11.10 Summary
11.11 Chapter Review Questions

Data Analysis
“Data is the new oil.”

—Clive Robert Humby (British mathematician
and entrepreneur in data science)

11.1  Introduction

As Clive Robert Humby said, data is the new oil. Every day, business is
generating enormous amounts of data, whether it is the data from social
media, sales and marketing data from retailers, or data from manufacturers.
Properly analyzing and utilizing the data can tremendously benefit the business.

544	 Part III ■ AI Applications

That is why data analysts and data scientists are among the highest paid
professions. But you don’t have to change your job to get this benefit. As
Andrew Ng (British-born American computer scientist) once recommended,
don’t change your job; just add AI to it. Data is everywhere, data is in every
discipline, and adding AI data analysis ability to your expertise will no doubt
enhance your career prosperity and benefit you financially.

So, how to get started? Data analysis can be divided into three steps: collect-
ing data, analyzing data, and writing a report.

1.	 Collecting data: First is to collect the data, which can be scientific
measurement data or business data. The collected data can be saved in
plain-text files, such as Comma Separated Values (CSV) format, or Microsoft
Excel format. Large data can also be saved in databases. Based on the data
structure, databases can be divided into SQL or NoSQL databases.
Traditional databases are typical Structured Query Language (SQL) data-
bases, such as Oracle and MySQL, where data is saved in the format of
tables, and there are relationships between tables. NoSQL is a relatively
new type of database, such as MongoDB, which has more flexible data
structures, can scale horizontally, handles incredibly fast queries, and is
easy for developers to work with. For more details, see section 11.8.
Data cleaning is also an important part of the data collection, which
involves correcting the wrong data and removing or conditioning incom-
plete data, outlier data, or null data. Many machine learning algorithms
also require data normalization, which means re-scaling the values to
between 0 and 1.

2.	 Analyzing data: After you have the data ready, next is to analyze the data.
A range of techniques can be employed, such as regression, time-series
prediction, anomaly detection, and classification. This is the main focus
of this chapter.

3.	 Writing a report: After analyzing the data, the final step is to write a
report. A good report can summarize the results, share your findings
with others, and enhance your research reputations.

In this chapter, we will walk you through a number of commonly used tech-
niques for data analysis.

11.2  Regression

Regression is one of the most widely used data analysis techniques. We saw
some simple regression examples in Chapter 3. Here we have more examples.
Traditional regression techniques include linear regression, logistic regression,
polynomial regression, and so on. A much more modern approach is to use
machine learning for regression, such as support vector regression, nearest

	 Chapter 11 ■ Data Analysis	 545

neighbors regression, Gaussian process regression (GPR), and random forest
regression. There are also partial least squares regression and principal com-
ponent regression for analyzing the spectral data.

Linear regression can also be divided into simple linear regression (or single
linear regression), multiple linear regression, and multivariate linear regres-
sion. In simple linear regression, there is just one dependent variable (Y) and
one independent variable (X), and X and Y follow a linear relationship, such as
Y = A*X + B. In multiple linear regression, there is one dependent variable (Y),
but there is more than one independent variable (X1, X2, . . . Xn). In multivariate
linear regression, there is more than one dependent variable (Y1, Y2, . . . Yn),
and there is more than one independent variable (X1, X2, . . . Xn).

In Python, you can use the Numpy, Scikit-Learn, Statsmodels, and Scipy
libraries to implement regression.

11.2.1  Linear Regression
Example 11.1 shows how to read the data from a CSV file called data.csv and
then use the Scipy library’s stats.linregress(x, y) function to perform the
linear regression.

EXAMPLE 11.1:  THE LINEAR REGRESSION1.PY PROGRAM

#Example 11.1 Linear Regression
import matplotlib.pyplot as plt
from scipy import stats
import pandas

df = pandas.read_csv('data.csv')
print(df)
x = df['Time']
y = df['Voltage']

slope, intercept, r, p, std_err = stats.linregress(x, y)
print("slope: ", slope)
print("intercept: ", intercept)
print("std_err: ", std_err)
def myfunc(x):
 return slope * x + intercept

mymodel = list(map(myfunc, x))

plt.scatter(x, y,label="data")
plt.plot(x, mymodel, "r",label="fitted line")
plt.xlabel("Time")
plt.ylabel("Voltage")
plt.legend()
plt.show()

546	 Part III ■ AI Applications

The following is the output of the program, which shows the content of the
data.csv file and the linear squares fitting results, the slope, the intercept, and
the standard error:

 Time Voltage
0 0 10
1 1 12
2 2 12
3 3 14
4 4 13
5 5 15
6 6 16
7 7 18
8 8 17
9 9 19

slope: 0.9333333333333333
intercept: 10.399999999999999
std_err: 0.08287754140107488

Figure 11.1 shows the plotting results.

EXERCISE 11.1

Modify the previous code so that it uses a file open dialog to choose the data file, run
the code, and comment on the results. Hint: You can use the Tkinter library to select files
through a file open dialog box, as shown here:

Figure 11.1: The plotting result of the previous example.

	 Chapter 11 ■ Data Analysis	 547

import tkinter as tk
from tkinter import filedialog
root = tk.Tk()
root.withdraw()
file_path = filedialog.askopenfilename()
print(file_path)

11.2.2  Support Vector Regression
As we showed in Chapter 2, you can also use machine learning algorithms
for regression, for example, support vector regression. Example 11.2 shows
how to read the data from a CSV file and then perform the SVR regression.
SVR supports different types of kernels, such as linear, poly, and radial basis
function (RBF).

EXAMPLE 11.2:  THE SVR REGRESSION.PY PROGRAM

#Example 11.2 SVR Regression
import matplotlib.pyplot as plt
from scipy import stats
import pandas

df = pandas.read_csv('data.csv')
print(df)
x1 = df['Time'].values.reshape(-1,1)
y1 = df['Voltage'].values.reshape(-1,1)
print(x1)
print(y1)

from sklearn.svm import SVR
lr = SVR(kernel = 'linear', C =1000.0)
pr = SVR(kernel = 'poly', C =1000.0, degree = 2)
rr = SVR(kernel = 'rbf', C =1000.0, gamma = 0.85)
lr.fit(x1,y1)
pr.fit(x1,y1)
rr.fit(x1,y1)

plt.figure()
plt.scatter(x1, y1, color='r', label='Data')
plt.plot(x1, lr.predict(x1),label='linear SVR')
plt.plot(x1, pr.predict(x1),label='poly SVR')
plt.plot(x1, rr.predict(x1),label='rbf SVR')
plt.legend()
plt.show()

Figure 11.2 shows the output of the previous program.

548	 Part III ■ AI Applications

EXERCISE 11.2

Modify the previous code, add linear regression to the code so that it can compare SVR
regression with linear regression, run the code, and comment on the results.

For more details, see the following:

https://scikit-learn.org/stable/modules/generated/sklearn.svm

.SVR.html

Besides local CSV files, you can also read CSV files over the Internet, as long
as you know the full uniform resource locator (URL). Example 11.3 shows how
to read the CSV data from a URL and then perform the linear regression.

EXAMPLE 11.3:  THE LINEAR REGRESSION 2.PY PROGRAM

#Example 11.3 Linear Regression
import matplotlib.pyplot as plt
from scipy import stats
import pandas as pd

#df = pd.read_csv('data.csv')
#wine_names = ['Class', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity
of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid
phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315',
'Proline']
#df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-
databases/wine/wine.data', names = wine_names)

Figure 11.2: The differences of the linear, poly, and RBF kernels in SVR regression.

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html

	 Chapter 11 ■ Data Analysis	 549

#df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-
databases/adult/adult.data')
#df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-
databases/car/car.data', header=None)
df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-
learning-databases/00291/airfoil_self_noise.dat', sep="\t",
names = ['Frequency','Angle of attack','Chord length','Free-stream
velocity','Suction/side','Scaled/sound'])

print(df)
#print(df.head())
#print(df.describe())

x = df['Frequency']
y = df['Scaled/sound']

slope, intercept, r, p, std_err = stats.linregress(x, y)
print("slope: ", slope)
print("intercept: ", intercept)
print("std_err: ", std_err)
def myfunc(x):
 return slope * x + intercept

mymodel = list(map(myfunc, x))

plt.scatter(x, y, label='original data')
plt.plot(x, mymodel, "r", label='fitted line')
plt.xlabel("Time")
plt.ylabel("Voltage")
plt.legend()
plt.show()

The following is the output of the program, which shows the content of the
remote CSV file and the linear squares fitting results, the slope, the intercept,
and the standard error:

 Frequency Angle of attack ... Suction/side Scaled/sound
0 800 0.0 ... 0.002663 126.201
1 1000 0.0 ... 0.002663 125.201
2 1250 0.0 ... 0.002663 125.951
3 1600 0.0 ... 0.002663 127.591
4 2000 0.0 ... 0.002663 127.461
...
1498 2500 15.6 ... 0.052849 110.264
1499 3150 15.6 ... 0.052849 109.254
1500 4000 15.6 ... 0.052849 106.604
1501 5000 15.6 ... 0.052849 106.224

https://archive.ics.uci.edu/ml/machine-learning-databases/00291/airfoil_self_noise.dat
https://archive.ics.uci.edu/ml/machine-learning-databases/00291/airfoil_self_noise.dat

550	 Part III ■ AI Applications

1502 6300 15.6 ... 0.052849 104.204

[1503 rows x 6 columns]

slope: -0.000854979012525303
intercept: 127.30373759248681
std_err: 5.199230158034171e-05

Figure 11.3 shows the result.

EXERCISE 11.3

Modify the previous code, choose a different dataset from the UCI website (https://
archive.ics.uci.edu/ml/index.php), run the code, and comment on the
results.

The Pandas library also allows you to read table data from a web page.
Example 11.4 shows how to read the table data from a website. You will need
to install the html5lib library by typing the following:

pip install html5lib

Figure 11.3: The plotting result of the previous example.

https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php

	 Chapter 11 ■ Data Analysis	 551

EXAMPLE 11.4:  THE HTML5LIB1.PY PROGRAM

#Example 11.4 - html5lib library
import matplotlib.pyplot as plt
from scipy import stats
import pandas as pd
import numpy as np

#pip install html5lib
df = pd.read_html('https://en.wikipedia.org/wiki/World_population')
print(f'Total tables: {len(df)}')
df = pd.read_html('https://en.wikipedia.org/wiki/World_population',
match='Global annual population growth')
df =df[0]

x = df['Year'].astype('float')
y = df['Population'].astype('float')

plt.scatter(x, y)
plt.show()

Figure 11.4 shows the result.

BeautifulSoup is another library that allows you to read table data from a
web page. Example 11.5 shows how to read the table data from a Wikipedia

Figure 11.4: The plotting result of the previous example.

552	 Part III ■ AI Applications

website. You will need to install the beautifulsoup4 library and the requests
library by typing the following:

pip install requests beautifulsoup4

EXAMPLE 11.5:  THE BeautifulSoup1.PY PROGRAM

#Example 11.5 Wiki table scrap with Beautiful Soup
#pip install requests beautifulsoup4
from bs4 import BeautifulSoup
import requests
import csv

#url = "https://en.wikipedia.org/wiki/List_of_countries_by_GDP_
(nominal)"
url = "https://en.wikipedia.org/wiki/World_population"
soup = BeautifulSoup(requests.get(url).text, 'html.parser')

tables = soup.find_all('table', class_='sortable')
print(len(tables))

for table in tables:
 ths = table.find_all('th')
 headings = [th.text.strip() for th in ths]
 #print(headings)

table = tables[4]
population = []
for tr in table.find_all('tr'):
 tds = tr.find_all('td')
 #print(tds)
 if not tds:
 continue
 population.append(tds[0].text.replace('\n', ' ').strip())
print(population)

Example 11.6 shows how to get finance data of a list of companies from the
Yahoo Finance website.

EXAMPLE 11.6:  THE BeautifulSoup2.PY PROGRAM

#Example 11.6 Web scrap Finance with Beautiful Soup
#pip install requests beautifulsoup4
import pandas as pd
from bs4 import BeautifulSoup
import requests

def get_stock(t):
 url = f'http://finance.yahoo.com/quote/{t}?p={t}'

	 Chapter 11 ■ Data Analysis	 553

 res = requests.get(url)
 soup = (BeautifulSoup(res.content, 'lxml'))
 table = soup.find_all('table')[0]
 labels, data = pd.read_html(str(table))[0].values.T
 return pd.Series(data, labels, name = t)

stock_name = ["AAPL","AMZN","GOOG","TSLA"]
df = pd.concat(map(get_stock, stock_name), axis=1)
print(df.T)

Example 11.7 shows an example of how to read all the CSV data files from a
folder and then perform the linear regression on all the data files and plot all
the results.

EXAMPLE 11.7:  THE FIT1.PY PROGRAM

Example 11.7 Linear Regression from a folder
import matplotlib.pyplot as plt
from scipy import stats
import pandas as pd

from os import listdir
from os.path import isfile, join

def myFit(file):
 df = pd.read_csv(file)
 #print(df.columns)
 x = df[df.columns[0]]
 y = df[df.columns[1]]

 slope, intercept, r, p, std_err = stats.linregress(x, y)
 print(file)
 print("slope: ", slope)
 print("intercept: ", intercept)
 print("std_err: ", std_err)
 def myfunc(x):
 return slope * x + intercept
 mymodel = list(map(myfunc, x))
 plt.figure()
 plt.scatter(x, y, label='original data')
 plt.plot(x, mymodel, "r", label='fitted line')
 plt.title(file)
 plt.xlabel(df.columns[0])
 plt.ylabel(df.columns[1])
 plt.legend()

mypath = "./datasets"
files = [join(mypath, f) for f in listdir(mypath) if f.split(".")[-1]
=="csv"]

554	 Part III ■ AI Applications

#print(files)

for file in files:
 myFit(file)
plt.show()

Another way of getting all the files from a folder is to use the Glob library.

import glob
mypath = "./datasets"
files = glob.glob(join(mypath,"*.csv"))

The following is the output of the program, which shows the least squares
fitting of three CSV files in the folder:

./datasets\data0.csv
slope: 0.9030303030303031
intercept: 20.636363636363637
std_err: 0.08549536957373294
Index(['Time', 'Voltage'], dtype='object')
./datasets\data1.csv
slope: 0.9333333333333333
intercept: 10.399999999999999
std_err: 0.08287754140107488
Index(['Time', 'Voltage'], dtype='object')
./datasets\data2.csv
slope: 0.9515151515151515
intercept: 30.21818181818182
std_err: 0.1087536875450082

Figure 11.5 shows the plotting results, which show the data and fitted lines
of three different data files.

EXERCISE 11.4

Modify the previous code, use the Glob library to get all the data file in a folder, run the
code, and comment on the results.

11.2.3  Partial Least Squares Regression
Partial least squares (PLS) regression is a technique that is widely used to ana-
lyze spectroscopy data. Instead of performing the regression on the original
raw data, it works on a smaller set of uncorrelated components and performs
least squares regression on these components. PLS is useful especially in
the case where the number of independent variables is significantly larger

	 Chapter 11 ■ Data Analysis	 555

than the number of dependent variables. PLS regression is primarily used in
the chemical, drug, food, and plastic industries. A common application is to
study the relationship between spectral measurement (NIR, IR, UV) data and
chemical composition in the sample, called chemometrics.

The following is the NIRPY Research website, which has many interesting
articles on near infrared (NIR) spectroscopy analysis by using various tech-
niques, such as PLS regression.

https://nirpyresearch.com/

The following is the corresponding GitHub site for NIRPY Research.

https://github.com/nevernervous78/nirpyresearch

Example 11.8 shows how to use the Scikit-Learn library to perform PLS
regression on different NIR spectral data. It is modified based on the Python
code provided by the NIRPY research website. We will show the example code

Figure 11.5: The plotting result of the previous example, which shows the data and fitted lines
of three different data files.

https://nirpyresearch.com/
https://github.com/nevernervous78/nirpyresearch

556	 Part III ■ AI Applications

section by section; the whole code is available in an IPython Notebook file called
Python_PLS.ipynb.

Example 11.8a shows how to import all the libraries.

EXAMPLE 11.8A:  THE PYTHON_PLS.IPYNB PROGRAM (PART 1)

#Example 11.8 Partial Least Squares
from sys import stdout
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.signal import savgol_filter
from sklearn.cross_decomposition import PLSRegression
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import mean_squared_error, r2_score

The following section of code shows how to get the NIR spectral data from
the NIRPY GitHub site and plot out the data. In this case, we get the milk powder
spectra. Please note different spectra have different wavelength ranges, so
please check the NIRPY website and choose the right range. See Example 11.8b.

EXAMPLE 11.8B:  THE PYTHON_PLS.IPYNB PROGRAM (PART 2)

data = pd.read_csv('https://raw.githubusercontent.com/nevernervous78/
nirpyresearch/master/data/milk-powder.csv')
#data = pd.read_csv('https://raw.githubusercontent.com/
nevernervous78/nirpyresearch/master/data/milk.csv')
#data = pd.read_csv('https://raw.githubusercontent.com/
nevernervous78/nirpyresearch/master/data/plums.csv')

y = pd.DataFrame.as_matrix(data)[:,1].astype('uint8')
X = pd.DataFrame.as_matrix(data)[:,2:]
wl = np.linspace(350,2500, num=X.shape[1], endpoint=True)
wl = np.arange(1100,2300,2) # wavelengths

import matplotlib.pyplot as plt
plt.plot(wl,X.T)
plt.ylabel('Absorption')
plt.title('NIR Spectra')
plt.figure()
plt.plot(y)
plt.title('Milk %')
plt.ylabel('Measured Values')
plt.show()

Figure 11.6 shows the corresponding outputs, which includes the spectra of
milk powder (top) and the milk concentration levels (bottom).

	 Chapter 11 ■ Data Analysis	 557

Example 11.8c shows how to calculate the second derivative of the NIR
spectral and how to plot them out.

EXAMPLE 11.8C:  THE PYTHON_PLS.IPYNB PROGRAM (PART 3)

Calculate second derivative
X2 = savgol_filter(X, 17, polyorder = 2,deriv=2)
Plot second derivative
plt.figure(figsize=(8,4.5))
with plt.style.context(('ggplot')):
 plt.plot(X2.T)
 plt.xlabel('Wavelength (nm)')
 plt.ylabel('D2 Absorbance')
 plt.show()

Figure 11.7 shows the corresponding plot output of the second derivative of
the milk powder spectral data.

Figure 11.6: The spectra of milk powder (top) and the milk concentration levels (bottom).

558	 Part III ■ AI Applications

Example 11.8d shows how to perform the partial least squares regression on
milk powder spectral data and how to find out the optimum number of compo-
nents that give the lowest mean squared error (MSE). Once it finds the optimum
number of components, it then plots the PLS regression results.

EXAMPLE 11.8D:  THE PYTHON_PLS.IPYNB PROGRAM (PART 4)

def optimise_pls_cv(X, y, n_comp, plot_components=True):
 '''Run PLS including a variable number of components, up to
n_comp,
 and calculate MSE '''
 mse = []
 component = np.arange(1, n_comp)
 for i in component:
 pls = PLSRegression(n_components=i)
 # Cross-validation
 y_cv = cross_val_predict(pls, X, y, cv=10)
 mse.append(mean_squared_error(y, y_cv))
 comp = 100*(i+1)/40
 # Trick to update status on the same line
 stdout.write("\r%d%% completed" % comp)
 stdout.flush()
 stdout.write("\n")

Figure 11.7: The second derivative of the milk powder spectral data.

	 Chapter 11 ■ Data Analysis	 559

 # Calculate and print the position of minimum in MSE
 msemin = np.argmin(mse)
 print("Suggested number of components: ", msemin+1)
 stdout.write("\n")
 if plot_components is True:
 with plt.style.context(('ggplot')):
 plt.plot(component, np.array(mse), '-v', color = 'blue',
mfc='blue')
 plt.plot(component[msemin], np.array(mse)[msemin], 'P',
ms=10, mfc='red')
 plt.xlabel('Number of PLS components')
 plt.ylabel('MSE')
 plt.title('PLS')
 plt.xlim(left=-1)
 plt.show()
 # Define PLS object with optimal number of components
 pls_opt = PLSRegression(n_components=msemin+1)
 # Fir to the entire dataset
 pls_opt.fit(X, y)
 y_c = pls_opt.predict(X)
 # Cross-validation
 y_cv = cross_val_predict(pls_opt, X, y, cv=10)
 # Calculate scores for calibration and cross-validation
 score_c = r2_score(y, y_c)
 score_cv = r2_score(y, y_cv)
 # Calculate mean squared error for calibration and cross
validation
 mse_c = mean_squared_error(y, y_c)
 mse_cv = mean_squared_error(y, y_cv)
 print('R2 calib: %5.3f' % score_c)
 print('R2 CV: %5.3f' % score_cv)
 print('MSE calib: %5.3f' % mse_c)
 print('MSE CV: %5.3f' % mse_cv)
 # Plot regression and figures of merit
 rangey = max(y) - min(y)
 rangex = max(y_c) - min(y_c)
 # Fit a line to the CV vs response
 z = np.polyfit(y, y_c, 1)
 with plt.style.context(('ggplot')):
 fig, ax = plt.subplots(figsize=(9, 5))
 ax.scatter(y_c, y, c='red', edgecolors='k')
 #Plot the best fit line
 ax.plot(np.polyval(z,y), y, c='blue', linewidth=1)
 #Plot the ideal 1:1 line
 ax.plot(y, y, color='green', linewidth=1)
 plt.title('R^{2} (CV): '+str(score_cv))
 plt.xlabel('Predicted $^{\circ}$Brix')
 plt.ylabel('Measured $^{\circ}$Brix')
 plt.show()
 return
optimise_pls_cv(X2,y, 40, plot_components=True)

560	 Part III ■ AI Applications

Figure 11.8 shows the number of PLS components against the mean squared
error (MSE), and it clearly indicates that the best number of components is 13.

Figure 11.9 shows the corresponding PLS regression plotting result of the
milk powder spectral data, with real milk powder concentration levels against
predicted concentration levels. The results show that PLS regression can effec-
tively group the data points according to different milk powder concentration
levels.

Example 11.8e shows how to perform the partial least squares regression
on milk powder spectral data, with five components, and then plots the PLS
regression results.

Figure 11.8: The number of PLS components against the MSE.

	 Chapter 11 ■ Data Analysis	 561

EXAMPLE 11.8E:  THE PYTHON_PLS.IPYNB PROGRAM (PART 5)

Cross validation ===
from sklearn.cross_decomposition import PLSRegression
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import cross_val_predict
Define PLS object
pls = PLSRegression(n_components=5)
Fit
pls.fit(X, y)
Cross-validation
y_cv = cross_val_predict(pls, X, y, cv=10)
Calculate scores
score = r2_score(y, y_cv)
mse = mean_squared_error(y, y_cv)
print(score)
print(mse)

Figure 11.9: The PLS regression plotting result of the milk powder spectral data.

562	 Part III ■ AI Applications

The following is the output, which shows about 98 percent for accuracy and
0.2 for MSE.

0.9799675085710466
0.2003249142895337

Related to PLS regression, there are also principal component analysis (PCA)
and, a step further, principal component regression (PCR). Both are also widely
used in the qualitative analysis of NIR data.

Figure 11.10 shows another article from the NIRPY Research website on the
milk powder spectral data classification with PCA. As you can see, the data
points have also been grouped according to different levels of milk powder
concentration levels.

Figure 11.10: The milk powder spectral data classification with PCA.
(Source: https://nirpyresearch.com/classification-nir-spectra-principal-
component-analysis-python/)

https://nirpyresearch.com/classification-nir-spectra-principal-component-analysis-python/
https://nirpyresearch.com/classification-nir-spectra-principal-component-analysis-python/

	 Chapter 11 ■ Data Analysis	 563

EXERCISE 11.5

From a web browser, log in to your Google Colab account, upload the previous IPython
file, run the code, and comment on the results.

11.3  Time-Series Analysis

Time-series data is a collection of measurement values over a period of time.
It is one of the most commonly available types of data in our daily life. For
example, stock market share prices, time-dependent sensor measurement data,
global temperature and CO2 level changes, seasonal customer numbers and
shopping patterns, and so on, are all time-series data.

11.3.1  Stock Price Data

You can get the finance stock price data from the Yahoo website, and on the
Historical Data tab, you can choose the period of the data. Click the Apply
button to apply the changes and click the Download button to download the
data as a CSV file.

https://finance.yahoo.com/quote/GOOG/history?p=GOOG

Example 11.9 shows how to get the stock price data of a particular company
from the Yahoo or Google website, calculate the 20-day rolling average and
the 100-day rolling average, and plot the data. It uses the pandas_datareader
library to read the data from the website.

EXAMPLE 11.9:  THE STOCK1.PY PROGRAM

#Example 11.9 Get Stock Data from Yahoo
from pandas_datareader import data
import matplotlib.pyplot as plt
import pandas as pd

symbol = 'MSFT' #'AMZN','AAPL', 'GOOGL'
data_source='yahoo' #'google'
start_date = '2016-01-01'
end_date = '2021-01-01'

df = data.DataReader(symbol, data_source, start_date, end_date)
#print(df)
close = df['Close']
#print(close)
#print(close.head(10))
#print(close.describe())

564	 Part III ■ AI Applications

Calculate the 20 and 100 days moving averages
short_rolling = close.rolling(window=20).mean()
long_rolling = close.rolling(window=100).mean()

from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters()

Calculate the 'buy' and 'sell' signals and positions
df['Signal'] = 0.0
df['Signal'] = np.where(short_rolling > long_rolling, 1.0, 0.0)
df['Position'] = df['Signal'].diff()

Plot the data
fig, ax = plt.subplots(figsize=(16,9))
ax.plot(close.index, close, label=symbol)
ax.plot(short_rolling.index, short_rolling, label='20 days rolling')
ax.plot(long_rolling.index, long_rolling, label='100 days rolling')

plot 'buy' signals
plt.plot(df[df['Position'] == 1].index,
 short_rolling[df['Position'] == 1],
 '^', markersize = 15, color = 'g', label = 'buy')

plot 'sell' signals
plt.plot(df[df['Position'] == -1].index,
 short_rolling[df['Position'] == -1],
 'v', markersize = 15, color = 'r', label = 'sell')
ax.set_xlabel('Date')
ax.set_ylabel('Closing price ($)')
ax.legend()
plt.show()

Figure 11.11 shows the output of the previous example, which shows the
MSFT (Microsoft) stock price from 2010 to 2020, as well as the 20-day rolling
average and the 100-day rolling average with a number of Buy and Sell signals.
The Buy signals are generated when the 20-day rolling average overtakes the
100-day rolling average. The Sell signals are generated when the 20-day rolling
average undertakes the 100-day rolling average.

The results show that the rolling average can effectively smooth the data. The
20-day rolling average (short rolling average) is much closer to the original data
than the 100-day rolling average (long rolling average). The crossover points
between the short rolling average and the long rolling average are often used
as buying and selling points in algorithm trading. For example, when the short
rolling average starts to become lower than the long rolling average, it is the
signal to sell. When the short rolling average starts to overtake the long rolling
average, it is the signal to buy.

	 Chapter 11 ■ Data Analysis	 565

EXERCISE 11.6

Modify the previous code, try different stocks from Yahoo as well as from Google, run
the code, and comment on the results.

For more information about the Python algorithmic trading, check the fol-
lowing:

https://www.datacamp.com/community/tutorials/finance-python-trading

https://www.freecodecamp.org/news/algorithmic-trading-in-python/

11.3.2  Stock Price Prediction
The following example shows how to make predictions for stock prices. It is
modified based on the following:

https://machinelearningmastery.com/time-series-prediction-lstm-

recurrent-neural-networks-python-keras/

The program first reads the stock price data from a CSV file and then splits
the data into X and Y values, trains it on a simple LSTM model, and makes a
prediction. It uses the first 90 percent of the data as training data and uses the
other 10 percent of the data as test data. See Example 11.10.

Figure 11.11: The MSFT stock price from 2016 to 2020, as well as the 20-day rolling average and
100-day rolling average with a number of Buy and Sell signals.

https://www.datacamp.com/community/tutorials/finance-python-trading
https://www.freecodecamp.org/news/algorithmic-trading-in-python/
https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/

566	 Part III ■ AI Applications

EXAMPLE 11.10:  THE STOCK2.PY PROGRAM

Example 11.10 Stock Prediction with LSTM
Modified from
https://machinelearningmastery.com/time-series-prediction-lstm-
recurrent-neural-networks-python-keras/
import numpy
import matplotlib.pyplot as plt
from pandas import read_csv
import math
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error

def create_dataset(dataset, xback=1):
 dataX, dataY = [], []
 for i in range(len(dataset)-xback-1):
 a = dataset[i:(i+xback), 0]
 dataX.append(a)
 dataY.append(dataset[i + xback, 0])
 return numpy.array(dataX), numpy.array(dataY)
def getData(file, col):
 # load the dataset
 dataframe = read_csv(file,usecols=[col], engine='python')
 dataset = dataframe.values
 dataset = dataset.astype('float32')
 # normalize the dataset
 dataset = scaler.fit_transform(dataset)
 # split into train and test sets
 train_size = int(len(dataset) * ratio)
 test_size = len(dataset) - train_size
 train, test = dataset[0:train_size,:], dataset[train_size:len
(dataset),:]

 trainX, trainY = create_dataset(train, xback)
 testX, testY = create_dataset(test, xback)
 # reshape input to be [samples, time steps, features]
 trainX = numpy.reshape(trainX, (trainX.shape[0], trainX.shape[1],
1))
 testX = numpy.reshape(testX, (testX.shape[0], testX.shape[1], 1))
 return trainX, trainY,testX, testY, dataset

def train(trainX, trainY,testX, testY):
 # create and fit the LSTM network
 model = Sequential()
 model.add(LSTM(4, input_shape=(xback, 1)))

	 Chapter 11 ■ Data Analysis	 567

 model.add(Dense(1))
 model.compile(loss='mean_squared_error', optimizer='adam')
 model.fit(trainX, trainY, epochs=10, batch_size=1, verbose=2)
 return model

def predict(model, trainX, trainY,testX, testY, dataset):
 # make predictions
 trainPredict = model.predict(trainX)
 testPredict = model.predict(testX)
 # invert predictions
 trainPredict = scaler.inverse_transform(trainPredict)
 trainY = scaler.inverse_transform([trainY])
 testPredict = scaler.inverse_transform(testPredict)
 testY = scaler.inverse_transform([testY])
 # calculate root mean squared error
 trainScore = math.sqrt(mean_squared_error(trainY[0],
trainPredict[:,0]))
 print('Train Score: %.2f RMSE' % (trainScore))
 testScore = math.sqrt(mean_squared_error(testY[0],
testPredict[:,0]))
 print('Test Score: %.2f RMSE' % (testScore))
 # shift train predictions for plotting
 trainPredictPlot = numpy.empty_like(dataset)
 trainPredictPlot[:, :] = numpy.nan
 trainPredictPlot[xback:len(trainPredict)+xback, :] = trainPredict
 # shift test predictions for plotting
 testPredictPlot = numpy.empty_like(dataset)
 testPredictPlot[:, :] = numpy.nan
 testPredictPlot[len(trainPredict)+(xback*2)+1:len(dataset)-1, :]
= testPredict
 # plot baseline and predictions
 plt.plot(scaler.inverse_transform(dataset),'o',label='origial
data')
 plt.plot(trainPredictPlot,label='predict train')
 plt.plot(testPredictPlot,label='predict test')
 plt.legend()
 plt.show()

reshape into X=5 and Y=5+1
xback = 5
#numpy.random.seed(7)
scaler = MinMaxScaler(feature_range=(0, 1))
ratio = 0.9
file = 'AAPL.csv'
col = 4

trainX, trainY,testX, testY, dataset = getData(file,col)
model = train(trainX, trainY,testX, testY)
predict(model, trainX, trainY,testX, testY, dataset)

568	 Part III ■ AI Applications

The following is the output of the program:

Epoch 1/10
1127/1127 - 1s - loss: 0.0050
Epoch 2/10
1127/1127 - 1s - loss: 1.4707e-04
Epoch 3/10
1127/1127 - 1s - loss: 1.4058e-04
Epoch 4/10
1127/1127 - 1s - loss: 1.2915e-04
Epoch 5/10
1127/1127 - 1s - loss: 1.2593e-04
Epoch 6/10
1127/1127 - 1s - loss: 1.1901e-04
Epoch 7/10
1127/1127 - 1s - loss: 1.2254e-04
Epoch 8/10
1127/1127 - 1s - loss: 1.2025e-04
Epoch 9/10
1127/1127 - 3s - loss: 1.1931e-04
Epoch 10/10
1127/1127 - 1s - loss: 1.0878e-04
Train Score: 1.06 RMSE
Test Score: 4.79 RMSE

Figure 11.12 shows the plotting results of the previous example. The right
side with 10 percent of the data shows the prediction data, based on the left’s 90
percent training data. The results show that the prediction matches reasonably
with the real stock price data.

Figure 11.12: The plotting result of the previous example.

	 Chapter 11 ■ Data Analysis	 569

EXERCISE 11.7

Modify the previous code, add more layers to the LSTM mode, run the code, and com-
ment on the results.

Streamlit Stock Price Web App

Example 11.11 shows a really cool example of the stock price web app by using
the Streamlit library.

EXAMPLE 11.11:  THE GOOGLE-APP.PY PROGRAM

Example 11.11
import yfinance as yf
import streamlit as st
from datetime import datetime
from datetime import date
import datetime as dt
import pandas as pd
import numpy as np
import altair as alt

st.write("""
Simple Stock Price App

Shown are the stock **closing price** and ***volume*** of a Company!

""")

@st.cache
def load_data():
 url = 'https://en.wikipedia.org/wiki/List_of_S%26P_500_companies'
 html = pd.read_html(url, header = 0)
 df = html[0]
 return df

@st.cache
def load_ftse100data():
 url = 'https://en.wikipedia.org/wiki/FTSE_100_Index'
 html = pd.read_html(url, header = 0)
 df = html[3]
 return df

start = date.today()-dt.timedelta(days=365)
st.sidebar.markdown("# Start and End Date:")
w1 = st.sidebar.date_input("Start", start, min_value=date(1970, 1, 1))
#st.write("Value 1:", w1)

570	 Part III ■ AI Applications

w2 = st.sidebar.date_input("End", date.today(), min_value=date(1970,
1, 1))
#st.write("Value 1:", w2)

tickerSymbol = 'GOOGL'
name = 'Google'

option = st.sidebar.selectbox(
 'Select a Stock Market:',
 ["S&P 500","FTSE 100"], index=0)
st.sidebar.write('You selected:', option)
if option == "S&P 500":
 df = load_data()
 #print(df)
 #coms = df.groupby('EPIC')

 #coms = df['Symbol'].unique()
 #names = df['Security'].unique()
 coms = df['Symbol']
 names = df['Security']
 #print(coms)

 # Sidebar - Sector selection
 #selected_scoms = st.sidebar.multiselect('Companies', coms , coms
)

 option1 = st.sidebar.selectbox(
 'Select a Company:',
 coms, index=0)
 #st.sidebar.write('You selected:', option1)
 i=[i for i, j in enumerate(coms) if j == option1]
 #i = np.where(coms == option1)
 name = names[i]
 #print(i)
 #print(name)
 tickerSymbol = option1
 st.sidebar.write(option1)

elif option == "FTSE 100":
 df = load_ftse100data()
 #print(df)
 #coms = df.groupby('EPIC')

 coms = df['EPIC']
 names = df['Company']
 #print(coms)

	 Chapter 11 ■ Data Analysis	 571

 # Sidebar - Sector selection
 #selected_scoms = st.sidebar.multiselect('Companies', coms , coms
)

 option2 = st.sidebar.selectbox(
 'Select a Company:',
 coms, index=0)
 #st.sidebar.write('You selected:', option2)
 i=[i for i, j in enumerate(coms) if j == option2]
 #i = np.where(coms == option2)
 name = names[i]
 tickerSymbol = option2
 st.sidebar.write(option2)

https://towardsdatascience.com/how-to-get-stock-data-using-python-
c0de1df17e75
#define the ticker symbol
#tickerSymbol = 'GOOGL'
#get data on this ticker
tickerData = yf.Ticker(tickerSymbol)
#get the historical prices for this ticker
tickerDf = tickerData.history(period='1d', start=w1, end=w2)
Open High Low Close Volume Dividends
Stock Splits

st.write(name)
st.write("""
Closing Price
""")
if (len(tickerDf)>1):
 st.line_chart(tickerDf.Close)
 st.write("Percentage Change : " +str(int((tickerDf.Close[-1] -
tickerDf.Close[0])/tickerDf.Close[0]*1000)/10.0) + "%")
else:
 st.write("Data not available...")
st.write("""
Volume Price
""")
if (len(tickerDf)>1):
 st.line_chart(tickerDf.Volume)
else:
 st.write("Data not available...")

toplist = []
if (st.button("Top Performers")):
 #for i in coms:
 for i in range(len(coms)):

572	 Part III ■ AI Applications

 tickerData = yf.Ticker(coms[i])
 #get the historical prices for this ticker
 tickerDf = tickerData.history(period='1d', start=w1, end=w2)
 print(len(tickerDf))
 if (len(tickerDf)<1):
 continue
 percentChange = int((tickerDf.Close[-1] - tickerDf.Close[0])/
tickerDf.Close[0]*1000)/10.0
 name = names[i]
 toplist.append([coms[i],name,percentChange])
 print(coms[i])
 print(name)
 print(percentChange)

 results = sorted(toplist,key=lambda l:l[2], reverse=True)
 st.write(results[0:19])
 #https://docs.streamlit.io/en/stable/api.html
 #chart_data = pd.DataFrame(
 # np.random.randn(50, 3),
 # columns=["a", "b", "c"])
 #st.bar_chart(chart_data)

 #https://discuss.streamlit.io/t/sort-the-bar-chart-in-descending-
order/1037/2
 #import streamlit as st
 #import pandas as pd
 #import altair as alt

 x = [x[0] for x in results[0:19]]
 print(x)
 y = [x[1] for x in results[0:19]]
 print(y)
 z = [x[2] for x in results[0:19]]
 print(z)
 data = pd.DataFrame({
 'Company Symbol': x,
 'Company Name': y,
 'Percentage Change': z,
 })

 st.write(data)
 st.write(alt.Chart(data).mark_bar().encode(
 x=alt.X('Company Symbol', sort=None),
 y='Percentage Change',
))

To run the program, just type the following:

streamlit run google-app.py

	 Chapter 11 ■ Data Analysis	 573

Figure 11.13 is the web page output of the previous program, from which
you can select the start and end dates of the stock price, the stock market index
of S&P 500 or FTSE 100, and a constituent stock of the index.

EXERCISE 11.8

Modify the previous code so that it can display the maximum and minimum stock
values of the selected company, run the code, and comment on the results.

11.3.4  Seasonal Trend Analysis
Seasonal-trend decomposition using LOESS, or STL, is a versatile and robust
mathematical algorithm for decomposing time series. STL was developed by
Cleveland, McRae, and Terpenning in 1990. STL can decompose a time series
into three components: trend, seasonal, and residual. STL uses locally estimated
scatterplot smoothing (LOESS) to extract smooth estimates of the three compo-
nents. There are three key input parameters for STL.

■■ Season: The length of the seasonal smoother. Must be odd.

■■ Trend: The length of the trend smoother, usually around 150 percent of
the season. Must be odd and larger than the season.

■■ Low_pass: The length of the low-pass estimation window, usually the
smallest, odd number larger than the periodicity of the data.

Figure 11.13: The web page output of the Streamlit stock price web app example.

574	 Part III ■ AI Applications

The easiest way to use STL is through the Statsmodels library, as we saw in
Chapter 3. You will need to install it first.

pip install statsmodels

Example 11.12 shows a simple example of how to use STL to decompose the
global CO2 yearly data into trend and seasons. In this code, it first retrieves the
global CO2 data from the NOAA Earth System Research Laboratories (ESRL)
website as a CSV file format. It then uses STL to decompose it into Trend,
Season, and Residual components. Finally, it also shows how to predict the
future 24 months of data by using the ARIMA model.

EXAMPLE 11.12:  THE STL1.PY PROGRAM

import pandas as pd
#Global CO2 data
df = pd.read_csv('https://www.esrl.noaa.gov/gmd/webdata/ccgg/trends/
co2/co2_mm_gl.csv', comment='#')

print(df.head())
dl = df['average'].values.tolist()
df = pd.Series(dl, index=pd.date_range('1-1-1980', periods=len(df),
freq='M'), name = 'CO2')
print(df.head())
df.describe()

from statsmodels.tsa.seasonal import STL
stl = STL(df)
res = stl.fit()
fig = res.plot()
fig.show()

#Predition ==
from statsmodels.tsa.forecasting.stl import STLForecast
from statsmodels.tsa.arima.model import ARIMA
import matplotlib.pyplot as plt

data = df
stlf = STLForecast(data , ARIMA, model_kwargs={"order": (2, 1, 0)})
res = stlf.fit()

forecast = res.forecast(24)
plt.figure()
plt.plot(data)
plt.plot(forecast)
plt.show()

	 Chapter 11 ■ Data Analysis	 575

The following is the text output of the program. It first shows the first five
rows of the global CO2 data since January 1980. It then shows the first five rows
of the data serials for STL analysis.

 year month decimal average trend
0 1980 1 1980.042 338.56 337.93
1 1980 2 1980.125 339.27 338.22
2 1980 3 1980.208 339.60 338.25
3 1980 4 1980.292 340.00 338.38
4 1980 5 1980.375 340.43 338.91
1980-01-31 338.56
1980-02-29 339.27
1980-03-31 339.60
1980-04-30 340.00
1980-05-31 340.43

Figure 11.14 shows the output of the program, which shows the original CO2
data and the Trend, Season, and Residual components. The Trend data shows a
steady increase of CO2, and the Season data shows the up and down oscillation
throughout the year. It tends to have higher CO2 during the winter and lower
CO2 during the summer.

Figure 11.14: The original CO2 data and the Trend, Season, and Residual components.

576	 Part III ■ AI Applications

Figure 11.15 shows the original CO2 data and the prediction. The prediction
clearly follows the trend and seasonal oscillations.

EXERCISE 11.9

Modify the previous code, and try a different dataset from NOAA website; see the fol-
lowing links for trends in CH4, N2O, and SF6, run the code, and comment on the results:

https://gml.noaa.gov/ccgg/trends_ch4/
https://gml.noaa.gov/ccgg/trends_n2o/
https://gml.noaa.gov/ccgg/trends_sf6/

11.3.5  Sound Analysis
Sound is another type of time-series data that has attracted many research
interests. The types of sound that have been studied include natural environ-
mental sounds, respiratory sounds, heartbeat sounds, ultrasound, and so on.
With sound analysis you can identify the activities, such as bird chirping, dog
barking, or human activities, meaning a type of human activity recognition
(HAR). In the industry, sound has long been used for gas pipe or water pipe
leakage detection.

Sound analysis in AI is typically a classification problem. There are two
common approaches. One is working directly on the sound numerical data and
using recurrent neural networks to train and to classify the sounds. Another
approach is to convert the sound data into 2D images, through spectrogram,

Figure 11.15: The original CO2 data and the prediction.

https://gml.noaa.gov/ccgg/trends_ch4/
https://gml.noaa.gov/ccgg/trends_n2o/
https://gml.noaa.gov/ccgg/trends_sf6/

	 Chapter 11 ■ Data Analysis	 577

mel-frequency cepstral coefficients (MFCCs), and cross-recurrence plot (CRP).
Then use convolutional neural networks to train and classify the images.

Example 11.13 shows a Python code that can record five seconds of voice data
from your computer microphone, play it, save it into a file called test.wav, and
plot both channels of the sound. It uses the SoundDevice library for recording
and playing the sound and uses the SoundFile library to save the sound into a
WAV file. So, you will need to install the two libraries, as shown here:

pip install sounddevice soundfile

EXAMPLE 11.13:  THE SOUND1.PY PROGRAM

Example 11.13
pip install sounddevice soundfile

import sounddevice as sd
import soundfile as sf
import numpy as np
import scipy.io.wavfile as wav
import matplotlib.pyplot as plt
from scipy import signal

fs=44100
duration = 5 # seconds
myrecording = sd.rec(duration * fs, samplerate=fs, channels=2,
dtype='float64')
print ("Recording ...")
sd.wait()
print ("Playing Audio ...")
sd.play(myrecording, fs)
sd.wait()
print ("Writing Audio: test.wav")
filename = "test.wav"
sf.write(filename, myrecording, fs)

plot wave by audio frames
plt.figure(figsize=(10, 5))
plt.subplot(2,1,1)
plt.plot(myrecording[:,0], 'r-', label='Left');
plt.legend()
plt.subplot(2,1,2)
plt.plot(myrecording[:,1], 'g-', label='Right');
plt.legend()
plt.show()

Figure 11.16 shows the plot results, which displays the left and right chan-
nels of the five-second sound; in this case, three Hellos were spoken during
the recording.

578	 Part III ■ AI Applications

EXERCISE 11.10

Modify the previous code, try saying different words, run the code, and comment on
the results.

Short-time Fourier transform (STFT) is an interesting technique for ana-
lyzing sound data. STFT divides the sound time signal into shorter segments
of equal length and then computes the Fourier transform separately on each
shorter segment. By plotting the different frequencies against time, you can get
a spectrogram.

Example 11.14 shows some simple Python code that reads the sound data
from a WAV file and uses the matplotlib.pyplot function to plot the left
channel’s sound amplitude and the corresponding spectrogram.

EXAMPLE 11.14:  THE SOUND2.PY PROGRAM

Example 11.14

import soundfile as sf
import matplotlib.pyplot as plt

path = 'test.wav'
data, rate = sf.read(path)
Plot the signal read from wav file
plt.subplot(211)
plt.title('Spectrogram of a wav file')
plt.plot(data[:,0])

Figure 11.16: The left and right channels of the five-second sound with three Hellos.

	 Chapter 11 ■ Data Analysis	 579

plt.xlabel('Sample')
plt.ylabel('Amplitude')

plt.subplot(212)
plt.specgram(data[:,0],Fs=rate)
plt.xlabel('Time')
plt.ylabel('Frequency')
plt.show()

Figure 11.17 shows the amplitude (top) and the spectrogram (bottom) of the
left channel’s sound data from the test.wav file.

EXERCISE 11.11

Modify the previous code, try different sound files, run the code, and comment on the
results.

See the following links for more information about STFT and spectrograms.
As you can see, apart from the matplotlib.pyplot library, you can use the
scipy.signal library and the librora library for plotting the spectrogram.

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot

.specgram.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal

.spectrogram.html

Figure 11.17: The amplitude (top) and the spectrogram (bottom) of the left channel sound data
from the test.wav file.

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.specgram.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.specgram.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.spectrogram.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.spectrogram.html

580	 Part III ■ AI Applications

https://librosa.org/doc/main/generated/librosa.feature

.melspectrogram.html

The following is a list of interesting sound datasets on Kaggle along with the
corresponding Python example code:

https://www.kaggle.com/mmoreaux/environmental-sound-

classification-50

https://www.kaggle.com/vbookshelf/respiratory-sound-database

https://www.kaggle.com/kinguistics/heartbeat-sounds

https://www.kaggle.com/pavansanagapati/ultrasound-dataset

https://www.kaggle.com/pavansanagapati/spotify-music-data

11.4  Predictive Maintenance Analysis

Predictive maintenance analysis is widely used in the industry. By analyzing
the engine data, for example, you can predict the remaining life span of the
engine and therefore repair or replace it before it breaks down.

The best place to start with predictive maintenance analysis is through
Kaggle, which has several predictive maintenance datasets and runs several
challenges.

The following website shows a Kaggle challenge, which aims to predict the
remaining useful life (RUL) of turbofan engines. Let’s use this data set as an
example. Click the New Notebook button at the top right to create your own
notebook.

https://www.kaggle.com/c/predictive-maintenance/code

Figure 11.18 shows the new Kaggle notebook for the predictive maintenance
dataset, with automatically generated code that shows all the data files that are
available in the default data folder /kaggle/input/. You can also see all the
files in the right-side panel, which shows four training data files, four testing
data files, and four RUL files. Each data file contains the following 32 columns
or features:

'engine_no',

'time_in_cycles',

'op_setting_1',

'op_setting_2',

'op_setting_3',

https://librosa.org/doc/main/generated/librosa.feature.melspectrogram.html
https://librosa.org/doc/main/generated/librosa.feature.melspectrogram.html
https://www.kaggle.com/mmoreaux/environmental-sound-classification-50
https://www.kaggle.com/mmoreaux/environmental-sound-classification-50
https://www.kaggle.com/vbookshelf/respiratory-sound-database
https://www.kaggle.com/kinguistics/heartbeat-sounds
https://www.kaggle.com/pavansanagapati/ultrasound-dataset
https://www.kaggle.com/pavansanagapati/spotify-music-data
https://www.kaggle.com/c/predictive-maintenance/code

	 Chapter 11 ■ Data Analysis	 581

'sensor_1',

'sensor_2',

'sensor_3',

... ...

'sensor_25',

'sensor_26',

'sensor_27'

The complete code of this is available in a file called predictivemaintenance-
tutorial.ipynb, which you can upload or copy and paste to your new Kaggle
notebook. Here we show only a few key outputs.

Figure 11.19 shows the last few columns of the dataset with the RUL column
added at the end.

Figure 11.20 shows the code for plotting the sensor data and first three
sensor plots.

Figure 11.21 shows the code to use a random forest regressor to predict the
RUL from the engine data and the code to plot the results.

Figure 11.18: The new Kaggle notebook for a predictive maintenance dataset, with automati-
cally generated code.

582	 Part III ■ AI Applications

Figure 11.22 shows the ideal RUL result plot (top) and predicted RUL result
plot (bottom). The horizontal axis is the real RUL data, and the vertical axis is
the predicted RUL; ideally, it should be a straight line as shown in the top plot.
The results show that the predicted RUL, although pretty noisy, is close to a
straight line.

Figure 11.19: The last few columns of the dataset with the RUL column added at the end.

Figure 11.20: The code for plotting the sensor data and first three sensor plots.

	 Chapter 11 ■ Data Analysis	 583

EXERCISE 11.12

From a web browser, log in to your Kaggle account, repeat the previous steps to build
your own IPython notebook code, run the code, and comment on the results.

Figure 11.21: The code to use a random forest regressor to predict the RUL from the engine
data and the code to plot the results.

Figure 11.22: The ideal RUL result plot (top) and predicted RUL result plot (bottom).

584	 Part III ■ AI Applications

11.5  Anomaly Detection and Fraud Detection

Anomaly detection and fraud detection are practical applications in finance,
healthcare, and other businesses. Again, we will use Kaggle dataset examples.

11.5.1  Numenta Anomaly Detection
The following is the Kaggle website for the Numenta Anomaly Benchmark
(NAB) dataset. The NAB is a novel benchmark for evaluating algorithms for
anomaly detection in streaming online applications. It is comprised of more
than 50 labeled real-world and artificial time-series data files plus a novel
scoring mechanism designed for real-time applications.

https://www.kaggle.com/boltzmannbrain/nab

EXERCISE 11.13

From a web browser, log in to your Kaggle account, find the NAB dataset, choose an
IPython notebook, run the code, and comment on the results.

11.5.2  Textile Defect Detection
The following is the Kaggle website for the Textile Defect Detection dataset.
In the context of textile fabric, a rare anomaly can occur and hence compro-
mise the quality of the textile. To avoid that in some scenarios, it is crucial to
detect the defect.

https://www.kaggle.com/belkhirnacim/textiledefectdetection

11.5.3  Healthcare Fraud Detection
Healthcare fraud is considered a challenge for many societies. Healthcare fund-
ing that could be spent on medicine, care for the elderly, or emergency room
visits is instead lost to fraudulent activities by materialistic practitioners or
patients. With rising healthcare costs, healthcare fraud is a major contributor
to these increasing healthcare costs. The following is the Kaggle site called
Healthcare Providers Data For Anomaly Detection.

https://www.kaggle.com/tamilsel/healthcare-providers-data

11.5.4  Santander Customer Transaction Prediction
The following is the Kaggle site called Santander Customer Transaction
Prediction Challenge.

https://www.kaggle.com/c/santander-customer-transaction-prediction

https://www.kaggle.com/boltzmannbrain/nab
https://www.kaggle.com/belkhirnacim/textiledefectdetection
https://www.kaggle.com/tamilsel/healthcare-providers-data
https://www.kaggle.com/c/santander-customer-transaction-prediction

	 Chapter 11 ■ Data Analysis	 585

The aim of this challenge is to develop new machine learning algorithms for
binary classification problems such as the following: Is a customer satisfied?
Will a customer buy this product? Can a customer pay this loan?

In this challenge, it aims to identify which customers will make a specific
transaction in the future. The data provided for this competition has the same
structure as the real data.

The following website shows an interesting article called “Introduction to
Fraud Detection Systems” on the KDnuggets website.

https://www.kdnuggets.com/2018/08/introduction-fraud-detection-

systems.html

The following is the corresponding IPython notebook example:

https://github.com/miguelgfierro/sciblog_support/blob/master/Intro_

to_Fraud_Detection/fraud_detection.ipynb

11.6  COVID-19 Data Visualization and Analysis

The COVID-19 pandemic that began in 2020 has sparked much interest in devel-
oping Python code to visualize and to analyze the COVID-19 data.

Example 11.15 shows some simple Python code that reads the COVID-19
data from the John Hopkins University GitHub site, finds out the sum of each
country, and chooses a country (United Kingdom) to display the total confirmed
cases and daily cases. You can also set the minimum case numbers, which is
used as the threshold for a starting plot. By uncommenting the corresponding
statements, the example can also read the number of deaths, the number of
recoveries, and the latest data.

EXAMPLE 11.15:  THE COVID-19.PY PROGRAM

Example 11.15 Covid-19.py

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
#import seaborn as sns

from matplotlib.ticker import MaxNLocator

Number of Covid Death
#path = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/
master/csse_covid_19_data/csse_covid_19_time_series/time_series_
covid19_deaths_global.csv'
Number of Covid Recoveries
#path = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/
master/csse_covid_19_data/csse_covid_19_time_series/time_series_
covid19_recovered_global.csv'

https://www.kdnuggets.com/2018/08/introduction-fraud-detection-systems.html
https://www.kdnuggets.com/2018/08/introduction-fraud-detection-systems.html
https://github.com/miguelgfierro/sciblog_support/blob/master/Intro_to_Fraud_Detection/fraud_detection.ipynb
https://github.com/miguelgfierro/sciblog_support/blob/master/Intro_to_Fraud_Detection/fraud_detection.ipynb

586	 Part III ■ AI Applications

The latest Covid data
#path = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/
master/csse_covid_19_data/csse_covid_19_daily_reports/08-19-2021.csv'

Number of Confirmed Covid Cases
path = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/
master/csse_covid_19_data/csse_covid_19_time_series/time_series_
covid19_confirmed_global.csv'
df = pd.read_csv(path)
df.info()
df.head()

The country to plot the data for.
country = 'United Kingdom'

Group by country and sum over the different states/regions of each
country.
grouped = df.groupby('Country/Region')
df2 = grouped.sum()
print(df2)

Start the plot on the day when the number of confirmed cases
reaches MIN_CASES.
MIN_CASES = 1

def make_plot(country):
 """Make the bar plot of case numbers and change in numbers line
plot."""

 # Extract the Series corresponding to the case numbers for
country.
 confirmed = df2.loc[country, df2.columns[3:]]
 print(confirmed)
 # Discard any columns with fewer than MIN_CASES.
 confirmed = confirmed[confirmed >= MIN_CASES].astype(int)
 # Convet index to a proper datetime object
 confirmed.index = pd.to_datetime(confirmed.index)
 n = len(confirmed)
 if n == 0:
 print('Too few data to plot: minimum number of cases is {}'
 .format(MIN_CASES))
 sys.exit(1)

 fig = plt.Figure()

 # Arrange the subplots on a grid
 ax2 = plt.subplot2grid((2,1), (0,0))
 ax1 = plt.subplot2grid((2,1), (1,0))
 ax1.bar(confirmed.index, confirmed.values)

	 Chapter 11 ■ Data Analysis	 587

 # Force the x-axis to be in integers (whole number of days)
 ax1.xaxis.set_major_locator(MaxNLocator(integer=True))

 confirmed_change = confirmed.diff()
 # Running average of daily cases
 sevenday_rolling = confirmed_change.rolling(window=7).mean()
 ax2.plot(confirmed.index, confirmed_change.values, label = 'Daily
Cases')
 ax2.plot(confirmed.index, sevenday_rolling.values,'-r', label =
'7 Day Average')
 ax2.set_xticks([])
 ax2.legend()

 ax1.set_xlabel('Date ')
 ax1.set_ylabel('Total Confirmed cases, N')
 ax2.set_ylabel('Daily Cases ΔN')

 # Add a title reporting the latest number of cases available.
 title = '{}\nTotal {} cases on {}'.format(country, confirmed[-1],
 confirmed.index[-1].strftime('%d %B %Y'))
 plt.suptitle(title)

make_plot(country)
plt.show()
print('Today New Cases:', confirmed_change[-1])
print('Today Total Cases:', confirmed[-1])

Figure 11.23 shows the plots of the previous program, which shows the total
confirmed cases (bottom), the daily cases (top), and the corresponding seven-
day running average.

EXERCISE 11.14

Modify the previous example code, and try different COVID-19 data, such as the
number of deaths, the number of recoveries, the latest data, as well as different coun-
tries. Run the code and comment on the results.

EXERCISE 11.15

Modify the previous example code, and use the stock data prediction algorithms, as
seasonal trend analysis, to predict the COVID-19 data. Run the code, and comment on
the results.

588	 Part III ■ AI Applications

The following is the GitHub website for the PySimpleGUI-COVID19 project,
which is an impressive graphical user interface (GUI)–based Python program
that can display and analyze the COVID-19 data. It uses the Johns Hopkins
Time-Series data.

https://github.com/PySimpleGUI/PySimpleGUI-COVID19

The following is the Kaggle website for the COVID-19 Open Research Dataset
Challenge (CORD-19). CORD-19 is the most extensive machine-readable coro-
navirus literature resource with over 500,000 scholarly articles about COVID-19,
SARS-CoV-2, and related coronaviruses. It calls the global research community
to apply recent advances in AI techniques to generate new insights in support
of the ongoing fight against this infectious disease.

https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-

challenge

11.7  KerasClassifier and KerasRegressor

KerasClassifier and KerasRegressor are Keras wrapper classes that aim to make
it easier to perform classification and regression tasks.

Figure 11.23: The total confirmed cases (bottom), the daily cases (top), and the corresponding
seven-day running average in the United Kingdom.

https://github.com/PySimpleGUI/PySimpleGUI-COVID19
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge

	 Chapter 11 ■ Data Analysis	 589

11.7.1  KerasClassifier
Let’s use an example to illustrate how to use KerasClassifier for classification.
The following is the Kaggle website for the Pima Indians Diabetes Database.
Click the New Notebook button to create your own IPython notebook.

https://www.kaggle.com/uciml/pima-indians-diabetes-database

Then copy or upload the following Example 11.16a code into your Kaggle
notebook. Here we show the code section by section, and the full code is in a
file called KerasClassifier1.ipynb.

The first part of the code is automatically generated when you create a new
notebook on Kaggle, which simply shows what data files are there in the Kaggle
data folder /kaggle/input.

EXAMPLE 11.16A:  THE KerasClassifier1.IPYNB PROGRAM (PART 1)

This Python 3 environment comes with many helpful analytics
libraries installed
It is defined by the kaggle/python Docker image: https://github
.com/kaggle/docker-python
For example, here's several helpful packages to load

import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g.
pd.read_csv)

Input data files are available in the read-only "../input/"
directory
For example, running this (by clicking run or pressing Shift+Enter)
will list all files under the input directory

import os
for dirname, _, filenames in os.walk('/kaggle/input'):
 for filename in filenames:
 print(os.path.join(dirname, filename))

You can write up to 20GB to the current directory (/kaggle/
working/) that gets preserved as output when you create a version
using "Save & Run All"
You can also write temporary files to /kaggle/temp/, but they won't
be saved outside of the current session

https://www.kaggle.com/uciml/pima-indians-diabetes-database

590	 Part III ■ AI Applications

Example 11.16b shows the code to import all the libraries.

EXAMPLE 11.16B:  THE KerasClassifier1.IPYNB PROGRAM (PART 2)

from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import cross_val_score
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import StandardScaler

import numpy
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from pandas.plotting import scatter_matrix

Example 11.16c defines a function called get_data() and another function
called create_model(). The get_data() function will load the diabetes CSV
data, plot the histogram, and plot the scatterplot. The create_model() function
will create a deep learning model for the purpose of classification by using
KerasClassifier.

EXAMPLE 11.16C:  THE KerasClassifier1.IPYNB PROGRAM (PART 3)

Get the data
def get_data():
 # load pima indians dataset
 dataset=pd.read_csv("/kaggle/input/pima-indians-diabetes-
database/diabetes.csv", delimiter=",")
 print(dataset.shape)
 print(dataset.head())

 # Plotting Histogram
 dataset.hist(figsize=(10,8))
 plt.show()

 # Plotting Scatterplot Matrix
 plt.rcParams['figure.figsize'] = [20, 20]
 scatter_matrix(dataset)
 plt.show()

 X = dataset.drop(['Outcome'],axis=1).values
 y = dataset['Outcome'].values

 X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.3)
 sc = StandardScaler()
 X_train = sc.fit_transform(X_train)

	 Chapter 11 ■ Data Analysis	 591

 X_test = sc.transform(X_test)
 return X_train, X_test, y_train, y_test

Function to create model, required for KerasClassifier
def create_model():
 # create model
 model = Sequential()
 model.add(Dense(12, input_dim=8, activation='relu'))
 model.add(Dropout(rate = 0.1))
 model.add(Dense(8, activation='relu'))
 model.add(Dropout(rate = 0.1))
 model.add(Dense(1, activation='sigmoid'))
 # Compile model
 model.compile(loss='binary_crossentropy', optimizer='adam',
metrics=['accuracy'])
 return model

Example 11.16d calls the get_data() function, which loads in the diabetes
CSV data, plots the histogram, and plots the scatterplot. It also uses KerasClas-
sifier to create a model based on the create_model() function.

EXAMPLE 11.16D:  THE KerasClassifier1.IPYNB PROGRAM (PART 4)

get data
X_train, X_test, y_train, y_test = get_data()
create model
model = KerasClassifier(build_fn=create_model, epochs=150, batch_
size=10, verbose=0)

The following shows the text output of the diabetes dataset information,
which shows it has 768 samples and nine columns of features. The “Outcome”
column indicates whether it is diabetic or not diabetic. It also shows the first
five rows of the data.

(768, 9)
 Pregnancies Glucose BloodPressure SkinThickness Insulin BMI \
0 6 148 72 35 0 33.6
1 1 85 66 29 0 26.6
2 8 183 64 0 0 23.3
3 1 89 66 23 94 28.1
4 0 137 40 35 168 43.1

 DiabetesPedigreeFunction Age Outcome
0 0.627 50 1
1 0.351 31 0
2 0.672 32 1
3 0.167 21 0
4 2.288 33 1

592	 Part III ■ AI Applications

Figure 11.24 shows the scatterplot of the nine features of the Pima Indians
Diabetes data, from which you can see the correlations of the different features
against each other.

Example 11.16e performs a cross validation of the KerasClassifier model.

EXAMPLE 11.16E:  THE KerasClassifier1.IPYNB PROGRAM (PART 5)

seed = 7
numpy.random.seed(seed)
evaluate using 10-fold cross validation
kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=seed)
results = cross_val_score(model, X_train, y_train, cv=kfold)
print("Mean: ", results.mean())
print("Variance: ", results.var())

Figure 11.24: The scatterplot of the nine features of the Pima Indians Diabetes data.

	 Chapter 11 ■ Data Analysis	 593

The following is the output, which shows 75 percent accuracy and 0.002
variance:

Mean: 0.7578965842723846
Variance: 0.0024074942801846433

Example 11.16f shows the code for the KerasClassifier model with training
data and performs the prediction on the testing data.

EXAMPLE 11.16F:  THE KerasClassifier1.IPYNB PROGRAM (PART 6)

model.fit(X_train, y_train)
prediction = model.predict(X_test)
print(accuracy_score(y_test, prediction))

The output shows it has about 76 percent accuracy.

0.7575757575757576

EXERCISE 11.16

From a web browser, log in to your Kaggle account, follow the previous steps to build
your own IPython notebook code, run the code, and comment on the results.

11.7.2  KerasRegressor
Example 11.17 shows a simple example of how to use KerasRegressor to per-
form regression on the physical exercise Linnerud dataset data. The Linnerud
dataset has 20 samples of physical exercise data, with three features (Chins,
Situps, Jumps) and three targets (Weight, Waist, Pulse). The Linnerud dataset
is typically suitable for multiple output regressions.

In this example, it first builds a simple baseline deep learning model and
then uses KerasRegressor to create an estimator based on the baseline model.

EXAMPLE 11.17:  THE KerasRegressor1.PY PROGRAM

Example 11.17
from sklearn import datasets, linear_model
from sklearn.model_selection import cross_val_score, KFold
from keras.models import Sequential
#from sklearn.metrics import accuracy_score
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasRegressor
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline

594	 Part III ■ AI Applications

import numpy as np

linnerud = datasets.load_linnerud()
print(linnerud.DESCR)
print(linnerud.data.shape)
print(linnerud.feature_names)
print(linnerud.target_names)
print(linnerud.target)

Use only one feature
#linnerud_X = linnerud.data[:, np.newaxis, 0]
X = linnerud.data
Choose one target 0: 'Weight', 1: 'Waist', 2:'Pulse'
#y = linnerud.target[:,1]
y = linnerud.target

Split the data into training/testing sets
X_train = X[:-10]
X_test = X[-10:]
Split the targets into training/testing sets
y_train = y[:-10]
y_test = y[-10:]

def baseline_model():
 model = Sequential()
 model.add(Dense(10, input_dim=3, activation='relu'))
 model.add(Dense(3))
 model.compile(loss='mean_squared_error', optimizer='adam')
 return model

seed = 1
estimator = KerasRegressor(build_fn=baseline_model, nb_epoch=100,
batch_size=100, verbose=False)
kfold = KFold(n_splits=10, random_state=seed, shuffle=True)
results = cross_val_score(estimator, X, y, cv=kfold)
print("Results: %.2f (%.2f) MSE" % (results.mean(), results.std()))

estimator.fit(X, y)
prediction = estimator.predict(X)

import numpy as np
train_error = np.abs(y - prediction)
print("Mean Prediction Error: ", np.mean(train_error))

The following is the console output, which shows the details of the Linnerud
dataset and the means and standard deviations of the regressor and the mean
prediction error. Because we use only a simple model here, the errors are quite
large.

	 Chapter 11 ■ Data Analysis	 595

Using TensorFlow backend.
.. _linnerrud_dataset:

Linnerrud dataset

Data Set Characteristics:

 :Number of Instances: 20
 :Number of Attributes: 3
 :Missing Attribute Values: None

The Linnerud dataset is a multi-output regression dataset. It consists
of three
excercise (data) and three physiological (target) variables collected
from
twenty middle-aged men in a fitness club:

- *physiological* - CSV containing 20 observations on 3 physiological
variables:
 Weight, Waist and Pulse.
- *exercise* - CSV containing 20 observations on 3 exercise variables:
 Chins, Situps and Jumps.

.. topic:: References

 * Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris:
 Editions Technic.

(20, 3)
['Chins', 'Situps', 'Jumps']
['Weight', 'Waist', 'Pulse']
[[191. 36. 50.]
 [189. 37. 52.]
 [193. 38. 58.]
 [162. 35. 62.]
 [189. 35. 46.]
 [182. 36. 56.]
 [211. 38. 56.]
 [167. 34. 60.]
 [176. 31. 74.]
 [154. 33. 56.]
 [169. 34. 50.]
 [166. 33. 52.]
 [154. 34. 64.]
 [247. 46. 50.]
 [193. 36. 46.]
 [202. 37. 62.]
 [176. 37. 54.]
 [157. 32. 52.]

596	 Part III ■ AI Applications

 [156. 33. 54.]
 [138. 33. 68.]]

Warning (from warnings module):
 File "C:\Program Files\Python36\lib\site-packages\sklearn\model_
selection_split.py", line 297
 FutureWarning
FutureWarning: Setting a random_state has no effect since shuffle is
False. This will raise an error in 0.24. You should leave random_state
to its default (None), or set shuffle=True.
Results: -19721.18 (8690.13) MSE
Mean Prediction Error: 128.35342439015707

Example 11.18 shows an improved version of the previous example, which
uses a larger deep learning model; it also uses Scikit-Learn’s Pipeline to per-
form the regression. Pipeline is often used to assemble multiple estimators
into one and automate the machine learning process.

EXAMPLE 11.18:  THE KerasRegressor2.PY PROGRAM

Example 11.18
from sklearn import datasets, linear_model
from sklearn.model_selection import cross_val_score, KFold
from keras.models import Sequential
#from sklearn.metrics import accuracy_score
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasRegressor
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline

import numpy as np
import matplotlib.cm as cm

linnerud = datasets.load_linnerud()
#print(linnerud.DESCR)
#print(linnerud.data.shape)
#print(linnerud.feature_names)
#print(linnerud.target_names)
#print(linnerud.target)

Use only one feature
#linnerud_X = linnerud.data[:, np.newaxis, 0]
X = linnerud.data
Choose one target 0: 'Weight', 1: 'Waist', 2:'Pulse'
#y = linnerud.target[:,1]
y = linnerud.target

Split the data into training/testing sets
X_train = X[:-10]
X_test = X[-10:]

	 Chapter 11 ■ Data Analysis	 597

Split the targets into training/testing sets
y_train = y[:-10]
y_test = y[-10:]

define the model
def larger_model():
 # create model
 model = Sequential()
 model.add(Dense(20, input_dim=3, activation='relu'))
 model.add(Dense(10, activation='relu'))
 model.add(Dense(6, activation='relu'))
 model.add(Dense(3))
 # Compile model
 model.compile(loss='mean_squared_error', optimizer='adam')
 return model

seed = 1
np.random.seed(seed)
estimators = []
estimators.append(('standardize', StandardScaler()))
estimators.append(('mlp', KerasRegressor(build_fn=larger_model,
epochs=50, batch_size=5, verbose=0)))
pipeline = Pipeline(estimators)
kfold = KFold(n_splits=10, random_state=seed, shuffle=True)
results = cross_val_score(pipeline, X, y, cv=kfold, n_jobs=1)
print("Larger: %.2f (%.2f) MSE" % (results.mean(), results.std()))

pipeline.fit(X, y)
prediction = pipeline.predict(X)

import numpy as np
train_error = np.abs(y - prediction)
print("Mean Prediction Error: ", np.mean(train_error))
#print(np.min(train_error))
#print(np.max(train_error))
#print(np.std(train_error))

import matplotlib.pyplot as plt
plt.figure()
plt.subplot(2,1,1)

ys = [i for i in range(3)]
colors = cm.rainbow(np.linspace(0, 1, len(ys)))
for i, c in zip(ys, colors):
plt.scatter(y[:,i], prediction[:,i], color=c)

#plt.scatter(y,prediction)
plt.title('Prediction')

598	 Part III ■ AI Applications

plt.subplot(2,1,2)
plt.scatter(y,train_error)
plt.title('Error')
plt.show()

The following is the console output, which shows a reduced prediction error:

Larger: -10523.43 (2416.25) MSE
Mean Prediction Error: 80.99469582041105

Figure 11.25 shows the output plot. The top shows the prediction results; the
horizontal axis is the real data, and the vertical axis is the predicted data. By
using random forest regression, as you can see, different target outputs have
different performances. The bottom is the error of regression. The results show
that “Waist” data gives the best regression results, with the predicted data close
to a straight line with real data and with small errors. But the overall error is
still large due to the small dataset.

EXERCISE 11.17

Modify the previous code, try different Scikit-Learn datasets, see the following links,
run the code, and comment on the results:

https://scikit-learn.org/stable/datasets/toy_dataset.html
https://scikit-learn.org/stable/datasets/real_world.html

Figure 11.25: The prediction (top) and the error (bottom) of the random forest regression.

https://scikit-learn.org/stable/datasets/toy_dataset.html
https://scikit-learn.org/stable/datasets/real_world.html

	 Chapter 11 ■ Data Analysis	 599

11.8  SQL and NoSQL Databases

SQL or NoSQL, that is the question!
When you have a large amount of data, it is often better to save it into a data-

base. Traditionally, this is done by using relational databases, in which data is
saved in table format, and there are relationships between tables. You can work
with the traditional relational databases with Structured English Query Language
(SEQUEL), which is now commonly referred to as Structured Query Language
(SQL). The relational databases are also called SQL databases.

The following are the popular SQL databases:

■■ MySQL

https://www.mysql.com/

■■ PostgreSQL

https://www.postgresql.org/

■■ Oracle

https://www.oracle.com/uk/database/

■■ Microsoft SQL Server

https://www.microsoft.com/en-us/sql-server

NoSQL is a relatively new type of database. Different from SQL, NoSQL is
nonrelational and can handle more complex structures. With NoSQL, you can
create documents without having to first define their structure, you can allow
each document to have its own unique structure, you can have the syntax vary
from database to database, and you can add fields as you go.

SQL is vertically scalable, which means you can increase the load by
increasing CPU, RAM, and hard drive space on the server. NoSQL is hor-
izontally scalable, which means you can handle more traffic by scaling up
your database cluster, such as adding more servers. This is called sharding.
This can be more powerful, making NoSQL databases the preferred choice
for large or ever-changing datasets.

Table 11.1 shows a quick comparison of SQL and NoSQL.

https://www.mysql.com/
https://www.postgresql.org/
https://www.oracle.com/uk/database/
https://www.microsoft.com/en-us/sql-server

600	 Part III ■ AI Applications

Figure 11.26 shows the data differences between SQL and NoSQL.

The following are the popular NoSQL databases:

■■ MongoDB

https://www.mongodb.com/

■■ Apache Cassandra

https://cassandra.apache.org/

■■ Google Cloud BigTable

https://cloud.google.com/bigtable/

■■ XPlenty

https://www.xplenty.com/

Table 11.1: SQL vs. NoSQL

SQL NOSQL

Relational Nonrelational

Use the SQL language and have a
predefined schema

Have dynamic schemas for unstructured
data

Vertically scalable Horizontally scalable

Table based Document, key-value, graph, or wide-
column stores based

Better for multirow transactions Better for unstructured data like documents
or JSON

Figure 11.26: The data differences of SQL and NoSQL.

https://www.mongodb.com/
https://cassandra.apache.org/
https://cloud.google.com/bigtable/
https://www.xplenty.com/

	 Chapter 11 ■ Data Analysis	 601

Next, let’s look at some Python database examples.
SQLite3 is a Python integrated module for creating and managing small,

lightweight SQL databases that can easily run on your local computer. See the
following SQLite3 link for more details:

https://docs.python.org/3/library/sqlite3.html

Example 11.19 shows a simple SQLite3 example that shows how to create
and connect to a database file, in this case called test.db, how to create a table
called COURSE, how to insert a record into the table, and how to search the table
and display the results.

EXAMPLE 11.19:  THE SQLite3 DEMO.PY PROGRAM

Example 11.19 SQLite3
import sqlite3
Create and Connect to the SQLite3 Database
conn = sqlite3.connect('test.db')
print ("Opened database successfully")

Insert a Table ===
conn.execute('''CREATE TABLE IF NOT EXISTS COURSE
 (ID INT PRIMARY KEY NOT NULL,
 NAME TEXT NOT NULL,
 STUDENT_NO INT NOT NULL,
 ADDRESS CHAR(50),
 MARK REAL);''')
print ("Table created successfully")

Insert an record ===
conn.execute("INSERT INTO COURSE (ID,NAME,STUDENT_NO,ADDRESS,MARK) \
 VALUES (1, 'Billy', 202119, '103 Borough Road, London', 75.00
)");

#conn.commit()
print ("Records created successfully")

Search the Table ===
cursor = conn.execute("SELECT id, name, address, mark from COURSE")
for row in cursor:
 print ("ID = ", row[0])
 print ("NAME = ", row[1])
 print ("ADDRESS = ", row[2])
 print ("MARK = ", row[3], "\n")

print ("Operation done successfully")
conn.close()

https://docs.python.org/3/library/sqlite3.html

602	 Part III ■ AI Applications

The following is the console output of the example:

Opened database successfully
Table created successfully
Records created successfully
ID = 1
NAME = Billy
ADDRESS = 103 Borough Road, London
MARK = 75.0

Operation done successfully

EXERCISE 11.18

Modify the previous code, add email and gender information into the database, run the
code, and comment on the results.

MongoDB Altas is a cloud-based NoSQL database platform based on
Amazon AWS, Microsoft Azure, and Google Cloud Platform (GCP). From its
website, as shown in Figure 11.27, you can create an account or sign in with
your Google account.

Once you’ve created the account or signed in, you can name your organiza-
tion, create your project, and choose the preferred language on the MongoDB
cloud website.

Figure 11.27: The MongoDB Atlas database website.
(Source: https://cloud.mongodb.com/)

https://cloud.mongodb.com/

	 Chapter 11 ■ Data Analysis	 603

After creating the project, you can choose clusters on the MongoDB cloud
website; Shared Clusters is chosen here since it is free, as shown in Figure 11.28.

For the clusters you have chosen, you also need to choose providers, such
as AWS, Azure, or GCP, as well as the region, such as Europe, North America,
Asia or Australia.

The new cluster will now be created, which will take a few minutes. After
the new cluster is created, click the Connect button to set up the connection, as
shown in Figure 11.29.

Figure 11.28: Choose Shared Clusters on the MongoDB cloud website.

Figure 11.29: Creating the cluster on the MongoDB cloud website.

604	 Part III ■ AI Applications

For the connection, you need to add a connection IP address and create a
database user to the cluster.

Then you need to choose a connection method; for this you choose the
“Connect your application” method, as shown in Figure 11.30 (top). Then
you need to select the programming language and its version and generate
the corresponding code, as shown in Figure 11.30 (bottom).

Figure 11.30: Choose a connection method (top), select the programming language and its
version, and generate the corresponding code (bottom) on the MongoDB cloud website.

	 Chapter 11 ■ Data Analysis	 605

Now you are ready to connect to your MongoDB cloud database with
Python.

Example 11.20 shows a simple MongoDB example code, which shows how to
connect to a MongoDB database cluster in the cloud, how to create a database
called test, how to insert records (called posts) into the test database, and how
to search the database. In this case, the posts are in JavaScript Object Notation
(JSON) format, which is popular with web applications.

You will need to install two libraries for the example.

pip install pymongo
pip install dnspython

Also, remember to replace the content inside MongoClient("...") with your
own generated code, and replace <username> and <password> with your own
username and password for the MongoDB database.

EXAMPLE 11.20:  THE MongoDB TEST.PY PROGRAM

Example 11.20
pip install pymongo
pip install dnspython
import pymongo
from pymongo import MongoClient

Replace the content inside MongoClient("...") with your own
generated code
Replace <username> and <password> with your own username and
password
cluster = MongoClient("mongodb+srv://<username>:<password>@cluster0.6
alke.mongodb.net/myFirstDatabase?retryWrites=true&w=majority")
db = cluster.test
collection = db['test']

post1 = {"_id": 0, "name": "Tom", "mark": 54}
post2 = {"_id": 1, "name": "John", "mark": 78}
#collection.insert_one(post1)
collection.insert_many([post1,post2])

#results = collection.find()
results = collection.find({"name":"John"})
for result in results:
 print(result)

The following is the console output, which shows the search results:

{'_id': 1, 'name': 'John', 'mark': 78}

606	 Part III ■ AI Applications

From your MongoDB cloud website, click the Collections tab. You can see
the corresponding changes: a test database will be created, and two posts will
be inserted, as shown in Figure 11.31.

EXERCISE 11.19

Modify the previous code, add more records to the MongoDB, run the code, and com-
ment on the results.

Example 11.21 shows how to save image files into MongoDB by using the
GridFS library.

Also, remember to replace the content inside MongoClient("...") with your
own generated code, and replace <username> and <password> with your own
username and password for the MongoDB database.

EXAMPLE 11.21:  THE MongoDB TEST2.PY PROGRAM

Example 11.21
pip install pymongo
pip install dnspython
import pymongo
from pymongo import MongoClient

Replace the content inside MongoClient("...") with your own
generated code
Replace <username> and <password> with your own username and
password

Figure 11.31: The corresponding changes on the MongoDB cloud website.

	 Chapter 11 ■ Data Analysis	 607

cluster = MongoClient("mongodb+srv://<username>:<password>@cluster0.6
alke.mongodb.net/myFirstDatabase?retryWrites=true&w=majority")
db = cluster.test
collection = db['test']

#Save image to MongoDB
import gridfs

#Create an object of GridFs for the above database.
fs = gridfs.GridFS(db)

#define an image object with the location.
file = "child.jpg"

#Open the image in read-only format.
with open(file, 'rb') as f:
 contents = f.read()

#Now store/put the image via GridFs object.
fs.put(contents, filename="file")

Figure 11.32 shows the corresponding image file has been created in the
MongoDB cloud website.

Figure 11.32: The corresponding image file has been created in the MongoDB cloud website.

608	 Part III ■ AI Applications

EXERCISE 11.20

Modify the previous code, add more image files to MongoDB, run the code, and
comment on the results.

The following are a few related tutorials:

https://www.mongodb.com/blog/post/getting-started-with-python-

and-mongodb

https://pymongo.readthedocs.io/en/stable/tutorial.html

https://www.w3schools.com/python/python_mongodb_getstarted.asp

https://realpython.com/introduction-to-mongodb-and-python/

11.9  Immutable Database

Traditional databases are not immutable, which means they do not record the
changes. So, when something has changed or is being hacked, you do not know
what has been changed or when it was changed. In the other words, there is no
way to know whether your database has been compromised. This is not desir-
able for many applications, such as bank transactions, supply chain records,
art and antique records, and so on.

To solve this problem, the immutable database was introduced. Nothing is
ever deleted or changed without a record in an immutable database. All the
database operations are recorded in a blockchain-based ledger with the cryp-
tographic verification. With immutable databases, you can track changes in
sensitive data in your databases and then record those changes indelibly in a
tamperproof immutable database. This allows you to keep an indelible history
of all the operations.

Immutable databases are centralized database systems where information is
stored in a way that its integrity can be cryptographically verified. Every data
change is tracked, and the complete history of changes is maintained so that
the “integrity of the database” can be verified over time. This is why we call
them immutable, because the history of all changes performed in the data store is
maintained so that whenever there is an unintended or malicious modification,
it can be detected, reported, and in many cases even recovered.

11.9.1  Immudb
Immudb is a lightweight, high-speed immutable database for systems and
applications. It is an open source database under the Apache v2.0 license and
claims to be the fastest immutable database.

https://www.mongodb.com/blog/post/getting-started-with-python-and-mongodb
https://www.mongodb.com/blog/post/getting-started-with-python-and-mongodb
https://pymongo.readthedocs.io/en/stable/tutorial.html
https://www.w3schools.com/python/python_mongodb_getstarted.asp
https://realpython.com/introduction-to-mongodb-and-python/

	 Chapter 11 ■ Data Analysis	 609

Immudb is immutable, which means you can only add records but never
change or delete records. Data stored in Immudb is encrypted and verifiable,
just like blockchains, but without the complexity. Immudb is simple and easy
to use, and it supports programming languages such as node.js, Java, Python,
Golang, .NET, and more. You can run Immudb on Linux, Windows, and macOS,
as well as Kubernetes and Docker.

For more details, check the following Immudb GitHub and official websites:

https://github.com/codenotary/immudb

https://www.codenotary.com/technologies/immudb/

https://docs.immudb.io/master/

Immudb also has an impressive online playground for you to play with
without the hassle of installation and configuration, see the following link for
details.

https://play.codenotary.com/

The following are the Linux commands to log in and get started with the
Immudb database:

Bash-5.1#immuclient login immudb
Password: immudb
Bash-5.1#immuclient
immuclient>set balance 9000
immuclient>get balance
immuclient>history balance
immuclient>safeget balance

The following is the simple Python code to save a key-value pair in the
Immudb database and to retrieve it:

from immudb.client import ImmudbClient
ic = ImmudbClient("localhost:3322")
ic.login(username = "immudb", password = "immudb")
key = "Hello".encode('utf8')
value = "Immutable world".encode('utf8')
ic.set(key, value)
readback = ic.get(key)
saved_value = readback.value.decode('utf8')
key = key.decode('utf8')
print(key, saved_value)
print("The transaction number was ", readback.tx)

11.9.2  Amazon Quantum Ledger Database
Amazon also provides its own immutable database called Amazon Quantum
Ledger Database (QLDB), which is a fully managed ledger database that
provides a transparent, immutable, and cryptographically verifiable transaction

https://github.com/codenotary/immudb
https://www.codenotary.com/technologies/immudb/
https://docs.immudb.io/master/
https://play.codenotary.com/

610	 Part III ■ AI Applications

log owned by a central trusted authority. With Amazon QLDB, you can track
every application data change and maintain a complete and verifiable history
of changes over time.

For more details about QLDB, visit the following:

https://aws.amazon.com/qldb/

11.10  Summary

This chapter covers topics of data analysis. The most commonly used data anal-
ysis technique is regression, which investigates the relationship between the
dependent and independent sets of variables. Traditional regression techniques
include linear regression, logistic regression, polynomial regression, and so on.
Modern approaches use machine learning for regression, such as support vector
regression, nearest neighbors regression, Gaussian process regression (GPR),
and random forest regression. You can also use partial least squares regression
and principal component regression for analyzing the spectral data.

With time-series data, you can use deep learning recurrent neural network
models to predict future data. You can also use seasonal-trend decomposition
using LOESS, or STL, for decomposing time-series data into trend, seasonal,
and residual.

Predictive maintenance analysis is to analyze the data and predict the
remaining useful life (RUL) of an equipment.

Anomaly detection is to detect abnormal data in a dataset. It is widely used
as fraud detection in banking, healthcare, and many other businesses.

KerasClassifier and KerasRegressor are convenient wrapper classes in Keras
for deep learning models to train classification or regression estimators in the
Scikit-Learn library.

NoSQL is a relatively new type of databases, different from traditional SQL
databases. NoSQL is nonrelational and is more powerful in processing complex,
unstructured data.

With immutable databases, you can track changes in your databases and keep
an indelible history of all the operations.

11.11  Chapter Review Questions

Q11.1.	 What is data analysis? Give a few examples in your life and work.

Q11.2.	 What is regression? What is multiple linear regression?

Q11.3.	� What is support vector regression (SVR)? Explain the differences
between linear SVR, poly SVR, and RBF SVR.

https://aws.amazon.com/qldb/

	 Chapter 11 ■ Data Analysis	 611

Q11.4.	 What is the difference between regression and classification?

Q11.5.	 What is time-series data? Give a few examples.

Q11.6.	 What is predictive maintenance analysis?

Q11.7.	 What is remaining useful life?

Q11.8.	 What is anomaly detection?

Q11.9.	 What is fraud detection?

Q11.10.	 What is KerasClassifier?

Q11.11.	 What is KerasRegressor?

Q11.12.	 What is a SQL database?

Q11.13.	 What is a NoSQL database?

Q11.14.	 What is an immutable database?

C H A P T E R

613

12

C H A P T E R O U T L I N E

12.1 Introduction
12.2 AI with Graphics Processing Unit
12.3 AI with Tensor Processing Unit
12.4 AI with Intelligence Processing Unit
12.5 AI with Cloud Computing
12.6 Web-Based AI
12.7 Packaging the Code
12.8 AI with Edge Computing (Raspberry Pi, Google TPU Kit)
12.9 Create a Mobile AI App
12.10 Quantum AI
12.11 Summary
12.12 Chapter Review Questions

Advanced AI Computing
“AI is neither good nor evil. It’s a tool. It’s a technology for us to use.”

—Oren Etzioni (American computer scientist)

12.1  Introduction

Artificial intelligence algorithms are often computationally intensive and
resource hungry; therefore, they are commonly run on graphic processing
units (GPUs) and tensor processing units (TPUs). GPU and TPU hardware

614	 Part III ■ AI Applications

are often expensive; therefore, it is popular to utilize GPU and TPU capabil-
ities through online platforms such as Google Colab and Kaggle.

Apart from running artificial intelligence algorithms on local computers,
laptops, or desktops, artificial intelligence algorithms are also being increas-
ingly run on remote servers; this is called cloud computing, or cloud AI. Whey
they run on embedded devices, such as Raspberry Pi, microcontrollers, or
your mobile phones, this is called edge computing, or edge AI.

Cloud AI and edge AI are getting more attention due to the fast development
of the Internet of Things (IoT).

In this chapter, we will first introduce AI with GPUs and TPUs and then
introduce cloud AI; we’ll also show how to develop web-based AI applica-
tions. We will also cover packaging your AI code, using Kubernetes (K8s)
and Docker, understanding edge AI, developing mobile AI applications, and
finally understanding quantum AI.

12.2  AI with Graphics Processing Unit

A GPU is an electronic graphics acceleration card, a term popularized by
Nvidia. Unlike a CPU, which is designed to perform general-purpose com-
puting and sequential computing tasks, a GPU is designed for processing large
blocks of data in parallel. Figure 12.1 shows the key differences between CPU
and GPU architectures, where a GPU has a vast number of arithmetic logic
units (ALUs). GPUs were originally designed for gaming for fast processing the
images and now is being increasingly used for AI, due to its massive parallel
data processing capabilities. It is fair to say that GPU has ignited a worldwide
AI boom and has become a key part of modern supercomputing infrastructure.

The following shows the NVidia website for its latest GeForce RTX 3080 GPU.

https://www.nvidia.com/en-gb/geforce/graphics-cards/30-series/

rtx-3080/

Figure 12.1: The CPU and GPU architectures where GPU has a vast number of ALUs

https://www.nvidia.com/en-gb/geforce/graphics-cards/30-series/rtx-3080/
https://www.nvidia.com/en-gb/geforce/graphics-cards/30-series/rtx-3080/

	 Chapter 12 ■ Advanced AI Computing	 615

Figure 12.2 shows the Dive to Deep Learning (D2L) website for select-
ing servers and GPUs for AI computing. For the chart you can see the best
performance for the price is the NVidia GTX 9XX series and then the GTX
10XX series, RTX 20XX. The Titan series gives the best performance but also
is the most expensive option.

According to the following article, the best GPU performance per dollar is
the latest NVidia GeForce RTX 3080 (10GB):

https://timdettmers.com/2020/09/07/which-gpu-for-deep-learning/

To use GPUs on your local computer, you need to follow these steps:

1.	 Download and install the Nvidia GPU drivers.

https://www.nvidia.com/Download/index.aspx

2.	 Download and install the Nvidia CUDA Toolkit.

https://developer.nvidia.com/cuda-toolkit

3.	 Download and install the GPU and install the cuDNN library.

https://docs.nvidia.com/deeplearning/cudnn/install-guide/index

.html

4.	 Install the TensorFlow-GPU library.

https://www.tensorflow.org/install/gpu

Figure 12.2: The D2L website for servers and GPU selection
(Source: https://d2l.ai/chapter_appendix-tools-for-deep-learning/
selecting-servers-gpus.html)

https://timdettmers.com/2020/09/07/which-gpu-for-deep-learning/
https://www.nvidia.com/Download/index.aspx
https://developer.nvidia.com/cuda-toolkit
https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html
https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html
https://www.tensorflow.org/install/gpu
https://d2l.ai/chapter_appendix-tools-for-deep-learning/selecting-servers-gpus.html
https://d2l.ai/chapter_appendix-tools-for-deep-learning/selecting-servers-gpus.html

616	 Part III ■ AI Applications

After installation, you can run the code shown in Example 12.1 to test if GPUs
are working for TensorFlow, Keras, or PyTorch. Example 12.1 shows a simple
GPU test example.

EXAMPLE 12.1:  THE GPUTest.PY PROGRAM

Example 12.1 GPUTest.py
Check TensorFlow with GPU
from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())

Check Keras with GPU
from keras import backend as K
print(K. _get_available_gpus())

#Check PyTorch with GPU
import torch
print(torch.cuda.is_available())
print(torch.cuda.get_device_name())

EXERCISE 12.1

From a web browser, log in to your Google Colab account or Kaggle account, run the
previous code, and comment on the results.

For more details about GPU for AI computing, see the following:

https://developer.nvidia.com/deep-learning

https://www.quora.com/What-is-currently-the-best-GPU-for-deep-

learning

https://lambdalabs.com/blog/choosing-a-gpu-for-deep-learning/

https://www.tomshardware.com/uk/reviews/gpu-buying-guide,5844.html

The following shows the Google Colab Notebook example for using Tensor-
Flow with GPU.

https://colab.research.google.com/notebooks/gpu.ipynb

Example 12.2 shows a simple GPU test example, which not only shows what
GPU you have on your computer but also shows how long it takes to run a
simple MNIST data classification code on GPU and on CPU.

EXAMPLE 12.2:  THE GPUTest2.py PROGRAM

Example 12.2 GPUTest2.ipynb
#import tensorflow and print the version
import tensorflow as tf
print(tf.__version__)

https://developer.nvidia.com/deep-learning
https://www.quora.com/What-is-currently-the-best-GPU-for-deep-learning
https://www.quora.com/What-is-currently-the-best-GPU-for-deep-learning
https://lambdalabs.com/blog/choosing-a-gpu-for-deep-learning/
https://www.tomshardware.com/uk/reviews/gpu-buying-guide,5844.html
https://colab.research.google.com/notebooks/gpu.ipynb

	 Chapter 12 ■ Advanced AI Computing	 617

#Display GPU info
device_name = tf.test.gpu_device_name()
if device_name != '/device:GPU:0':
 raise SystemError('GPU device not found')
print('Found GPU at: {}'.format(device_name))

import time
def current_milli_time():
 return round(time.time() * 1000)

#Test MNIST data on GPU
t0 = current_milli_time()
mnist=tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test/255.0
with tf.device('/GPU:0'):
 model=tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input_shape=(28,28)),
 tf.keras.layers.Dense(512, activation=tf.nn.relu),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
 model.compile(optimizer='adam',
 loss='sparse_categorical_crossentropy')
 # metices=['accuracy'])
 model.fit(x_train, y_train, epochs=5)
 model.evaluate(x_test, y_test)
 dt = current_milli_time() - t0
 print("time: ",dt)

 #Test MNIST data on CPU
 t0 = current_milli_time()
 with tf.device('/CPU:0'):
 model=tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input_shape=(28,28)),
 tf.keras.layers.Dense(512, activation=tf.nn.relu),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
 model.compile(optimizer='adam',
 loss='sparse_categorical_crossentropy')
 model.fit(x_train, y_train, epochs=5)
 model.evaluate(x_test, y_test)
 dt = current_milli_time() - t0
 print("time: ",dt)

from tensorflow.python.client import device_lib
device_lib.list_local_devices()

618	 Part III ■ AI Applications

EXERCISE 12.2

From a web browser, log in to your Google Colab account or Kaggle account, run the
previous code, and comment on the results.

12.3  AI with Tensor Processing Unit

A TPU is a new type of hardware developed by Google for the purpose of AI
computing. It is specially designed for tensor operations. In AI computing,
a tensor is a multidimensional object that describes a multilinear relationship
between sets of algebraic objects related to a vector space. Figure 12.3 shows
the differences between scalars, vectors, matrixes, and tensors.

Figure 12.4 shows the Google Cloud website for TPU architecture.

Figure 12.3: The differences between scalars, vectors, matrixes, and tensors

Figure 12.4: The Google Cloud website for TPU architecture
(Source: https://cloud.google.com/tpu/docs/system-architecture)

https://cloud.google.com/tpu/docs/system-architecture

	 Chapter 12 ■ Advanced AI Computing	 619

The following shows the Google Colab Notebook example for using TPUs
in Colab. It uses a flower classification example to show how to use TPUs in
Google Colab for training models as well as performing classifications.

https://colab.research.google.com/notebooks/tpu.ipynb

Example 12.3 shows a simple TPU test example, which first initializes the
TPUs, displays the TPUs information, and then performs a simple matrix
calculation on TPUs and CPUs. You need to upload this code to your Google
Colab to run it.

EXAMPLE 12.3:  THE TPU_TEST.PY PROGRAM

Example 12.3 TPU Test
#import tensorflow and print the version
import tensorflow as tf
print(tf.__version__)

#Display TPU info
resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='')
tf.config.experimental_connect_to_cluster(resolver)
This is the TPU initialization code that has to be at the
beginning.
tf.tpu.experimental.initialize_tpu_system(resolver)
print("All devices: ", tf.config.list_logical_devices('TPU'))

import time
def current_milli_time():
 return round(time.time() * 1000)

#Test Matrix calculation on TPU
t0 = current_milli_time()
a = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
b = tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
with tf.device('/TPU:0'):
 c = tf.matmul(a, b)
print("c device: ", c.device)
print(c)
dt = current_milli_time() - t0
print("TPU time: ",dt)

#Test calculation on CPU
t0 = current_milli_time()
a = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
b = tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
with tf.device('/CPU:0'):
 c = tf.matmul(a, b)
print("c device: ", c.device)
print(c)

https://colab.research.google.com/notebooks/tpu.ipynb

620	 Part III ■ AI Applications

dt = current_milli_time() - t0
print("CPU time: ",dt)

#Display the CPU GPU TPU information
from tensorflow.python.client import device_lib
device_lib.list_local_devices()

EXERCISE 12.3

From a web browser, log in to your Google Colab account, run the previous code, and
comment on the results.

For more information about TPUs, check the following:

https://www.kdnuggets.com/2019/03/train-keras-model-20x-faster-

tpu-free.html

The following is a quick comparison of CPU, GPU, and TPU:

Performance

■■ A CPU can handle tens of operations per cycle.

■■ A GPU can handle tens of thousands of operations per cycle.

■■ A TPU can handle up to 128,000 operations per cycle.

Purpose

■■ A CPU is a processor designed to solve a general-purpose computational
problem. The cache and memory are also designed to be optimal for
general programming problems.

■■ A GPU is a processor designed to accelerate the rendering of graphics. It
also has been used for machine learning model training and inference.

■■ A TPU is a processor designed to accelerate deep learning tasks devel-
oped using TensorFlow. It is not for general-purpose programming.

AI Computing

■■ A CPU achieves the highest floating-point operations per second (FLOPS)
utilization for RNNs and supports the largest model because of a large
memory capacity.

■■ A GPU is optimized for training a model in deep learning requires a huge
amount of parallel data, due to its parallel computing capability.

■■ A TPU is highly optimized for large batches and CNNs and has the high-
est training throughput.

https://www.kdnuggets.com/2019/03/train-keras-model-20x-faster-tpu-free.html
https://www.kdnuggets.com/2019/03/train-keras-model-20x-faster-tpu-free.html

	 Chapter 12 ■ Advanced AI Computing	 621

Manufacturers

■■ CPU: Intel, AMD, Qualcomm, NVIDIA, IBM, Samsung, Hewlett-Packard,
VIA, Atmel and many others

■■ GPU: NVIDIA, AMD, Broadcom Limited, Imagination Technologies
(PowerVR)

■■ TPU: Google

12.4  AI with Intelligence Processing Unit

As discussed in Chapter 1, an intelligence processing unit (IPU) is a new form
of artificial intelligence computing infrastructure, developed by Graphcore, a
company based in Bristol, United Kingdom. An IPU has shown improved per-
formances and is more cost effective than the traditional GPU. It is particularly
suitable for natural language processing and computer vision.

Graphcore’s entry-level product is the IPU-Machine: IPU-M2000. It is built
with the powerful Colossus MK2 IPU, packed with 1 petaFLOP of AI compute
with up to 526GB Exchange-Memory in a slim 1U blade.

The IPU-Machine: IPU-M2000  https://www.graphcore.ai/products/

mk2/ipu-m2000-ipu-pod4

There are also more advanced products, such as IPU-POD16, which is
basically preconfigured with a four-petaFLOPS AI system, and IPU-POD64,
which is a 16-petaFLOPS AI system. See the following links for details:

https://www.graphcore.ai/products/mk2/ipu-pod16

https://www.graphcore.ai/products/mk2/ipu-pod64

Graphcore provides a cloud-based AI computing service called Graph-
cloud, which is a secure, cloud-based, commercial machine learning
(ML) platform running on Graphcore MK2 IPU-POD systems hosted
by Cirrascale in partnership with Graphcore and available to customers
worldwide.

Graphcloud  https://www.graphcore.ai/graphcloud

Graphcore also runs an academic program, which is designed to support
professors, researchers, principal investigators, and graduate students
conducting and publishing research using IPUs or in their coursework or
teaching.

■■ Graphcore academic program:
https://www.graphcore.ai/academic

■■ Graphcore resources:
https://www.graphcore.ai/resources

■■ Graphcore software documents:
https://docs.graphcore.ai/en/latest/

https://www.graphcore.ai/products/mk2/ipu-m2000-ipu-pod4
https://www.graphcore.ai/products/mk2/ipu-m2000-ipu-pod4
https://www.graphcore.ai/products/mk2/ipu-pod16
https://www.graphcore.ai/products/mk2/ipu-pod64
https://www.graphcore.ai/graphcloud
https://www.graphcore.ai/academic
https://www.graphcore.ai/resources
https://docs.graphcore.ai/en/latest/

622	 Part III ■ AI Applications

12.5  AI with Cloud Computing

Cloud computing is the online computing platform that provides services such
as virtual machines (VMs) (Linux or Windows), databases (SQL and NoSQL),
storage, applications, and other services, typically with pay-as-you-go pric-
ing. Cloud computing is no doubt the future, with more and more businesses
relying on cloud computing. The largest three clouding computing providers
are Amazon AWS, Microsoft Azure, and Google GCP, followed by IBM, Oracle,
Baidu, and others.

Cloud computing typically offers their services according to the following
three standard models:

■■ Infrastructure as a service (IaaS)

■■ Platform as a service (PaaS)

■■ Software as a service (SaaS)

Figure 12.5 shows the differences between on-premises, infrastructure as a
service (IaaS), platform as a service (PaaS), and software as a service (SaaS). On-
premises is the traditional way of providing computing services, in which the
organization is responsible for all the hardware and software; this approach can
be expensive and difficult to scale. With cloud computing, the organization can
choose IaaS, PaaS, or SaaS, according to its requirements. This can be cheaper,
more flexible, and easier to scale.

Figure 12.5: The differences between on-premises, IaaS, PaaS, and SaaS

	 Chapter 12 ■ Advanced AI Computing	 623

12.5.1  Amazon AWS
Amazon Web Services (Amazon AWS) is the largest cloud computing provider.
Started in 2006, Amazon AWS provides more than 175 services, in 190 countries
around the world.

The following shows the Amazon AWS website for machine learning.

https://aws.amazon.com/machine-learning/

To use Amazon AWS, first you need to create a free AWS account; it might
ask for your bank information, but it is free for one year:

https://aws.amazon.com/free/

The following are a list of tasks I recommend for getting familiar with
Amazon AWS.

Please remember to do each task within the same day, and when you finish,
delete the services you created; otherwise, you might get charged.

Task 1 Run a serverless Hello, World! with AWS Lambda.
https://aws.amazon.com/getting-started/hands-on/run-serverless-code/

Task 2 Store and retrieve a file.
https://aws.amazon.com/getting-started/hands-on/backup-files-

to-amazon-s3/

Task 3 Remotely run commands on an EC2 instance with AWS systems
Manager.
https://aws.amazon.com/getting-started/hands-on/remotely-run-

commands-ec2-instance-systems-manager/

Task 4 Create and query a NoSQL table with Amazon DynamoDB.
https://aws.amazon.com/getting-started/hands-on/create-nosql-table/

Task 5 Detect, analyze, and compare faces with Amazon Rekognition.
https://aws.amazon.com/getting-started/hands-on/detect-analyze-

compare-faces-rekognition/

Task 6 Create an audio transcript with Amazon Transcribe.
https://aws.amazon.com/getting-started/hands-on/create-audio-

transcript-transcribe/

Task 7 Analyze sentiment in text with Amazon Comprehend.
https://aws.amazon.com/getting-started/hands-on/analyze-sentiment-

comprehend/

Task 8 Create a simple web application using AWS Amplify.
https://aws.amazon.com/getting-started/hands-on/deploy-react-app-

cicd-amplify/

https://aws.amazon.com/machine-learning/
https://aws.amazon.com/free/
https://aws.amazon.com/getting-started/hands-on/run-serverless-code/
https://aws.amazon.com/getting-started/hands-on/backup-files-to-amazon-s3/
https://aws.amazon.com/getting-started/hands-on/backup-files-to-amazon-s3/
https://aws.amazon.com/getting-started/hands-on/remotely-run-commands-ec2-instance-systems-manager/
https://aws.amazon.com/getting-started/hands-on/remotely-run-commands-ec2-instance-systems-manager/
https://aws.amazon.com/getting-started/hands-on/create-nosql-table/
https://aws.amazon.com/getting-started/hands-on/detect-analyze-compare-faces-rekognition/
https://aws.amazon.com/getting-started/hands-on/detect-analyze-compare-faces-rekognition/
https://aws.amazon.com/getting-started/hands-on/create-audio-transcript-transcribe/
https://aws.amazon.com/getting-started/hands-on/create-audio-transcript-transcribe/
https://aws.amazon.com/getting-started/hands-on/analyze-sentiment-comprehend/
https://aws.amazon.com/getting-started/hands-on/analyze-sentiment-comprehend/
https://aws.amazon.com/getting-started/hands-on/deploy-react-app-cicd-amplify/
https://aws.amazon.com/getting-started/hands-on/deploy-react-app-cicd-amplify/

624	 Part III ■ AI Applications

Please note the following tasks using Amazon Lightsail, which is free for
one month only:
Task 9 Launch and configure a WordPress instance with Amazon Lightsail.
https://aws.amazon.com/getting-started/hands-on/launch-a-wordpress-

website/?trk=gs_card

Task 10 Launch a Linux virtual machine with Amazon Lightsail.
https://aws.amazon.com/getting-started/hands-on/launch-a-virtual-

machine/

Task 11 Launch a Windows virtual machine in Amazon Lightsail.
https://aws.amazon.com/getting-started/hands-on/launch-windows-vm/

Also, here is a PDF version of the AWS Getting Started guide:

https://awsdocs.s3.amazonaws.com/gettingstarted/latest/

awsgsg-intro.pdf

Here are a few YouTube links from Simplilearn and Edureka! to get started:

https://www.youtube.com/watch?v=r4YIdn2eTm4&list=PLEiEAq2VkUULlN

tIFhEQHo8gacvme35rz

https://www.youtube.com/watch?time_continue=15&v=RY5FdAk7jp4&

feature=emb_logo

https://www.youtube.com/watch?v=k1RI5locZE4

12.5.2  Microsoft Azure
Microsoft Azure is a cloud computing platform, launched in February 2010. It
is an open and flexible cloud platform that helps in development, data storage,
service hosting, and service management. Microsoft Azure has more than
50 worldwide data centers, and 90 percent of Fortune 500 companies now rely
on Microsoft Azure.

The following shows the Microsoft Azure website.

https://azure.microsoft.com/en-us/

To get started with Microsoft Azure, you can also apply for a 12-month free
account. The following are the Microsoft Azure sites for machine learning, as
well as a step-by-step tutorial on how to create no-code predictive models with
Azure machine learning.

https://azure.microsoft.com/en-gb/services/machine-learning/

https://docs.microsoft.com/en-us/learn/paths/create-no-code-

predictive-models-azure-machine-learning/

https://aws.amazon.com/getting-started/hands-on/launch-a-wordpress-website/?trk=gs_card
https://aws.amazon.com/getting-started/hands-on/launch-a-wordpress-website/?trk=gs_card
https://aws.amazon.com/getting-started/hands-on/launch-a-virtual-machine/
https://aws.amazon.com/getting-started/hands-on/launch-a-virtual-machine/
https://aws.amazon.com/getting-started/hands-on/launch-windows-vm/
http://awsdocs.s3.amazonaws.com/gettingstarted/latest/awsgsg-intro.pdf
http://awsdocs.s3.amazonaws.com/gettingstarted/latest/awsgsg-intro.pdf
https://www.youtube.com/watch?v=r4YIdn2eTm4&list=PLEiEAq2VkUULlNtIFhEQHo8gacvme35rz
https://www.youtube.com/watch?v=r4YIdn2eTm4&list=PLEiEAq2VkUULlNtIFhEQHo8gacvme35rz
https://www.youtube.com/watch?time_continue=15&v=RY5FdAk7jp4&feature=emb_logo
https://www.youtube.com/watch?time_continue=15&v=RY5FdAk7jp4&feature=emb_logo
https://www.youtube.com/watch?v=k1RI5locZE4
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-gb/services/machine-learning/
https://docs.microsoft.com/en-us/learn/paths/create-no-code-predictive-models-azure-machine-learning/
https://docs.microsoft.com/en-us/learn/paths/create-no-code-predictive-models-azure-machine-learning/

	 Chapter 12 ■ Advanced AI Computing	 625

The following are some more tutorials about Microsoft Azure:

https://www.tutorialspoint.com/microsoft_azure/index.htm

https://mindmajix.com/microsoft-azure-tutorial

12.5.3  Google Cloud Platform
Google Cloud Platform (GCP) is relatively new and relatively small compared
with Amazon AWS and Microsoft Azure. Started in 2011, Google GCP pro-
vides a suite of cloud computing services including computing, data storage,
data analytics, and machine learning. Google Cloud Platform is available in
24 regions and 73 zones around the world. The following shows the Google
GCP website.

https://cloud.google.com/gcp/getting-started

The following are some interesting tutorials:
https://www.freecodecamp.org/news/google-cloud-platform-from-

zero-to-hero/

https://www.javatpoint.com/google-cloud-platform

https://www.edureka.co/blog/google-cloud-platform-tutorial/

12.5.4  Comparison of AWS, Azure, and GCP
The following are some major differences between Amazon AWS versus
Microsoft Azure versus Google Cloud Platform (GCP):

■■ Amazon AWS charges for its VMs per hour. It uses a pay-as-you-go
model. Microsoft Azure VMs are charged per minute. Google GCP VMs
are charged per minute.

■■ Amazon AWS uses ECS as Docker management, while Microsoft Azure
uses Container Services, and Google GCP uses Container Engine.

■■ Amazon AWS uses the Glacier for archive storage. Microsoft Azure uses
Archive Storage, and Google GCP uses Coldline Storage.

■■ Amazon AWS uses Amazon Cloud Search for the search service.
Microsoft Azure uses Azure Search. Google GCP uses Google Cloud
Search.

■■ Amazon AWS uses Amazon Kinesis for analytics. Microsoft Azure uses
Azure Stream Analytics. Google GCP uses Cloud Dataflow and Cloud
Data prepare for analytics.

■■ Amazon AWS uses AWS OpsWorks for automation. Microsoft Azure uses
Azure Automation. Google GCP uses Compute Engine management with
Puppet, Chef, and so on.

https://www.tutorialspoint.com/microsoft_azure/index.htm
https://mindmajix.com/microsoft-azure-tutorial
https://cloud.google.com/gcp/getting-started
https://www.freecodecamp.org/news/google-cloud-platform-from-zero-to-hero/
https://www.freecodecamp.org/news/google-cloud-platform-from-zero-to-hero/
https://www.javatpoint.com/google-cloud-platform
https://www.edureka.co/blog/google-cloud-platform-tutorial/

626	 Part III ■ AI Applications

■■ Amazon AWS uses AWS cloud HSM compliance. Microsoft Azure uses
the Azure Trust Center. Google GCP uses Cloud Platform Security for
compliance.

■■ Amazon AWS uses the AWS key management service for security creden-
tials. Microsoft Azure uses Azure Key Vault. Google GCP uses Google
Cloud Platform Security.

Table 12.1 compares the top features between AWS versus Azure versus GCP.

Table 12.1: Top Feature Comparison Between AWS vs. Azure vs. GCP

FEATURES AWS AZURE GCP

Website https://aws
.amazon.com

https://azure
.microsoft.com

https://cloud
.google.com

Revenue (2020) $12B $8B $2B

Market share (2019) 33% 18% 8%

Global coverage Regions: 25

Zones: 80

Countries: 245

Regions: 60+

Countries: 140

Regions: 24

Zone: 73

Countries: 35

High-profile
customers

Netflix

Unilever

Samsung

MI

Airbnb

BMW

ESPN

AstraZeneca

Financial Times

Dow Jones

Nasdaq

Nike

Pfizer

McDonald’s

eBay

Apple

Pixar

HP

Honeywell

Pearson

Ford

NBC News

Easyjet

HSBC

Snapchat

HTC

Phillips

Spotify

Number of services 212 100+ 60+

Processors 128 128 96

https://aws.amazon.com
https://aws.amazon.com
https://azure.microsoft.com
https://azure.microsoft.com
https://cloud.google.com
https://cloud.google.com

	 Chapter 12 ■ Advanced AI Computing	 627

Table 12.2 compares the compute services between AWS versus Azure versus
GCP.

Table 12.3 shows the storage services comparison between AWS versus Azure
versus GCP.

Table 12.2: Compute Services Comparison Between AWS vs. Azure vs. GCP

COMPUTE
SERVICES AWS AZURE GCP

Infrastructure as a
service

Amazon EC2 Virtual Machines Google Compute
Engine

Platform as a service AWS Elastic
Beanstalk

App Service and
Cloud Services

Google App Engine

Container services Amazon Elastic
Container Service

Azure Kubernetes
Service or AKS

Google Kubernetes
Engine

Serverless
computing

Amazon Lambda Azure Functions Cloud Functions

Media services Amazon Elastic
Transcoder

Azure Media
Services

Cloud Video
Intelligence API

AI/ML 1) SageMaker

2) Comprehend

3) Lex

4) Polly

5) Rekognition

6) Machine Learning

7) Translate

8) Transcribe

9) DeepLens

10) Deep Learning
AMIs

11) Apache MXNet
on AWS

12) TensorFlow on
AWS

1) Machine Learning

2) Azure Bot Service

3) Cognitive
Services

1) Cloud Machine
Learning Engine

2) Dialogflow
Enterprise Edition

5) Cloud Natural
Language

6) Cloud Speech API

7) Cloud Translation
API

8) Cloud Video
Intelligence

9) Cloud Job
Discovery (Private
Beta)

628	 Part III ■ AI Applications

Table 12.4 shows the database services comparison between AWS versus
Azure versus GCP.

Table 12.5 compares the pricing between AWS versus Azure versus GCP.

Table 12.3: Storage Comparison Between AWS vs. Azure vs. GCP

STORAGE AWS AZURE GCP

Object storage Amazon S3 Azure Disk Storage Google Cloud
Storage

Block store Amazon EBS Azure Blob Storage Google Compute
Engine (Persistent
Disks)

Archival/cold
storage

Amazon Glacier Azure Archive Blob
Storage

Google Nearline/
Coldline

File system storage Amazon EFS Azure File Storage Google ZFS

Table 12.4: Database Comparison Between AWS vs. Azure vs. GCP

DATABASE AWS AZURE GCP

Relation DB Amazon RDS SQL DB Google Cloud SQL

NoSQL DB:
Key-value

Amazon DynamoDB Table Storage Google Cloud
Datastore, Google
Cloud Bigtable

NoSQL DB: With
Indexing

Amazon SimpleDB Azure Cosmos DB Google Cloud
Datastore

Relation DB Amazon RDS SQL DB Google Cloud SQL

Table 12.5: Pricing Comparison Between AWS vs. Azure vs. GCP

PRICING AWS AZURE GCP

A small virtual
instance with
minimum RAM
and virtual CPU

$69 per month $70 to 75 per month $50 to 55 per
month

A small virtual
instance with
4TB of RAM,
and around
128 virtual
CPUs

$2,700 to $3,000 per
month

$5,000 per month $3,800 to $4,000
per month

Price calculator https://
calculator
.s3.amazonaws
.com/index.html

https://azure
.microsoft.com/
en-gb/pricing/
calculator/
?cdn=disable

https://
cloud
.google.com/
products/
calculator/

https://calculator.s3.amazonaws.com/index.html
https://calculator.s3.amazonaws.com/index.html
https://calculator.s3.amazonaws.com/index.html
https://calculator.s3.amazonaws.com/index.html
https://azure.microsoft.com/en-gb/pricing/calculator/?cdn=disable
https://azure.microsoft.com/en-gb/pricing/calculator/?cdn=disable
https://azure.microsoft.com/en-gb/pricing/calculator/?cdn=disable
https://azure.microsoft.com/en-gb/pricing/calculator/?cdn=disable
https://azure.microsoft.com/en-gb/pricing/calculator/?cdn=disable
https://cloud.google.com/products/calculator/
https://cloud.google.com/products/calculator/
https://cloud.google.com/products/calculator/
https://cloud.google.com/products/calculator/
https://cloud.google.com/products/calculator/

	 Chapter 12 ■ Advanced AI Computing	 629

12.6  Web-Based AI

As we saw earlier, web-based applications, or web apps, have become increas-
ingly popular. Different from traditional static web pages, or dynamic web
pages developed with PHP or JSP or ASP, web apps run like mobile apps and
can automatically adjust the layout to fit the mobile device. With Python, you
can develop web apps with several libraries, such as Django, Flask, Streamlit,
and so on. With web apps, you don’t need to worry about the version of program-
ming language and the version of libraries or frameworks, and there is no need
to have the hassles of installing any software on your computer. All these make
the web apps particularly suitable for AI applications.

12.6.1  Django
Django is a Python-based powerful comprehensive web framework, built by
experienced developers. Django claims it makes it easier to build better web
apps more quickly and with less code. Django is free and open source. It is also
ridiculously fast, reassuringly secure, and exceedingly scalable.

The following are the Django website and some tutorials:

https://www.djangoproject.com/

https://docs.djangoproject.com/en/3.1/intro/tutorial01/

https://realpython.com/lessons/web-frameworks-and-django/

https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django

12.6.2  Flask
Flask is a lightweight web framework written in Python. It is designed to make
web apps quick and easy, with the ability to scale up to complex applications. It
has become one of the most popular Python web app frameworks. If you think
of Django as a toolbox, Flask is just a hammer. Django provides a complete full
set of functionalities, and Flask provides just a few simple functions.

The following shows the Full Stack Python Flask website.

https://www.fullstackpython.com/flask.html

The following are the Flask documentation website and Quick Start tutorials:

https://flask.palletsprojects.com/en/1.1.x/

https://flask.palletsprojects.com/en/1.1.x/quickstart/#quickstart

Example 12.4 shows a simple Flask web app program, which simply prints
“Hello World” on the web page.

https://www.djangoproject.com/
https://docs.djangoproject.com/en/3.1/intro/tutorial01/
https://realpython.com/lessons/web-frameworks-and-django/
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django
https://www.fullstackpython.com/flask.html
https://flask.palletsprojects.com/en/1.1.x/
https://flask.palletsprojects.com/en/1.1.x/quickstart/#quickstart

630	 Part III ■ AI Applications

EXAMPLE 12.4:  THE FlaskApp.PY PROGRAM

Example 12.4
from flask import Flask
app = Flask(__name__)

@app.route('/')
def hello_world():
 return 'Hello, World!'

if __name__ == '__main__':
 app.run()

To run the program, just type the following command at the Windows
command prompt:

C:\>python FlaskApp.py

The following is the corresponding output, which indicates the Flask
web server is running on the following uniform resource locator (URL):
http://127.0.0.1:5000/.

* Serving Flask app "FlaskApp" (lazy loading)
 * Environment: production
 WARNING: This is a development server. Do not use it in a
nt.
 Use a production WSGI server instead.
 * Debug mode: off
 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

From a web browser, copy and paste the URL http://127.0.0.1:5000/;
you will see “Hello World” has been displayed on the web page, as shown in
Figure 12.6.

Figure 12.6: The web page output of the FlaskApp.py program

http://127.0.0.1:5000/
http://127.0.0.1:5000/

	 Chapter 12 ■ Advanced AI Computing	 631

Example 12.5 is an improved version of the previous Flask web app program,
which will run the web service at http://127.0.0.1:5000/hello/<name>. Then
it will print “Hello <name>” on the web page, where <name> is a name you
change with the URL.

EXAMPLE 12.5:  THE FlaskApp2.PY PROGRAM

Example 12.5
from flask import Flask
app = Flask(__name__)

routing the decorator function hello_name
@app.route('/hello/<name>')
def hello_name(name):
 return 'Hello %s!' % name

if __name__ == '__main__':
 app.run(debug = True)

Figure 12.7 shows the web page output of the FlaskApp2.py program.

Example 12.6 shows another version of the Flask web app program, which
will run the web service at http://127.0.0.1:5000/. But it displays the web
page from a file called index.html located in a folder called template.

EXAMPLE 12.6:  THE FlaskApp2.PY PROGRAM

Example 12.6
from flask import Flask, render_template
app = Flask(__name__)

@app.route("/")
def index():
 return render_template("index.html")

if __name__ == '__main__':
 app.run(debug = True)

Figure 12.7: The web page output of the FlaskApp2.py program

http://127.0.0.1:5000/hello/<name>
http://127.0.0.1:5000/

632	 Part III ■ AI Applications

This is the file structure of the program:

flask/
 |-->FlaskApp2.py
 |-->template/
 |-->index.html

EXERCISE 12.4

Modify the previous code, add another web page called help.html, load the web
page when the URL is http://127.0.0.1:5000/help/, run the previous code,
and comment on the results.

Example 12.7 shows the webcam version of the Flask web app program,
which will display the webcam live stream images through the web service at
http://127.0.0.1:5000/. It has three files, FlaskWebcam.py, camera.py, and
indexwc.html, located in a folder called template.

EXAMPLE 12.7:  THE FlaskWebcam.PY PROGRAM

Example 12.7

from flask import Flask, render_template, Response
from camera import VideoCamera

app = Flask(__name__)

@app.route('/')
def index():
 return render_template('indexwc.html')

def gen(camera):
 while True:
 frame = camera.get_frame()
 yield (b'--frame\r\n'
 b'Content-Type: image/jpeg\r\n\r\n' + frame +
b'\r\n\r\n')

@app.route('/video_feed')
def video_feed():
 return Response(gen(VideoCamera()),
 mimetype='multipart/x-mixed-replace;
boundary=frame')

if __name__ == '__main__':
 app.run(host='0.0.0.0', debug=True)

http://127.0.0.1:5000/help/
http://127.0.0.1:5000/

	 Chapter 12 ■ Advanced AI Computing	 633

The camera.py file defines the Webcam class, as shown in Example 12.8.

EXAMPLE 12.8:  THE CAMERA.PY PROGRAM

Example 12.8
import cv2

class VideoCamera(object):
 def __init__(self):
 self.video = cv2.VideoCapture(0)

 def __del__(self):
 self.video.release()

 def get_frame(self):
 success, image = self.video.read()
 ret, jpeg = cv2.imencode('.jpg', image)
 return jpeg.tobytes()

The indexwc.html file specifies the web page, as shown in Example 12.9.

EXAMPLE 12.9:  THE INDEXWC.HTML PROGRAM

Example 12.9
<html>
 <head>
 <title>Video Streaming Demonstration</title>
 </head>
 <body>
 <h1>Video Streaming Demonstration</h1>

 </body>
</html>

The following is the file structure:

flask/
 |-->FlaskWebcam.py
 |-->camera.py
 |-->template/
 |-->indexwc.html

Figure 12.8 shows the web page output. As you can see, it has the webcam
live stream within the page.

634	 Part III ■ AI Applications

EXERCISE 12.5

Modify the previous code so that it converts the webcam images to grayscale first and
then displays it on the web page, run the previous code, and comment on the results.

The following links show some more tutorials on deep learning web app
deployment with Flask:

https://www.kdnuggets.com/2020/05/build-deploy-machine-learning-

web-app.html

https://realpython.com/flask-by-example-part-3-text-processing-

with-requests-beautifulsoup-nltk/

12.6.3  Streamlit
Streamlit is my favorite library for creating Python web apps. It is simple and
fast, and best of all, it is purposely designed for creating machine learning
applications. It also allows you to share your project online. We have seen many
Streamlit examples throughout the chapters, so we will not cover more here.
For more details, see the following:

https://streamlit.io/

https://share.streamlit.io/

12.6.4  Other Libraries
There are libraries for developing web-based AI applications, such as ML5.js
and TensorFlow.js, both based on JavaScript.

Figure 12.8: The web page output of the FlaskWebcam.py program

https://www.kdnuggets.com/2020/05/build-deploy-machine-learning-web-app.html
https://www.kdnuggets.com/2020/05/build-deploy-machine-learning-web-app.html
https://realpython.com/flask-by-example-part-3-text-processing-with-requests-beautifulsoup-nltk/
https://realpython.com/flask-by-example-part-3-text-processing-with-requests-beautifulsoup-nltk/
https://streamlit.io/
https://share.streamlit.io/

	 Chapter 12 ■ Advanced AI Computing	 635

As shown in Chapter 8, ML5.js is an impressive, friendly machine learning
web framework, which provides many interesting AI models; it also allows you
to edit and run the code online.

https://learn.ml5js.org/#/

https://editor.p5js.org/ml5/sketches/

TensorFlow.js is a library for machine learning in JavaScript, which allows
you to run AI models directly in a web browser or in Node.js.

https://www.tensorflow.org/js

12.7  Packaging the Code

After you have developed your code, you can package your code to give it to
others to use. Packaging the code is important and useful, as it makes it easier
for the other people to use it without the hassle of rebuilding the application.
It can also protect your source code if you choose not to give it away. In this
section, we will introduce several popular ways of packaging your code.

Pyinstaller
Pyinstaller is probably the most powerful tool to convert your Python program
into EXE files. In addition to Windows, it also supports Unix/Linux and
macOS. Pyinstaller allows you to bundle your Python application and all its
dependencies into a single package. You can then run the packaged app without
installing a Python interpreter or any modules. Using it is also remarkably
simple; just install it first and run the Pyinstaller on your Python file.

pip install pyinstaller
pyinstaller yourprogram.py

For more details, see the following:

https://www.pyinstaller.org/

https://pypi.org/project/pyinstaller/

Nbconvert
Nbconvert is a simple library that can convert IPython Jupyter files (.ipynb)
to Python files (.py) and then from Python files (.py) to executable files (.exe).

You need to install two libraries:

pip install ipython
pip install nbconvert

https://learn.ml5js.org/#/
https://editor.p5js.org/ml5/sketches/
https://www.tensorflow.org/js
https://www.pyinstaller.org/
https://pypi.org/project/pyinstaller/

636	 Part III ■ AI Applications

For example, if you have a file called test.ipynb, you can run the following
command to convert it to a Python file, test.py:

ipython nbconvert --to script test.ipynb

Then you can use the Pyinstaller library to convert test.py to test.exe.

pyinstaller test.py

The following is the file structure. You can find the test.exe file in the dist/
test/ subfolder.

test.ipynb
test.py
__pycahce__/
build/
dist/
 |-->test/
 |-->test.exe
 |-->test.exe.manifest

For more details, see the following:

https://nbconvert.readthedocs.io/en/latest/

Py2Exe
Py2exe is a library that converts Python scripts into executable Windows
programs and is compatible with Python 2.4+ including Python 3.0 and 3.1.

https://sourceforge.net/p/py2exe/svn/HEAD/tree/trunk/py2exe-3/

py2exe/

Py2app
Py2app is a Python setup tool command to create stand-alone macOS applica-
tions with Python. It is similar in purpose and design to Py2exe, which is for
Windows.

https://py2app.readthedocs.io/en/latest/

Auto-Py-To-Exe
The Auto-Py-To-Exe library is a Python (.py) to executable (.exe) converter
using a simple graphical interface and Pyinstaller in Python (see Figure 12.9).
To install the application, run this line at the Windows command prompt:

pip install auto-py-to-exe

https://nbconvert.readthedocs.io/en/latest/
https://sourceforge.net/p/py2exe/svn/HEAD/tree/trunk/py2exe-3/py2exe/
https://sourceforge.net/p/py2exe/svn/HEAD/tree/trunk/py2exe-3/py2exe/
https://py2app.readthedocs.io/en/latest/

	 Chapter 12 ■ Advanced AI Computing	 637

To open the application, run this line at the Windows command prompt:

auto-py-to-exe

For more details, see the following:

https://pypi.org/project/auto-py-to-exe/

cx_Freeze
cx_Freeze is a cross-platform library for freezing Python scripts into executables
with the same performance, in much the same way that Py2exe and Py2app
do. But unlike these two tools, cx_Freeze should work on any platform that
Python itself works on. It supports Python 3.6 up to 3.9.

The following command converts the Python file hello.py into an executable
file stored in the dist/ subfolder:

cxfreeze -c hello.py --target-dir dist

For more details, see the following:

https://pypi.python.org/pypi/cx_Freeze

http://cx-freeze.readthedocs.io/en/latest/overview.html

Figure 12.9: The graphical user interface of the Auto-Py-To-Exe program

https://pypi.org/project/auto-py-to-exe/
https://pypi.python.org/pypi/cx_Freeze
http://cx-freeze.readthedocs.io/en/latest/overview.html

638	 Part III ■ AI Applications

Cython
Cython is a programming language that can compile Python-like code into C
programming language code. Cython is a superset of the Python language,
which allows you to add typing information and class attributes that can then
be translated to C code and to C-Extensions for Python.

Cython code must be compiled. This is done in two stages:

■■ A Python .pyx file is compiled by Cython to a .c file.

■■ The .c file is compiled by a C compiler to a .pyd file on Windows or .so
file on Linux/Unix, which can be imported directly into a Python session.
Distutils or setuptools takes care of this part.

Let’s use an example to illustrate the process. Create a Python file called
hello.pyx with the content shown in Example 12.10a.

EXAMPLE 12.10A:  THE HELLO.PYX PROGRAM

def say_hello(name):
 print("Hello %s!" % name)
def say_bye(name):
 print("Goodbye %s!" % name)

Then create a Python file called setup.py with the content shown in Example
12.10b.

EXAMPLE 12.10B:  THE SETUP.PY PROGRAM

from setuptools import setup
from Cython.Build import cythonize

setup(
 name='Hello world app',
 ext_modules=cythonize("hello.pyx"),
 zip_safe=False,
)

To compile it, type the following:

python setup.py build_ext --inplace

If successful, a file called hello.c and a file called hello.cp36-win_amd64
.pyd (in Windows) or hello.so (in Unix/Linux) will be generated. The hello.c
file is the C file of the hello.pyx file. The .pyd file or the .so file is the binary
file that hello.c has been compiled into. You can now distribute the .pyd file
or the .so file to others without revealing your original Python code defined
in the hello.pyx file.

	 Chapter 12 ■ Advanced AI Computing	 639

To test the .pyd file or the .so file, create another Python test file called
hellotest.py with the content shown in Example 12.10c.

EXAMPLE 12.10C:  THE HELLOTEST.PY PROGRAM

import pyximport; pyximport.install()
import hello

hello.say_hello("Perry")
hello.say_bye("Tony")

To run the program, type the following:

python hellotest.py

You should see the following output on the screen:

Hello Perry!
Goodbye Tony!

EXERCISE 12.6

Repeat the previous steps, create your own Cython program, run the service, and com-
ment on the results.

For more details, see the following:
https://cython.org/

https://cython.readthedocs.io/en/latest/

Kubernetes
Kubernetes, also shortened to K8S, is an open source platform for managing
containerized services. The word kubernete originates from Greek, meaning
helmsman or pilot. Developed by Google, Kubernetes has a large, rapidly
growing ecosystem.

Figure 12.10 shows the Kubernetes website on the history of software deploy-
ment. Traditionally, the software code needs to be compiled according to the
operating system; therefore, for different operating systems, such as Windows
and Linux/Unix, you will need to compile the code differently. The operating
system provides all the libraries, dependencies, and runtime environment for
the software to run. The main problem with this approach is scalability; as the
number of applications increase, you will also need to increase the hardware
capabilities.

https://cython.org/
https://cython.readthedocs.io/en/latest/

640	 Part III ■ AI Applications

Then came the virtual machine, in which software code needs to be compiled
and run within the operating system of each virtual machine, and the virtual
machine runs within the hypervisor of the operating system. This approach has
improved scalability, but each virtual machine is a complete operating system,
which is still large in size, complex, and resource hungry.

The latest is container technology, in which the software code is compiled and
packaged into an isolated, lightweight unit, called a container. The container
has all the necessary libraries and dependencies for the software to run, and
the container runs in the container runtime. Compared to a virtual machine, a
container is much smaller, more portable, more scalable, and less resource
hungry.

Figure 12.11 shows the schematic diagram of the Kubernetes architecture.
A Kubernetes cluster contains a master node and a number of worker nodes.
On the master node, there are the API server (kube-apiserver), controller man-
ager (kube-controller-manager), cloud controller manager (cloud-controller-
manager), scheduler (kube-scheduler), and etcd, which is used as a backing
store for all the cluster data. The API server is the brain of the Kubernetes
cluster, which orchestrates the whole operation. Users can interact with the
API server through the user interface (UI), application programming interface
(API), and command-line interface (CLI).

On the worker node, there are the agent (kubelet), proxy (kube-proxy), and
container runtime and pods. Pods are the smallest deployable units of com-
puting that you can create and manage in Kubernetes. Inside each pod, there
are containers.

Figure 12.10: The Kubernetes website on the history of software deployment
(Source: https://kubernetes.io/docs/concepts/overview/what-is-
kubernetes/)

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

	 Chapter 12 ■ Advanced AI Computing	 641

The best way to get started with Kubernetes is to follow its online interac-
tive tutorial, which has step-by-step interactive instructions on how to create
a Kubernetes cluster, how to deploy and run an app, and so on, as shown in
Figure 12.12.

Figure 12.11: The schematic diagram of the Kubernetes architecture

Figure 12.12: The Kubernetes tutorial on Kubernetes Basics
(Source: https://kubernetes.io/docs/tutorials/kubernetes-basics/)

https://kubernetes.io/docs/tutorials/kubernetes-basics/

642	 Part III ■ AI Applications

Instead of installing and configuring Kubernetes on your own computers,
you can also try it online. The following shows the website for Play with Kuber-
netes, which allows you to create Kubernetes clusters and deploy and run apps
online. All for free!

https://labs.play-with-k8s.com/

Docker
Docker is another open source containerization tool used for spinning up iso-
lated, reproducible application environments. It was developed by Docker and
is a popular development tool for Python developers.

Many people get confused with Kubernetes and Docker. As a container
platform, you can either use Kubernetes on its own or use Docker on its own.
Generally speaking, Kubernetes is more complex and more powerful and is
more suitable for large clusters. But as a result, Kubernetes is more difficult to
learn. On the other hand, Docker is lightweight, much simpler, and easier to
use, but has fewer functionalities. Docker is more suitable for small clusters.
You can also use Kubernetes and Docker together, that is, using Docker to create
containers and using Kubernetes to orchestrate the containers.

Docker also has its own orchestration software, called Docker Swarm.
Table 12.6 shows a quick comparison of Kubernetes and Docker Swarm.

To get started with Docker, first you need to install the Docker program on
your computer; just follow the instructions here:

https://docs.docker.com/get-docker/

Table 12.6: Kubernetes vs. Docker Swarm

KUBERNETES DOCKER SWARM

Difficult to install and configure Easy to install and configure

More complex but more powerful Less complex, easy to use, fewer
functionalities

Built-in monitoring Third-party monitoring

Autoscaling No autoscaling

Manual load balancer Automatic load balancer

Need for a separate CLI tool Integrated Docker CLI

Dashboard GUI No GUI

https://labs.play-with-k8s.com/
https://docs.docker.com/get-docker/

	 Chapter 12 ■ Advanced AI Computing	 643

The simplest way to install and get started with Docker is using Ubuntu, such
as version 20.04 (LTS), 18.04 (LTS), and 16.04 (LTS). The following commands
are to install Docker and get Docker running:

sudo apt-get update
sudo apt install docker.io
sudo systemctl start docker
sudo systemctl enable docker

The following commands are to check the Docker version, list of containers,
Docker information, and Docker images:

docker --version
docker ps
docker info
docker images

Then, create a folder, say docker, and inside the folder create a file called
main.py, a file called requirements.txt, and another file called dockerfile.

The main.py file is the Python program. For example, the example code
shown in Example 12.11 plots the Sin function.

EXAMPLE 12.11:  THE MAIN.PY PROGRAM

Example 12.11
import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(-np.pi, np.pi, 50)
y1 = np.sin(x)
plt.plot(x, y1, color = 'blue', marker = "s", label='Sin')
plt.legend()
plt.show()

The requirements.txt file, shown in Example 12.12, has all the libraries that
are needed by the Python program.

EXAMPLE 12.12:  THE REQUIREMENTS.TXT PROGRAM

numpy
matplotlib

The dockerfile file, shown in Example 12.13, has all the instructions on how
to set up and run the Python program using Docker.

644	 Part III ■ AI Applications

EXAMPLE 12.13:  THE DOCKERFILE PROGRAM

set base image (host OS)
FROM python:3.7

set the working directory in the container
WORKDIR /docker

copy the dependencies file to the working directory
COPY requirements.txt .

install dependencies
RUN pip install -r requirements.txt

copy the content of the local src directory to the working
directory
COPY . .

command to run on container start
CMD ["python", "main.py"]

The following is the file structure:

docker/
 |-->main.py
 |-->requirements.txt
 |-->Dockerfile

To build a Docker image, run the following command from the folder:

docker build -t myimage .

After it’s built, run the following command to view all the Docker images:

docker images

To run the Python program within Docker, type the following:

docker run myimage

To view the status of all the running images, type the following:

docker ps

Example 12.14 is the Streamlit version of the previous example. Again, it has
three files. The main2.py file is the Streamlit Python program that plots the Sin
or Cos function on the web app depending on the selection in the left panel.

	 Chapter 12 ■ Advanced AI Computing	 645

EXAMPLE 12.14:  THE MAIN2.PY PROGRAM

Example 12.14
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
st.title('Streamlit Plotting')
selectbox = st.sidebar.selectbox(
 "What you do like to plot?",
 ("Sin", "Cos")
)
x = np.linspace(-np.pi, np.pi, 50)
if selectbox == "Sin":
 y1 = np.sin(x)
 plt.plot(x, y1, color = 'blue', marker = "s", label='Sin')
else:
 y1 = np.cos(x)
 plt.plot(x, y1, color = 'red', marker = "d", label='Cos')
plt.legend()
plt.show()
st.pyplot()

The requirements.txt file, shown in Example 12.15, has all the libraries that
are needed by the Python program.

EXAMPLE 12.15:  THE REQUIREMENTS.TXT PROGRAM

numpy
matplotlib
cython
streamlit

The dockerfile file, shown in Example 12.16, has all the instructions on how
to set up and run the Python program using Docker.

EXAMPLE 12.16:  THE DOCKERFILE PROGRAM

set base image (host OS)
FROM python:3.7

set the working directory in the container
WORKDIR /docker

copy the dependencies file to the working directory
COPY requirements.txt .

646	 Part III ■ AI Applications

install dependencies
RUN pip install -r requirements.txt

copy the content of the local src directory to the working
directory
COPY . .

exposing default port for streamlit
EXPOSE 8501
command to run on container start
CMD ["streamlit", "run", "main2.py"]

The Docker building and running processes are the same. You can view the
web app at the usual https://localhost:8501/, as shown in Figure 12.13.
By selecting Sin or Cos from the selection box, you can plot the function
accordingly.

EXERCISE 12.7

Repeat the previous steps, create your own Streamlit web app Docker service, run the
service, and comment on the results.

For more details on getting started with Docker, check out the following:

https://www.docker.com/blog/containerized-python-development-part-1/

https://kubernetes.io/blog/2019/07/23/get-started-with-kubernetes-

using-python/

Figure 12.13: The Sin plot output of the Streamlit plot program

https://www.docker.com/blog/containerized-python-development-part-1/
https://kubernetes.io/blog/2019/07/23/get-started-with-kubernetes-using-python/
https://kubernetes.io/blog/2019/07/23/get-started-with-kubernetes-using-python/

	 Chapter 12 ■ Advanced AI Computing	 647

PIP
PIP is the coolest Python tool that makes it so simple to install and uninstall
Python packages. You can also make your code available as a PIP installable
package through the PyPI.org website.

https://python-packaging-user-guide.readthedocs.io/

https://docs.python-guide.org/shipping/packaging/

The following shows the RealPython tutorial called “How to Publish on
Open-Source Python Package to PyPI.”

https://realpython.com/pypi-publish-python-package/

12.8  AI with Edge Computing

Edge computing means to run your software programs on the edge, namely,
microcontrollers, embedded systems, single-board computers, or mobile
phones. Different from cloud computing, where there are powerful servers,
edge devices tend to have limited computing powers, have limited memory
resources, and are often constrained with battery power. To run AI models
on the edge, first you will need to train the models on the cloud, then reduce
the models to lightweight versions, and finally deploy them to the edges. This
section will show a few examples on how to run AI models on edge devices.

12.8.1  Google Coral
Google Coral provides a range of tools built on Google’s Edge TPU technology,
which allows you to run AI on your local devices, or the edge. The prototyping
devices include a single-board computer and USB accessory, and production-
ready devices include a system-on-module and PCIe module.

The following shows the Google Coral website, which provides a Coral USB
stick and Edge TPU single-board computer.

https://coral.ai/

You can find many interesting project tutorials and example code (see the
following link).

https://coral.ai/examples/#project-tutorials

The following shows the Teachable Machine tutorial. In this example, it
teaches you how to build a teachable machine and to recognize different chess
pieces by using TensorFlow.js, a Coral USB Accelerator, and a Raspberry Pi.

https://coral.ai/projects/teachable-machine/

http://pypi.org
https://python-packaging-user-guide.readthedocs.io/
https://docs.python-guide.org/shipping/packaging/
https://realpython.com/pypi-publish-python-package/
https://coral.ai/
https://coral.ai/examples/#project-tutorials
https://coral.ai/projects/teachable-machine/

648	 Part III ■ AI Applications

12.8.2  TinyML
TinyML is another interesting technology that allows you to run TensorFlow on
an Arduino board, such as Arduino Nano 33 BLE Sense and Arduino Portenta
H7. TinyML uses Edge Impulse, which enables developers to create the next
generation of intelligent device solutions with embedded machine learning.
See the following link for details.

https://store.arduino.cc/arduino-nano-33-ble-sense

The following are the Edge Impulse website and its corresponding GitHub
website for Arduino Nano 33 BLE Sense:

https://docs.edgeimpulse.com/docs/arduino-nano-33-ble-sense

https://github.com/edgeimpulse/firmware-arduino-nano-33-ble-sense

The best way to get started with TinyML is to follow the interesting Arduino
blog, as shown in the following blog. It shows you step-by-step how to train a
TensorFlow Lite Micro model on an Arduino Nano 33 board, how to recognize
a voice command, and hand gestures such as fist, punch, and hook.

https://blog.arduino.cc/2019/10/15/get-started-with-machine-

learning-on-arduino/

The following are steps to train a model for gesture recognition with TinyML:

Step 1. Downloading and Setting Up the Arduino IDE
Download and install the Arduino IDE:

https://arduino.cc/downloads

From the Arduino IDE, search and install the Nano BLE board from Boards
Manager.
Search for and install the Arduino_TensorFlowLite library and the Arduino_
LSM9DS1 library from Library Manager.

Step 2. Streaming Sensor Data from the Arduino Board
Download IMU_Capture.ino from the following link, and open it in the

Arduino IDE. Compile and upload it to the board.

https://github.com/arduino/ArduinoTensorFlowLiteTutorials/blob/

master/GestureToEmoji/ArduinoSketches/IMU_Capture/IMU_Capture.ino

In the Arduino IDE, open the Serial Monitor.
Make 10 punch gestures with the board in your hand and then copy and
paste the data from the Serial Monitor to a new text file called punch.csv.
Clear the console window output, make 10 flex gestures, and save the data
in a file called flex.csv.

https://store.arduino.cc/arduino-nano-33-ble-sense
https://docs.edgeimpulse.com/docs/arduino-nano-33-ble-sense
https://github.com/edgeimpulse/firmware-arduino-nano-33-ble-sense
https://blog.arduino.cc/2019/10/15/get-started-with-machine-learning-on-arduino/
https://blog.arduino.cc/2019/10/15/get-started-with-machine-learning-on-arduino/
https://arduino.cc/downloads
https://github.com/arduino/ArduinoTensorFlowLiteTutorials/blob/master/GestureToEmoji/ArduinoSketches/IMU_Capture/IMU_Capture.ino
https://github.com/arduino/ArduinoTensorFlowLiteTutorials/blob/master/GestureToEmoji/ArduinoSketches/IMU_Capture/IMU_Capture.ino

	 Chapter 12 ■ Advanced AI Computing	 649

Repeat the previous step, make 10 hook gestures, and save the data in a file
called hook.csv.

Step 3. Training in TensorFlow
Open the following Google Colab Notebook; copy it to your own Google

Colab account; upload the three files punch.csv, flex.csv, and
hook.csv; and run the code.

https://colab.research.google.com/github/arduino/ArduinoTensor-

FlowLiteTutorials/blob/master/GestureToEmoji/arduino_tinyml_work-

shop.ipynb

The code should generate two files, model.h and gesture_model.tflite.
Download the two files to a local folder.

Step 4. Gesture Recognition
Download IMU_Classifier.ino from the following link. Save it into a

directory. Copy in the model.h file and gesture_model.tflite file. Com-
pile and run the code using the Arduino IDE.

https://github.com/arduino/ArduinoTensorFlowLiteTutorials/

blob/master/GestureToEmoji/ArduinoSketches/IMU_Classifier/IMU_

Classifier.ino

Now from the Arduino IDE Serial Monitor, you should be able to see the
gesture recognition.

Arduino Portenta H7   Another impressive Arduino board that can run Ten-
sorFlow Lite models is the Arduino Portenta H7 board. It has two parallel
cores in its main processor, with a Cortex M7 running at 480 MHz and a
Cortex M4 running at 240 MHz. The two cores communicate seamlessly
via a Remote Procedure Call (RPC). The main processor also has an on-
chip GPU and a dedicated JPEG encoder and decoder. Portenta H7 comes
with 3× ADCs with 16-bit resolution (up to 36 channels, up to 3.6 MSPS),
2× 12-bit DAC (1 MHz), USB-C, as well as built-in WiFi 802.11b/g/n
and Bluetooth 5.1 BR/EDR/LE. It supports both the MicroPython and
JavaScript languages.

https://store.arduino.cc/portenta-h7

https://github.com/ARM-software/developer/tree/master/projects/

portenta_person_detection

12.8.3  Raspberry Pi
The Raspberry Pi is one of my favorite single-board computing devices. With
Raspberry Pi and its camera, you can build a teachable machine to recognize
your body gestures, such as this tutorial, shown in the following link.

https://colab.research.google.com/github/arduino/ArduinoTensorFlowLiteTutorials/blob/master/GestureToEmoji/arduino_tinyml_workshop.ipynb
https://colab.research.google.com/github/arduino/ArduinoTensorFlowLiteTutorials/blob/master/GestureToEmoji/arduino_tinyml_workshop.ipynb
https://colab.research.google.com/github/arduino/ArduinoTensorFlowLiteTutorials/blob/master/GestureToEmoji/arduino_tinyml_workshop.ipynb
https://github.com/arduino/ArduinoTensorFlowLiteTutorials/blob/master/GestureToEmoji/ArduinoSketches/IMU_Classifier/IMU_Classifier.ino
https://github.com/arduino/ArduinoTensorFlowLiteTutorials/blob/master/GestureToEmoji/ArduinoSketches/IMU_Classifier/IMU_Classifier.ino
https://github.com/arduino/ArduinoTensorFlowLiteTutorials/blob/master/GestureToEmoji/ArduinoSketches/IMU_Classifier/IMU_Classifier.ino
https://store.arduino.cc/portenta-h7
https://github.com/ARM-software/developer/tree/master/projects/portenta_person_detection
https://github.com/ARM-software/developer/tree/master/projects/portenta_person_detection

650	 Part III ■ AI Applications

https://developer.arm.com/solutions/machine-learning-on-arm/

developer-material/how-to-guides/teach-your-raspberry-pi-yeah-world/

run-your-new-network

The following are the steps:

1.	 Install all the libraries.

sudo apt update
sudo apt install python3-dev python3-pip
sudo apt install libatlas-base-dev # required for numpy
sudo apt install libhdf5-dev
sudo pip3 install -U virtualenv # system-wide install
sudo pip3 install --no-cache-dir tensorflow

2.	 Verify TensorFlow.

python3 -c "import tensorflow as tf; tf.enable_eager_execution();
print(tf.reduce_sum(tf.random_normal([1000, 1000])))"

3.	 Install the ARM training scripts.

git clone https://github.com/ARM-software/ML-examples.git
cd ML-examples/yeah-world

4.	 Preview the Raspberry Pi camera.

python3 preview.py

5.	 Record 15 seconds of video with your hands up.

mkdir example
python record.py example/yeah 15

6.	 Record 15 seconds of video with your hands down.

python3 record.py example/sitting 15

7.	 Record 15 seconds of video with random positions.

python3 record.py example/random 15

8.	 Train a network on the data.

python3 train.py example/model.h5 example/yeah example/sitting
example/random

9.	 Run your new network.

python3 run.py example/model.h5

https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/teach-your-raspberry-pi-yeah-world/run-your-new-network
https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/teach-your-raspberry-pi-yeah-world/run-your-new-network
https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/teach-your-raspberry-pi-yeah-world/run-your-new-network

	 Chapter 12 ■ Advanced AI Computing	 651

Next, wave your hands in the air, put your hands down, and do some
random positions. From the console it should print the prediction:

0: Cheering.
1: Sitting in view but not cheering.
2: Random behaviors.

The following shows another example, using Raspberry Pi as an image
classifier.

https://www.instructables.com/Image-Recognition-With-TensorFlow-

on-Raspberry-Pi/

The following are the steps:

1.	 Update the system.

sudo apt-get update
sudo apt-get upgrade

2.	 Display the Python 3 version.

python3 –-version

3.	 Install the libatlas library (ATLAS - Automatically Tuned Linear Algebra
Software).

sudo apt install libatlas-base-dev

4.	 Install TensorFlow.

pip3 install tensorflow

5.	 Clone the TensorFlow repository.

git clone https://github.com/tensorflow/models.git
cd models/tutorials/image/imagenet

6.	 Run the image classification code on a default image.

python3 classify_image.py

Or, run the image classification code on a customized image

python3 classify_image.py --image_file=/home/pi/Downloads/
TensorImageTest1.jpg

12.9  Create a Mobile AI App

MIT App Inventor 2 is an online platform developed by Google and MIT. With
MIT App Inventor 2, you can easily develop mobile phone apps by using block

https://www.instructables.com/Image-Recognition-With-TensorFlow-on-Raspberry-Pi/
https://www.instructables.com/Image-Recognition-With-TensorFlow-on-Raspberry-Pi/

652	 Part III ■ AI Applications

programming. It supports only Android phone apps at the moment, but with
the intention to expand to Apple iOS phones.

The following shows the artificial intelligence with the MIT App Inventor
website, in which it shows several AI examples.

https://appinventor.mit.edu/explore/ai-with-mit-app-inventor

The following is a simple personal image classification example with step-
by-step instructions:

https://appinventor.mit.edu/explore/resources/ai/personal-image-

classifier-part1

Step 1. Train the model.
Open your browser and go to https://classifier.appinventor.mit.edu/

oldpic/.

Follow the instructions and create several personal image classes, such as
Smile, Superised, and Frown. Train the model and download the model.mdl
model file.

Step 2. Perform the Personal Image Classification.
Download the Personal Image Classification (PIC) project template file called

PIC.aia from the following link:

http://bit.ly/2BYiNoG

Go to http://appinventor.mit.edu/ and import the PIC.aia file into your
projects.
Upload the model file model.mdl into the project.
Build the project and create a QR code. Scan the QR code to download and
install the app on your phone.
Here is more information about MIT App Inventor 2 extensions:

http://ai2.appinventor.mit.edu/reference/other/extensions.html

Here is more information about Google Teachable machine:

https://teachablemachine.withgoogle.com/

Here is more information about AI for kids’ resources:

https://machinelearningforkids.co.uk/#!/links

Thunkable.com is another web-based platform for mobile app development,
which supports Google Android, Apple iOS, and Windows phones (see the
following link). Similar to MIT App Inventor 2, no code is needed.

https://thunkable.com/#/

https://appinventor.mit.edu/explore/ai-with-mit-app-inventor
https://appinventor.mit.edu/explore/resources/ai/personal-image-classifier-part1
https://appinventor.mit.edu/explore/resources/ai/personal-image-classifier-part1
https://classifier.appinventor.mit.edu/oldpic/
https://classifier.appinventor.mit.edu/oldpic/
http://bit.ly/2BYiNoG
http://appinventor.mit.edu/
http://ai2.appinventor.mit.edu/reference/other/extensions.html
https://teachablemachine.withgoogle.com/
https://machinelearningforkids.co.uk/#!/links
http://thunkable.com
https://thunkable.com/#/

	 Chapter 12 ■ Advanced AI Computing	 653

You can also use the following software to develop mobile apps:

■■ OpenCV for Android

https://opencv.org/android/

■■ TensorFlow for Android

https://www.tensorflow.org/lite/guide/android

■■ Mediapipe for Android and iOS

https://google.github.io/mediapipe/getting_started/android.html

https://google.github.io/mediapipe/getting_started/ios.html

12.10  Quantum AI

Quantum computing has been a hot research topic for some years now.
Quantum computing is based on quantum phenomena such as superposi-
tion and entanglement to perform the calculation. The computers based on
quantum physics are called quantum computers.

Conventional computers are based on the binary system, called bits. You can
imagine a bit is like a switch, which can be switched on and off, to represent
zero and one. All the software programs, all the photos, and all the files are
eventually represented in computers as bits, in a combination of ones and zeros.

Instead of using bits, quantum computers use qubits. See Figure 12.14 for bits
and qubits. Rather than being just zero or one, qubits can also be in superposi-
tion, where they can be both zero and one, or somewhere on a spectrum between
the two. Quantum computers use particles that possess quantum properties to
represent qubits, which usually need to be cooled down to near absolute zero
degrees. You can imagine a qubit as a spinning coin; it could be either heads
or tails, or somewhere in between, until you stop the coin. Then it will become
just a head or just a tail. A qubit can be more than just zeros and ones, and that
is what makes quantum computers so powerful.

Figure 12.14: The bit in conventional computing and the qubit in quantum computing

https://opencv.org/android/
https://www.tensorflow.org/lite/guide/android
https://google.github.io/mediapipe/getting_started/android.html
https://google.github.io/mediapipe/getting_started/ios.html

654	 Part III ■ AI Applications

Quantum computing could change our lives. It could transform medicine,
break encryption, and revolutionize communications and artificial intelligence.
Around the world, companies like IBM, Microsoft, Google, and Baidu are all
racing to build their own quantum computers.

IBM is the first company to build quantum computers on an impressive scale.
The latest IBM quantum computer has 53 qubits. The qubits are achieved by
trapping atoms in a vacuum environment, with an ambient temperature close
to absolute zero (−273°C), and insulated from the earth’s magnetic field.

The following shows the IBM Quantum Computing Tools website.

https://www.ibm.com/quantum-computing/tools

IBM has developed a quantum computing toolkit called Qiskit, as shown in
the following link. With Qiskit, you can write quantum computing simulation
code offline or run the code on real IBM quantum computers online.

https://qiskit.org/

Based on Qiskit, IBM provides the IBM Quantum Composer and the IBM
Quantum Lab, the two online platforms that allow public and premium access
to cloud-based quantum computing services.

The IBM Quantum Composer allows users to compose quantum computing
programs using symbols, like composing the music; see Figure 12.15.

The IBM Quantum Lab allows users to write quantum computing programs
using Python; it also provides Qiskit-Textbook, Qiskit-Tutorial, as well as
many useful examples, such as quantum-enhanced Supporting Vector Machine

Figure 12.15: The IBM Quantum Composer website
(Source: https://quantum-computing.ibm.com/composer/files/new)

https://www.ibm.com/quantum-computing/tools
https://qiskit.org/
https://quantum-computing.ibm.com/composer/files/new

	 Chapter 12 ■ Advanced AI Computing	 655

(QSVM). It also allows users to run the code on real IBM Quantum computers,
as illustrated in Figure 12.16.

Google is another company heavily invested in quantum computing; see the
following link.

https://quantumai.google/

Google claimed quantum supremacy in October 2019, when Google devel-
oped a 54-qubit processor, named Sycamore, that performed the target com-
putation in 200 seconds in an experiment that would take the world’s fastest
supercomputer 10,000 years to produce a similar output; see Figure 12.17 for
a detailed report.

The following shows the Google TensorFlow Quantum Computing website.

https://www.tensorflow.org/quantum

In December 2020, a team from the University of Science and Technology of
China also claimed quantum supremacy, when it used a 76-qubit system known
as Jiuzhang, which performed calculations at 100 trillion times the speed of
classical supercomputers. Different from IBM’s and Google’s quantum com-
puters, which need to be cooled down to near absolute zero degrees, Jiuzhang is
based on photons, which can work at the ambient temperature; see Figure 12.18
for the detailed report.

Figure 12.16: The IBM Quantum Computing Lab website
(Source: https://quantum-computing.ibm.com/lab)

https://quantumai.google/
https://www.tensorflow.org/quantum
https://quantum-computing.ibm.com/lab

656	 Part III ■ AI Applications

Figure 12.18: The news report on China claiming quantum supremacy at the University of
Science and Technology of China
(Source: https://www.futuretimeline.net/blog/2020/12/5-quantum-
supremacy-china-2020.htm)

Figure 12.17: Google claimed quantum computing supremacy in 2019.
(Source: https://ai.googleblog.com/2019/10/quantum-supremacy-using-
programmable.html)

https://www.futuretimeline.net/blog/2020/12/5-quantum-supremacy-china-2020.htm
https://www.futuretimeline.net/blog/2020/12/5-quantum-supremacy-china-2020.htm
https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html
https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html

	 Chapter 12 ■ Advanced AI Computing	 657

Baidu also provides quantum computing through the Baidu PaddlePaddle
framework; see the following link. It provides a platform to construct and train
quantum neural networks (QNNs), supporting combinatorial optimization,
quantum chemistry, and other cutting-edge quantum applications. It claimed to
be the first deep learning framework in China that supports quantum machine
learning.

https://github.com/PaddlePaddle/Quantum

12.11  Summary

This chapter introduced some advanced topics in AI. For simple AI applica-
tions, you can train and run the models on standard computers based on the
CPU. To train larger models, it is better to run on a GPU and a TPU. An IPU
is a new form of AI computing hardware infrastructure that has improved
performances and is more cost effective.

Cloud computing is the future trend for many businesses, and the biggest
three cloud computing services providers are Amazon AWS, Microsoft Azure,
and Google GCP, followed by Oracle, IBM, and Baidu.

Web apps are also getting trendy. You can develop web-based AI applica-
tions with Django, Flask, Streamlit, and many other libraries and frameworks.

There are several ways you can package and deploy your Python programs,
such as Nbconvert, Pyinstaller, Py2Exe, Py2app, Auto-Py-To-Exe, Cx_Freeze,
Cython, and PIP.

Kubernetes (K8s) and Docker are container-based technologies for packaging
and deploying software programs.

Edge AI means to run AI applications on the edge devices such as embedded
systems, single-board computers, and mobile phones.

There are also several ways to develop mobile AI apps, such as MIT App
Inventor 2, Thunkable, OpenCV, TensorFlow, and Mediapipe.

Quantum computing is getting a lot of attention in recent years, and there
are quantum AI services provided by IBM, Google, and Baidu.

12.12  Chapter Review Questions

Q12.1.	 What is a GPU, and what is the advantage of a GPU over a CPU?

Q12.2.	 What is a TPU? Use a table to compare CPUs, GPUs, and TPUs.

Q12.3.	 What is an IPU?

Q12.4.	 What is cloud computing?

https://github.com/PaddlePaddle/Quantum

658	 Part III ■ AI Applications

Q12.5.	 What AI services does AWS provide?

Q12.6.	 What AI services does Azure provide?

Q12.7.	 What AI services does GCP provide?

Q12.8.	 What are Django, Flask, and Streamlit?

Q12.9.	� Compare the different Python packaging techniques, such as
Nbconvert, Pyinstaller, Py2Exe, Py2app, Auto-Py-To-Exe, Cx_Freeze,
Cython, and PIP.

Q12.10.	What is Kubernetes? What are containers?

Q12.11.	� Compare the traditional computers, virtual machines, and
container-based technologies.

Q12.12.	What is Docker, and what is Docker Swarm?

Q12.13.	What is edge computing?

Q12.14.	What is TinyML?

Q12.15.	How do you develop a mobile AI app?

Q12.16.	What is quantum computing, and what is quantum AI?

659

} (curly brackets), 35
{ (curly brackets), 35

96Boards AI, 14

A
accelerometer data HAR, human

activity detection, 461–463
adversarial machine learning,

484–486
age detection

DeepFace repository, 302–305
TCS (Tata Consultancy

Services), 305–309
TCS-HumAln-2019, 305–309

AGI (artificial general
intelligence), 11

AI (artificial intelligence)
AGI (artificial general

intelligence), 11
ANI (artificial narrow

intelligence), 11
current uses, 4–5

data science and, 8
deep learning and, 8
definition, 3–4
edge AI, 12
expert system, 10
general, 11
history, 5–9
key moments in development,

14–17
machine learning and, 8
mathematics and, 8
narrow AI, 11
NVidia website, 7
Super AI (superintelligence), 11
technological singularity, 11
terminology, 6

AI conferences, 19
AI frameworks

Apache MXNet, 49
Caffe2 (Convolutional

Architecture for Fast Feature
Embedding), 48

DeepMind, 48

Index

660	 Index ■ A–A

H2O, 48
Keras, 48
OpenAI, 49
OpenCV, 49
Paddle (Baidu), 48
PyTorch (Facebook), 48
Scikit-image, 49
Scikit-Learn, 47
TensorFlow (Google), 47

AI hypes, 9
Peak of Inflated Expectations, 9
Plateau of Productivity, 9
Slope of Enlightenment, 9
Technology Trigger, 9
Trough of Disillusionment, 9

AI Index Report (Stanford), 17
AI Studio (Baidu), 32
AI winter, 10, 14
Alexa, 4
AlexNet, 15, 118–119, 125
Alibaba Cloud, 12
AlphaFold, 14, 16–17
AlphaGo, 14, 15–16
Altera, 24
ALUs (arithmetic logic units), 614
Amazon Alexa, 4
Amazon AWS Machine Learning,

12
Amazon QLDB (Quantum

Ledger Database), 609–610
Anaconda, 32–33
ANI (artificial narrow

intelligence), 11
ANNs (artificial neural

networks), 6, 78–80, 120–121
anomaly detection

healthcare fraud detection, 584

NAB (Numenta Anomaly
Benchmark), 584

Santander Customer
Transaction Prediction
Challenge, 584–585

Textile Defect Detection dataset,
584

Apache Cassandra, 600
Apache MXNet, 49
API (application programming

interface), 640
Apriori algorithm, 55
arrays, 37

classifiers, 79
lists, 36

artificial neurons, 121
association, 55
Atom/Atom-IDE, 30
augmented reality, 430
AutoEncoder, 157–161
AutoML (automated machine

learning), frameworks
Auto-sklearn, 106
AutoWEKA, 106
H2O AutoML, 107
MLBoX, 107
TPOT (tree-based pipeline

optimization tool), 106
TransmogrifAI, 107

Auto-Py-To-Exe, 636–637
Auto-sklearn, 106
AutoWEKA, 106
AWS (Amazon Web Services),

623–624
comparisons, 625–628

AWS Machine Learning, 12
Azure, 12

	 Index ■ B–C	 661

B
BAAI (Beijing Academy of

Artificial Intelligence), 17
background subtraction

OpenCV and, 405–422
PaddlePaddle and, 423–425
PixelLib and, 425–426

backpropagation, 122
Baidu Cloud, 12
Baidu Edgeboard AI, 14
Baidu Paddle, 25
Baidu Paddle (PArallel

Distributed Deep LEarning),
48

BeagleBone AI, 14
BeautifulSoup library, 551
Bengio, Yoshua, 119
Berkeley, AI resources, 19
Binder, 32
biological neurons, 120
Bisson, Charles, 266
Bledsoe, Woody, 266
BNNs (Bayesian neural

networks),
192

Google Colab code, 192–193
body pose detection

Gluon, 455–456
MediaPipe, 459–460
ML5JS, 457–459
OpenCV, 455
OpenPose, 454–455
PoseNet, 456–457

bombe code-breaking machine, 5
brain tumor MRI images, 231
Build Your Own AI Assistant

101, 540

C
Caffe, 25
Caffe2, 25
Caffe2 (Convolutional

Architecture for Fast Feature
Embedding), 48

cancer detection, image
classification

brain tumor MRI images, 231
ISIC (International Skim

Imaging Collaboration),
227–228

MoleCare, 227
skin cancer images, 227–228
SkinVision, 227
UMSkinCheck, 227

capsule networks, 163–165
C/C++, 24–25
Cen, Kaiqi, 266
centroids, 89
chatbots

ChatterBot, 530–532
Transformers, 532–535

chemometrics, 555
chest x-rays, 230
CIFAR-10, 45
classifiers array, 79
cloud AI, 614, 622

AWS (Amazon Web Services),
623–624

GCP (Google Cloud Platform),
625

IaaS (infrastructure as a service),
622

Microsoft Azure, 624–625
PaaS (platform as a service),

622

662	 Index ■ C–C

SaaS (software as a service),
622

cloud AI service providers
Alibaba Cloud, 12
Amazon AWS Machine

Learning, 12
Baidu Cloud, 12
Google Cloud Platform, 12
IBM Cloud, 12
magic quadrant, 13
Microsoft Azure, 12

cloud computing, 614
clustering, 55

K-means clustering, 55
image segmentation, 394–396

clusters, 89
CNN (convolutional neural

network), 15, 125. See also
R-CNNs (region-based
convolutional neural
networks)

activation layer, 126
AlexNet, 129–140
architecture, 126
AutoEncoder, 157–161
capsule networks, 163–165
convolutional layer, 126
DenseNet, 141–142
dropout layer, 127
EfficientNet, 143–144
fully connected layer, 127
GoogLeNet, 129–140
input layer, 126
layers visualization, 165–173
LeNet, 129–140
MobileNet, 142–143
output layer, 127

pooling layer, 126
ResNet, 140–141
Siamese Neural Networks,

161–163
U-Net, 152–157
VGG, 140
VGG16, 144–150
YOLO, 144

CNTK (Cognitive Toolkit), 25
COCO (Common Objects in

Context), 45
computer requirements, 23
confusion matrix, 66–67
containers, 640
ConvNet. See CNN

(convolutional neural network)
convolutional neural networks,

118
CopyAI, 190
CORD (COVID-19 Open

Research Dataset Challenge),
588

Cortana, 4
COVID-19 data visualization and

analysis, 585–588
CPUs (central processing units)

compared to GPUs and TPUs,
620

manufacturers, 621
CRP (cross-recurrence plot), 577
CSV (Comma Separated Values),

42, 60–61
CT (computerized tomography),

227
CWI (Centrum Wiskunde &

Informatica), 27
cx_Freeze, 637

	 Index ■ C–D	 663

CycleGAN, 467–468
Cython, 638–639

D
D2L (Dive to Deep Learning), 615
data analysis, 544

analysis, 544
anomaly detection

healthcare fraud detection, 584
NAB (Numenta Anomaly

Benchmark), 584
Santander Customer

Transaction Prediction
Challenge, 584–585

Textile Defect Detection
dataset, 584

chemometrics, 555
collection, 544
COVID-19, 585–588
MSE (mean squared error), 558
NIR (near infrared)

spectroscopy analysis, 555
NoSQL databases, 599
predictive maintenance

analysis, 580–583
regression, 544–545

KerasClassifier, 589–593
KerasRegressor, 593–598
linear regression, 545–547
PLS (partial least squares)

regression, 554–563
SVR (support vector

regression), 547–554
SQL databases, 599
time-series analysis

seasonal trend analysis,
573–576

sound analysis, 576–580
stock price data, 563–565
stock price prediction,

565–573
writing, 544

data science
AI (artificial learning) and, 8
lifecycle, 8

data scientists, 544
data visualization, COVID-19,

585–588
databases

immutable
Amazon QLDB (Quantum

Ledger Database), 609–610
Immudb, 608–609

NoSQL databases, 599
SQL databases, 599

datasets
CIFAR-10, 45
COCO (Common Objects in

Context), 45
EU Open Data Portal, 46
Financial Times Market Data,

46
Google Open Images, 46
ImageNet, 45
Kaggle, 46
LFW (Labeled Faces in the

Wild), 46
Quandl, 46
UCI Machine Learning

Repository, 45
UK Data Service, 47
US Data.Gov, 46
US Healthcare Data, 46
World Bank Open Data, 47

664	 Index ■ D–E

DDPG (Deep Deterministic
Policy Gradient), 94

decision trees, 7, 73–76
random forest, 76–77

deep learning
AI (artificial learning) and, 8
GANs (generative adversarial

networks), 466–467
2D to 3D, 478–479
CycleGAN, 467–468
ISR (Image Super Resolution),

475–478
Pix2Pix, 474–475
PULSE, 475
StyleGAN, 469–474

neural-style transfer, 479–484
object detection and, 351–354

Deep Learning Toolbox
(MATLAB), 26

DeepFace repository,
302–305

DeepFaceLap, 322
Deeplearning4j, 25
DeepMind, 48

AI resources, 19
code disclosure, 18
WaveNet, 487

DeepMind Lab, 95
Deepnote, 32
DeepSORT, object tracking and,

386–389
DenseNet, 125
depth estimation

single image, 426–428
stereo images, 428–429

deserialization, 68
desktop computers, 23

Detectron2, image segmentation
and, 394

Devlin, Jacob, 187
disclosure analysis, NLP, 492
discriminants, 70
disease detection, image

classification
chest x-rays, 230
retinopathy, 229
RSNA intracranial hemorrhage,

231–232
DL (deep learning), 117

AlexNet, 118–119
EfficientNet, 119
GoogLeNet (Inception), 119
NN (neural networks), 118
ResNet, 119
VGG (Vision Geometry Group),

119
Docker, 642–645
DQN (Deep Q-Networks), 94
driverless cars, 5

E
eBay, 4
edge AI, 12, 614

96Boards AI, 14
Baidu Edgeboard AI, 14
BeagleBone AI, 14
Google Edge TPU TensorFlow

Processing Unit, 13
Intel and Xilinx-based AI, 13
microcontroller-based AI, 13
NVidia Jetson GPU-based AI,

13
Raspberry Pi-based AI, 13

edge computing, 614

	 Index ■ E–F	 665

Google Coral, 647
Raspberry PI, 649–651
TinyML, 648–649

editors
Anaconda, 32–33
Binder, 32
Deepnote, 32
Gesis Notebooks, 32
Paperspace Gradient, 32

EfficientNet, 119, 125
Emgu CV, 25
emotion detection

DeepFace repository, 302–305
TCS (Tata Consultancy

Services), 305–309
TCS-HumAln-2019, 305–309

Enigma machine, 5
ensemble learning, 102–106

averaging methods, 103
boosting methods, 103

ESRL (Earth System Research
Laboratories), 574

EU Open Data Portal, 46

F
face detection, 265

age detection, 302–305
DeepFace repository, 302–305
emotion detection, 302–305
face landmarks, 266–279
face swap, 309–310

DeepFaceLap, 322
Face_Recognition library,

310–315
OpenCV, 310–315
Simple_Faceswap, 315–322

gender detection, 302–305

Haar cascade, 267
TCS (Tata Consultancy

Services), 305–309
TCS-HumAln-2019, 305–309
web apps, 322–334

face recognition, 265
defeating, 334–335
face alignment, 266
face detection

face landmarks, 266–279
openCV, 266–279

face feature extraction, 266
nodal points, 266

face matching, 266
FaceNet (Google), 301
Face_Recognition library,

279–285
OpenCV and, 285–288

GUI-based systems,
288–301

paradigm, 266
face swap, 309–310

DeepFaceLap, 322
Face_Recognition library,

310–315
FaceSwap_Utils, 319–320
Mediapipe, 331
OpenCV, 310–315
Simple_Faceswap, 315–322
TensorFlow.js Facemesh, 331

Facebook, 4
PyTorch, 25

Facebook AI, 19
Facemesh, 331
FaceNet (Google), 301
Face_Recognition library,

274–285

666	 Index ■ F–G

face swap, 310–315
OpenCV and, 285–288

FaceSwap_Utils, 319–320
Fast R-CNN, 339
Faster R-CNN, 339
FDA (flexible discriminant

analysis), 69
federated learning, image

classification, 232–233
FFNs (feed-forward neural

networks), 190–191
Fifth Generation project, 10
Financial Times Market Data,

46
Fitness AI, 190
for loop, 35, 36
FPGA (Field Programmable Gate

Array), 24
MATLAB, 26

Frost, Nicholas, 164

G
Gabor, Dennis, 257
Gabor filter, 257–262
GANs (generative adversarial

networks), 465, 466–467
2D to 3D, 478–479
CycleGAN, 467–468
ISR (Image Super Resolution),

475–478
Pix2Pix, 474–475
PULSE, 475
StyleGAN, 469–474

GCP (Google Cloud Platform),
625

comparisons, 625–628

GEEKSFORGEEKS Personal
Voice Assistant in Python, 541

gender detection
DeepFace repository, 302–305
TCS (Tata Consultancy

Services), 305–309
TCS-HumAln-2019, 305–309

general AI, 11
Gensim, 493–494

library installation, 499–500
Gesis Notebooks, 32
Girshick, Ross, 338, 339
GitHub

High Quality Monocular Depth
Estimation vis Transfer
Learning, 426

image classification and,
248–249

Immudb, 609
PySimpleGUI-COVID19 project,

588
repository, 248

Gluon
body pose detection, 455–456
object detection, 363–364, 376
object tracking, 389

Gluon CV, image segmentation
and, 394

GNNs (graph neural networks),
18, 191

SuperGlue, 192
Go board game, 15–16
Go programming language, 26
Godfathers of AI/Deep Learning,

119
Google, 4

	 Index ■ G–H	 667

AI resources, 19
FaceNet, 301

Google Assistant, 4
Google Cloud, 5
Google Cloud BigTable, 600
Google Cloud Platform, 12
Google Colab, 206

neural-style transfer, 479
TPUs (tensor processing units),

619
Google Colaboratory, 31
Google Coral, 647
Google DeepMind, 15
Google Edge TPU TensorFlow

Processing Unit, 13
Google Health, 4
Google Open Images, 46
GoogLeNet (Inception), 119, 125
GPT-2 (Generative Pre-trained

Transformer 2), 534
GPUs (graphics processing unit),

24, 119, 613, 614
compared to CPUs and TPUs,

620
hardware, 613
manufacturers, 621
MATLAB, 26
NVidia GeForce RTX 3080 GPU,

614–616
gradient descent, 122
Graphcloud, 621
Griesemer, Robert, 26
Groupe Renault, 5
GRU (gated recurrent unit), 174
GUI-based face recognition

systems, 288–289
JPython, 300

Pyforms, 301
PyQt, 301
Pyramid, 301
PySimpleGUI, 288–300
Python GTK+ 3, 301
Pywevbiew, 301
Tkinter, 300
WxPython, 300

H
H2O, 48
H2O AutoML, 107
Haar cascade, face detection, 267
hand gesture detection

OpenCV and, 434–452
TensorFlow.js, 452–453

HAR (human activity
recognition), 434

sound analysis, 576
hardware

GPUs (graphics processing
units), 613

TPUs (tensor processing units),
613

hardware tools, 23–24
He, Kaiming, 119
healthcare fraud detection, 584
Healthcare.ai, 541
Hello World, 34–35
Hinton, Geoffrey, 14, 15, 118, 119,

164
histogram plot, 63–64
How To Convert Your Computer

to JARVIS, 541
human pose detection, 433
human pose estimation, 433
Humby, Clive Robert, 543

668	 Index ■ I–I

I
IaaS (infrastructure as a service),

622
IBM Cloud, 12
IBM Deep Blue beats Garry

Kasparov, 14
IBM Quantum Composer, 654
IBM Watson on Jeopardy,

14
IDEs (integrated development

environments)
AI Studio (Baidu), 32
Atom/Atom-IDE, 30
VS Code (Visual Studio Code),

31
Google Colaboratory, 31
Jupyter, 31
Kaggle Notebook, 31–32
Notepad++, 30
PyCharm, 30
Spyder, 30
Sublime Text, 30
TextPad, 30

IDLE (Integrated Development
and Learning Environment),
28

editor, 29
shell, 29

if else statement, 36
if statement, 36
ILSVRC (ImageNet Large Scale

Visual Recognition Challenge),
118

image classification, 202
accuracy, 202
cancer detection

brain tumor MRI images,
231

ISIC (International Skim
Imaging Collaboration),
227–228

MoleCare, 227
skin cancer images, 227–228
SkinVision, 227
UMSkinCheck, 227

CT (computerized tomography),
227

custom trained models, 209–227
disease detection

chest x-rays, 230
retinopathy, 229
RSNA intracranial

hemorrhage, 231–232
federated learning, 232–233
image processing

Gabor filter, 257–262
image coloring, 255
image inpainting, 253–255
image stitching, 250–252
image super resolution,

256–257
inference, 202–203
Keras library and, 203–204
MRI (magnetic resonance

imaging), 227
pre-trained models, 203–209
TensorFlow library and, 203–204
training, 202–203
transfer learning, 202, 209–227
web-based, 233–234

Streamlit, deployment,
249–250

	 Index ■ I–K	 669

Streamlit, GitHub and, 248–249
Streamlit library, 234–242
Streamlit webcam and,

242–248
webcams, 206–207

image processing, 201
CNNs and, 201
Gabor filter, 257–262
image coloring, 255
image inpainting, 253–255
image stitching, 250–252
image super resolution, 256–257

image segmentation, 202
Detectron2, 394
Gluon CV, 394
image instance segmentation,

389
image semantic segmentation,

389
K-means clustering and,

394–396
PixelLib, 389–394
watershed algorithm, 396–405

ImageNet, 45, 118
ILSVRC (ImageNet Large Scale

Visual Recognition
Challenge), 118

image classification, 119
ImageNet Large Scale Visual

Recognition Challenge, 15
imitation game (Turing test), 5–6
The Imitation Game, 5
Immudb, 608–609
immutable databases

Amazon QLDB (Quantum
Ledger Database), 609–610

Immudb, 608–609
Imperial College London, 4–5
Inception (GoogLeNet), 119
Intel and Xilinx-based AI, 13
interneurons, 121
IoT (Internet of Things), 614
iPhone, Siri, 4
IPU (intelligence processing

unit), 24, 621
Graphcloud, 621
IPU-M2000, 621

iPython, 28
ISIC (International Skim Imaging

Collaboration), 227–228
ISR (Image Super Resolution),

475–478

J
J.A.R.V.I.S. (Just A Rather Very

Intelligent System), 534–540
How To Convert Your

Computer to JARVIS, 541
Java

Deeplearning4j, 25
Weka, 25

Jennings, Ken, 14
Jones, Michael, 266
JPython, 300
Julia programming language, 26
Jupyter, 28, 31

K
K8s (Kubernetes), 614
Kaggle, 46, 228

COVID-19 Open Research
Dataset Challenge (CORD),
588

670	 Index ■ K–M

predictive maintenance
analysis, 580–581

sign language detection,
452–453

Kaggle Notebook, 31–32
Kasparov, Garry, 14
Keras, 25, 48

neural-style transfer, 479
SimpleRNN, 176
wrapper classes, 588–598

Keras U-Net, 155–156
KerasClassifier, 589–593
KerasRegressor, 593–598
K-means clustering, 7, 55, 89–91

image segmentation and,
394–396

K-NN (K-nearest neighbors),
77–78

Knowles, Simon, 24
Krizhevsky, Alex, 15, 118
Kubernetes (K8S), 639–642

L
laptops, 23
LazyPredict, 111–115
LDA (linear discriminant

analysis), 69–70
least squares fitting, 80
LeCun, Yann, 118, 119
lemmatization, 495–497
LeNet, 118, 125
Leon, 540
lexical analysis, NLP, 492
LFW (Labeled Faces in the Wild),

46
Li, Fiefei, 118
Lighthill, James, 10

Lighthill report, 10
linear regression, 545–547
lists, 36

arrays, 36
LOESS (locally estimated

scatterplot smoothing),
573–574

logistic regressions, 81–82
loops, 35

for, 35
while, 36

LSTM (long short-term memory
k), 174, 176

gated recurrent unit, 177
LSTM classic network, 177
LSTMs with attention, 177
multiplicative LSTM, 177
Peephole connections, 177
uses, 177

M
machine learning, 54. See also ML

(machine learning)
adversarial machine learning,

484–486
machine translation, NLP,

522–523
Mask R-CNN, 339
Math library, 39
mathematics, AI (artificial

learning) and, 8
MATLAB

Deep Learning Toolbox, 26
Predictive Maintenance

Toolbox, 26
Reinforcement Learning

Toolbox, 26

	 Index ■ M–N	 671

Statistics and Machine Learning
Toolbox, 26

Text Analytics Toolbox, 26
Matplotlib, 28
matrix plot, 63–64
Maudsley, Donald, 196
McCarthy, John, 4, 6
McCulloch, Warren, 120
Mediapipe, 331
MediaPipe, body pose detection,

459–460
MELISSA, A LOVELY VIRTUAL

ASSISTANT, 541
Mesh R-CNN, 339
meta learning, 195–196
MFCCs (mel-frequency cepstral

coefficients), 577
microcontroller-based AI, 13
Microsoft

AI resources, 19
Cortana, 4

Microsoft Azure, 12, 624–625
comparisons, 625–628

Microsoft SQL Server databases,
599

MIDI (Music Instrument Digital
Interface), 486

Minsky, Marvin, 6
MIT, AI resources, 19
Mitchell, Tom, 54
ML (machine learning), 6–7,

53–54
AI (artificial learning) and, 8
categories, 54–55
LDA (linear discriminant

analysis), 69–70
reinforced learning, 55

semi-supervised learning, 54–55
supervised learning, 54
unsupervised learning, 54

ML5JS, body pose detection,
457–459

MLBoX, 107
ML.NET, 25
MLPACK Library, 25
mobile AI apps, 651–653
MobileNet, 125
MobileNet SSD, 351–352
MoleCare, 227
MongoDB, 600
MongoDB Atlas, 602–608
motor neurons, 121
MRI (magnetic resonance

imaging), 227
brain tumor image

classification, 231
MSE (mean squared error), 558
MSFT stock price, 564–565
multilayer perceptron, 79
music generation, 486–489
Mycroft, 540
MySQL databases, 599

N
NAB (Numenta Anomaly

Benchmark), 584
naïve Bayes, 7
Naive Bayes classification, 67–69
NAN (Not A Number), 61
narrow AI, 11
Nbconvert, 635–636
Netflix, 4
neural NLP, 492
neural-style transfer, 479–484

672	 Index ■ N–N

adversarial machine learning,
484–486

music generation, 486–489
neurons, 120

artificial, 121
interneurons, 121
motor, 121
sensory, 121

Newell, Allen, 6
Ng, Andrew, 544
NIR (near infrared) spectroscopy

analysis, 555
NIRPY Research, 555–556
NLKT (Natural Language

Toolkit), 183–187
NLP (natural language

processing), 17, 183–187,
491–492

chatbots
ChatterBot, 530–532
resources, 540–541
Transformers, 532–535

disclosure analysis, 492
DOCX files, 527–529
Gensim, 493–494
lemma, 495
lemmatization, 495–497
lexical analysis, 492
machine translation, 522–523
neural NLP, 492
NLTK (Natural Language

Toolkit), 492–493
OCR (optical character

recognition), 523–524
PDF files, 527–529
pragmatic analysis, 492

QR (quick response) code,
524–526

question answering
J.A.R.V.I.S., 534–540
Transformers, 532–535

semantic analysis, 492
SpaCy, 493
statistical NLP, 492
symbolic NLP, 492
syntactic analysis, 492
text generation, 510–515

speech to text, 517–521
text to speech, 515–517

text sentiment analysis, 508–510
text summarization, 494–508
TextBlob, 494

NLTK (Natural Language
Toolkit), 492–493

NNs (neural networks), 6, 78–80
ANNs (artificial neural

networks), 6, 78–80, 120–125
BNNs (Bayesian neural

networks), 192
Google Colab code, 192–193

CNN (convolutional neural
network), 125

activation layer, 126
AlexNet, 129–140
architecture, 126
AutoEncoder, 157–161
capsule networks, 163–165
convolutional layer, 126
DenseNet, 141–142
dropout layer, 127
EfficientNet, 143–144
fully connected layer, 127

	 Index ■ N–O	 673

GoogLeNet, 129–140
input layer, 126
layers visualization, 165–173
LeNet, 129–140
MobileNet, 142–143
output layer, 127
pooling layer, 126
ResNet, 140–141
Siamese Neural Networks,

161–163
U-Net, 152–157
VGG, 140
VGG16, 144–150
YOLO, 144

convolutional, 118
DL (deep learning), 118
GNNs (graph neural networks),

191–192
meta learning, 195–196
R-CNN (region-based

convolutional neural
network), 338–339

SSD (single-shot detector), 338,
340–341

transformers
ALBERT, 187–189
BERT, 187–189
GPT-3 (Generative Pre-trained

Transformer), 189–190
Switch Transformers, 190–191

twin neural network, 162
YOLO (you only look once),

338, 339
nonlinear regressions, 81
nonmax suppression, 339
Nose, 28

NoSQL databases, 599
Apache Cassandra, 600
Google Cloud BigTable, 600
MongoDB, 600
MongoDB Atlas, 602
SQL comparison, 599
XPlenty, 600

Notepad++, 30
NRC (National Research

Council), 10
Numpy, 28
NVidia, GeForce RTX 3080 GPU,

614
NVidia Jetson GPU-based AI, 13

O
object detection, 202, 337–338

algorithms, 340
custom trained models

Gluon, 376
ImageAI, 376
OpenCV, 369–372
TensorFlow, 376
YOLO, 372–376

NNs (neural networks)
R-CNN (region-based

convolutional neural
network), 338–339

SSD (single-shot detector), 338,
340–341

YOLO (you only look once),
338, 339

pretrained models
Colab (Google), OpenCV,

364–368
deep learning and, 351–354

674	 Index ■ O–P

Gluon library and, 363–364
ImageAI and, 355–357
MaskRCNN and, 357–363
OpenCV, 341–346, 351–354
ResNet, 367
TensorFlow and, 354
YOLO, 346–351

object tracking
DeepSORT and, 386–389
distance detection and, 377–382
Gluon, 389
object size and, 377–382
OpenCV and

multiple object tracking,
384–386

single object tracking, 382–384
webcam focal length, 379
YOLOv4 and, 386–389

one-shot learning, 162
Open Assistant, 541
Open source Voice Assistants

Projects, 541
OpenAI, 49

code disclosure, 18
GPT-3 release, 14, 16

OpenAI Gym, 95
OpenCV, 25, 49

background subtraction and,
405–422

body pose detection, 455
face detection, 266–279
face swap, 310–315
Face_Recognition library,

285–288
hand gesture detection, 434–452
MobileNet SSD, 351–352
object detection and, 351–354

object tracking
multiple object tracking,

384–386
single object tracking, 382–384

watershed image segmentation,
396–405

OpenNN, 25
OpenPose, body pose detection,

454–455
Oracle databases, 599
Otherside AI, 190

P
PaaS (platform as a service), 622
packaging code

Auto-Py-To-Exe, 636–637
cx_Freeze, 637
Cython, 638–639
Docker, 642–645
Kubernetes, 639–642
Nbconvert, 635–636
PIP, 647
Py2app, 636
Py2Exe, 636
Pyinstaller, 635

PaddleHub, neural-style transfer,
482–483

PaddlePaddle
background subtraction and,

423–425
neural-style transfer, 480

Pandas, 28
Paperspace Gradient, 32
PCA (principal component

analysis), 70–73
Peak of Inflated Expectations

(hype cycle), 9

	 Index ■ P–P	 675

Personal Assistant Open Source
Projects, 541

Philosopher AI, 190
PIFuHD project, 478–479
Pike, Rob, 26
PIL library, 274
PIP, 647
Pitts, Walter, 120
Pix2Pix, 474–475
PixelLib

background subtraction and,
425–426

image segmentation and,
389–394

Plateau of Productivity (hype
cycle), 9

plotting, 40
PLS (partial least squares)

regression, 554–563
chemometrics, 555

pose detection, 433
body pose detection

Gluon, 455–456
MediaPipe, 459–460
ML5JS, 457–459
OpenCV, 455
OpenPose, 454–455
PoseNet, 456–457

Cambridge-Imperial APE
(Action-Pose-Estimation)
Dataset, 434

COCO Keypoints challenge, 434
hand gestures

OpenCV and, 434–452
TensorFlow.js, 452–453

human activity detection
Action AI, 461

Gluon Action Detection, 461
human pose detection, 433
human pose estimation, 433
keypoints, 433
MPII Human Pose Dataset, 434
perspective-n-point problem,

433
sign language detection,

452–453
VGG Pose Dataset, 434

PoseNet, body pose detection,
456–457

PostgreSQL databases, 599
pragmatic analysis, NLP, 492
predictive maintenance analysis,

580–583
Predictive Maintenance Toolbox

(MATLAB), 26
print statement, 35
programming language

popularity, 27
Project Malmo, 95
PULSE (Photo Upsampling via

Latent Space Exploration of
Generative Models), 475

Py2app, 636
Py2Exe, 636
PyAudio library, 517–518
PyCaret, 109

demo, 110
PyCharm, 30
Pyforms, 301
Pyinstaller, 635
PyQt, 301
Pyramid, 301
PySimpleGUI, 288–300

running, 290–291

676	 Index ■ P–R

PySimpleGUI-COVID19 project,
588

Python
downloading, 28
IDLE (Integrated Development

and Learning Environment),
28

editor, 29
shell, 29

installing, 28–29
open source frameworks, 25
SciPy libraries

iPython, 28
Jupyter, 28
Matplotlib, 28
Nose, 28
Numpy, 28
Pandas, 28
SciPy, 28
SymPy, 28

van Rossum, Guido, 27
Python databases, SQLite3, 601
Python GTK+ 3, 301
PyTorch (Facebook), 25, 48
Pywevbiew, 301

Q
QDA (quadratic discriminant

analysis), 69
QGNNs (quantum graph neural

networks), 192
Qiskit, 654
QLDB (Quantum Ledger

Database), 609–610
Q-learning

matrixes, 96–97
Q_Utils.py, 98–99
states, 95

Quandl, 46
quantum AI, 653–657

IBM Quantum Composer, 654
quantum computers, 653
question answering

J.A.R.V.I.S., 534–540
Transformers, 532–535

R
R programming language, 26
random forest, 76–77
Raspberry PI, 649–651
Raspberry Pi-based AI, 13
RBF (radial basis function), 547
R-CNNs (region-based

convolutional neural
networks), 338–339

Fast R-CNN, 339
Faster R-CNN, 339
Mask R-CNN, 339
Mesh R-CNN, 339

RDA (regularized discriminant
analysis), 69

regression, 544–545
KerasClassifier, 589–593
KerasRegressor, 593–598
linear regression, 545–547
PLS (partial least squares)

regression, 554–563
SVR (support vector regression),

547–554
regressions

least squares fitting, 80
logistic, 81–82
nonlinear, 81

Reinforcement Learning Toolbox
(MATLAB), 26

	 Index ■ R–S	 677

ResNet, 119, 125
resources, 19–21
retinopathy, 229
RL (reinforcement learning), 55,

93–95
DDPG (Deep Deterministic

Policy Gradient), 94
DeepMind Lab and, 95
DQN (Deep Q-Networks), 94
environment, 94
games, 94
natural language processing, 95
OpenAI Gym, 95
policy, 94
Project Malmo, 95
Q-learning, 95–102
reward, 94
robotics, 94
SARSA (State-Action-Reward-

State-Action), 94
state, 94
value, 94

RNNs (recurrent neural
networks), 173

GRU (gated recurrent unit), 174
LSTM (long short-term memory

k), 174, 176–183
many to many, 174
many to one, 174
NLKT (Natural Language

Toolkit), 183–187
NLP (natural language

processing), 183–187
one to many, 174
one to one, 174
vanilla, 175–176

ROIs (regions of interest), 338
Rosenblatt, Frank, 14, 122
RSNA intracranial hemorrhage,

231–232
RUL (remaining useful life),

580–583
Rutter, Brad, 14

S
SaaS (software as a service), 622
Sabour, Sara, 164
Samuel, Arthur, 6, 54
Santander Customer Transaction

Prediction Challenge, 584–585
SARSA (State-Action-Reward-

State-Action), 94
Scikit-image, 49
Scikit-image library, watershed

image segmentation, 396–405
Scikit-Learn, 25
SciPy, 28
SciPy libraries

iPython, 28
Jupyter, 28
Matplotlib, 28
Nose, 28
Numpy, 28
Pandas, 28
SciPy, 28
SymPy, 28

seasonal trend analysis, 573–576
Sedol, Lee, 15
selections, 35
semantic analysis, NLP, 492
semi-supervised machine

learning, 54–55

678	 Index ■ S–S

clusters, 91
continuity, 91
generative models, 92
graph-based methods, 92
heuristic approaches, 92
Internet content classification,

92
low-density separation, 92
manifold, 91
protein sequence classification,

92
speech analysis, 92

sensory neurons, 121
SEQUEL (Structured English

Query Language), 599
serialization, 68
SHARK Library, 25
Siamese networks, 301
Siamese Neural Networks,

161–163
sign language detection,

452–453
Simon, Herbert, 6
Simonyan, Karen, 119
Simple AI Chatbot, 541
Simple_Faceswap, 315–322
Siri, 4
skin cancer images, 227–228
SkinVision, 227
Slope of Enlightenment (hype

cycle), 9
software tools, 24–27
soma, 120
sound analysis, 576

CRP (cross-recurrence plot),
577

HAR (human activity
recognition), sound analysis,
576

MFCCs (mel-frequency cepstral
coefficients), 577

SoundDevice library, 577
STFT (short-term Fourier

transform), 578
SoundDevice library, 577
SpaCy, 493

library installation, 494–495
speech to text, NLP text

generation, 517–521
Spotify, 4
Spyder, 30
SQL (Structured Query

Language), 599
SQL databases, 599

Microsoft SQL Server databases,
599

MySQL databases, 599
NoSQL comparison, 599
Oracle databases, 599
PostgreSQL databases, 599

SQLite3, 601
SSD (single-shot detector),

340–341
standard output, 34
Stanford, AI resources, 19
State of AI Report (Cambridge),

17
statistical NLP, 492
Statistics and Machine Learning

Toolbox (MATLAB), 26
Statsmodel library, 82–83

STL, 574

	 Index ■ S–T	 679

STFT (short-term Fourier
transform), 578

STL (season, trend, low-pass),
573–574

stock price data, 563–565
stock price prediction, 565–573
StyleGAN, 469–474
Sublime Text, 30
Super AI (superintelligence), 11
SuperGlue, 192
supervised machine learning, 54

classification
classes, 55
features, 55
parameters, 55

Naive Bayes classification,
67–69

regressions
least squares fitting, 80
logistic, 81–82
nonlinear, 81

Scikit-Learn datasets, 56
support vector machines, 56

confusion matrix, 66–67
support vector machines (SVM),

56
Sutskever, Ilya, 15, 118
SVM (support vector machine), 7,

338
classifications, 57–58
data points, 57
Iris dataset, 58–59
tutorial, 57

Svm2.py, 60
Svm3.py program, 60
Svm4.py, 61–62

SVR (support vector regression),
547–554

SwiftKey, 4
Switch Transformer, 17
symbolic NLP, 492
SymPy, 28
syntactic analysis, NLP, 492
Szegedy, Christian, 119

T
tanh, 175–176
technological singularity, 11
Technology Trigger (hype cycle),

9
TensorFlow (Google), 25, 47
TensorFlow.js, hand gesture

detection, 452–453
TensorFlow.js Facemesh, 331
Text Analytics Toolbox

(MATLAB), 26
text generation, NLP, 510–515

speech to text, 517–521
text to speech, 515–517

text to speech, NLP text
generation, 515–517

TextBlob, 494
Textile Defect Detection dataset,

584
TextPad, 30
Thompson, Ken, 26
time-series analysis

seasonal trend analysis, 573–576
sound analysis, 576–580
stock price data, 563–565
stock price prediction, 565–573

Streamlit library, 569–573

680	 Index ■ T–W

TinyML, 648–649
Tkinter, 300
Toon, Nigel, 24
TPOT (tree-based pipeline

optimization tool), 106
TPUs (tensor processing units),

613, 618
compared to CPUs and GPUs,

620
Google Colab, 619
hardware, 613
manufacturers, 621

transfer learning, 262
transformers

ALBERT, 187–189
BERT (Bidirectional Encoder

Representations from
Transformers), 187–189

GPT-3 (Generative Pre-trained
Transformer), 189–190

Switch Transformers, 190–191
Transformers, GPT-2 (Generative

Pre-trained Transformer 2), 534
TransmogrifAI, 107
Trough of Disillusionment (hype

cycle), 9
Turing, Alan, 5, 14
Turing test (imitation game), 5–6
twin neural network, 162

U
UCI Machine Learning

Repository, 45
UI (user interface), 640

UK Data Service, 47
UMSkinCheck, 227
U-Net, 152–157

Keras U-Net, 155–156
unsupervised machine learning,

54
K-means clustering, 89–91

US Data.Gov, 46
US Healthcare Data, 46

V
van Rossum, Guido, 27
vanilla RNNs, 175–176
Vapnik, Vladimir Naumovich,

57
variables, 34–35
VGG (Vision Geometry Group),

119, 125
Viola, Paul, 266
VMs (virtual machines), 622
VS Code (Visual Studio Code), 31

W
watershed image segmentation,

396–405
WaveNet, 487
web-based AI

Django, 629
Flask, 629–634
ML5.js library, 634
Streamlit, 634
TensorFlow.js library, 634

web-based face detection, face
swap, 322–334

	 Index ■ W–X–Y–Z	 681

web-based image classification,
233–234

Streamlit library, 234–242
deployment, 249–250
GitHub and, 248–249
webcam and, 242–248

webcams, 206–207
focal length, 379

Weka, 25
while loop, 36
Wit.Ai, 540
Wolf, Helen Chan, 266
Wolfram MathWorld, 81

World Bank Open Data, 47
WxPython, 300

X–Y–Z
Xilinx, 24
XPlenty, 600

YOLO (You Only Look Once),
125, 339

YOLOv4, object tracking and,
386–389

Zisserman, Andrew,
119

WILEY END USER LICENSE
AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook
EULA.

http://www.wiley.com/go/eula

	Cover
	Title Page
	Copyright Page
	About the Author
	About the Technical Editors
	Acknowledgments
	Contents at a Glance
	Contents
	Preface
	Part I Introduction
	Chapter 1 Introduction to AI
	1.1 What Is AI?
	1.2 The History of AI
	1.3 AI Hypes and AI Winters
	1.4 The Types of AI
	1.5 Edge AI and Cloud AI
	1.6 Key Moments of AI
	1.7 The State of AI
	1.8 AI Resources
	1.9 Summary
	1.10 Chapter Review Questions

	Chapter 2 AI Development Tools
	2.1 AI Hardware Tools
	2.2 AI Software Tools
	2.3 Introduction to Python
	2.4 Python Development Environments
	2.4 Getting Started with Python
	2.5 AI Datasets
	2.6 Python AI Frameworks
	2.7 Summary
	2.8 Chapter Review Questions

	Part II Machine Learning and Deep Learning
	Chapter 3 Machine Learning
	3.1 Introduction
	3.2 Supervised Learning: Classifications
	Scikit-Learn Datasets
	Support Vector Machines
	Naive Bayes
	Linear Discriminant Analysis
	Principal Component Analysis
	Decision Tree
	Random Forest
	K-Nearest Neighbors
	Neural Networks

	3.3 Supervised Learning: Regressions
	3.4 Unsupervised Learning
	K-means Clustering

	3.5 Semi-supervised Learning
	3.6 Reinforcement Learning
	Q-Learning

	3.7 Ensemble Learning
	3.8 AutoML
	3.9 PyCaret
	3.10 LazyPredict
	3.11 Summary
	3.12 Chapter Review Questions

	Chapter 4 Deep Learning
	4.1 Introduction
	4.2 Artificial Neural Networks
	4.3 Convolutional Neural Networks
	4.3.1 LeNet, AlexNet, GoogLeNet
	4.3.2 VGG, ResNet, DenseNet, MobileNet, EffecientNet, and YOLO
	4.3.3 U-Net
	4.3.4 AutoEncoder
	4.3.5 Siamese Neural Networks
	4.3.6 Capsule Networks
	4.3.7 CNN Layers Visualization

	4.4 Recurrent Neural Networks
	4.4.1 Vanilla RNNs
	4.4.2 Long-Short Term Memory
	4.4.3 Natural Language Processing and Python Natural Language Toolkit

	4.5 Transformers
	4.5.1 BERT and ALBERT
	4.5.2 GPT-3
	4.5.3 Switch Transformers

	4.6 Graph Neural Networks
	4.6.1 SuperGLUE

	4.7 Bayesian Neural Networks
	4.8 Meta Learning
	4.9 Summary
	4.10 Chapter Review Questions

	Part III AI Applications
	Chapter 5 Image Classification
	5.1 Introduction
	5.2 Classification with Pre-trained Models
	5.3 Classification with Custom Trained Models: Transfer Learning
	5.4 Cancer/Disease Detection
	5.4.1 Skin Cancer Image Classification
	5.4.2 Retinopathy Classification
	5.4.3 Chest X-Ray Classification
	5.4.5 Brain Tumor MRI Image Classification
	5.4.5 RSNA Intracranial Hemorrhage Detection

	5.5 Federated Learning for Image Classification
	5.6 Web-Based Image Classification
	5.6.1 Streamlit Image File Classification
	5.6.2 Streamlit Webcam Image Classification
	5.6.3 Streamlit from GitHub
	5.6.4 Streamlit Deployment

	5.7 Image Processing
	5.7.1 Image Stitching
	5.7.2 Image Inpainting
	5.7.3 Image Coloring
	5.7.4 Image Super Resolution
	5.7.5 Gabor Filter

	5.8 Summary
	5.9 Chapter Review Questions

	Chapter 6 Face Detection and Face Recognition
	6.1 Introduction
	6.2 Face Detection and Face Landmarks
	6.3 Face Recognition
	6.3.1 Face Recognition with Face_Recognition
	6.3.2 Face Recognition with OpenCV
	6.3.3 GUI-Based Face Recognition System
	Other GUI Development Libraries

	6.3.4 Google FaceNet

	6.4 Age, Gender, and Emotion Detection
	6.4.1 DeepFace
	6.4.2 TCS-HumAIn-2019

	6.5 Face Swap
	6.5.1 Face_Recognition and OpenCV
	6.5.2 Simple_Faceswap
	6.5.3 DeepFaceLab

	6.6 Face Detection Web Apps
	6.7 How to Defeat Face Recognition
	6.8 Summary
	6.9 Chapter Review Questions

	Chapter 7 Object Detections and Image Segmentations
	Chapter Outline
	7.1 Introduction
	R-CNN Family
	YOLO
	SSD

	7.2 Object Detections with Pretrained Models
	7.2.1 Object Detection with OpenCV
	7.2.2 Object Detection with YOLO
	7.2.3 Object Detection with OpenCV and Deep Learning
	7.2.4 Object Detection with TensorFlow, ImageAI, Mask RNN, PixelLib, Gluon
	TensorFlow Object Detection
	ImageAI Object Detection
	MaskRCNN Object Detection
	Gluon Object Detection

	7.2.5 Object Detection with Colab OpenCV

	7.3 Object Detections with Custom Trained Models
	7.3.1 OpenCV
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5

	7.3.2 YOLO
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5

	7.3.3 TensorFlow, Gluon, and ImageAI
	TensorFlow
	Gluon
	ImageAI

	7.4 Object Tracking
	7.4.1 Object Size and Distance Detection
	7.4.2 Object Tracking with OpenCV
	Single Object Tracking with OpenCV
	Multiple Object Tracking with OpenCV

	7.4.2 Object Tracking with YOLOv4 and DeepSORT
	7.4.3 Object Tracking with Gluon

	7.5 Image Segmentation
	7.5.1 Image Semantic Segmentation and Image Instance Segmentation
	PexelLib
	Detectron2
	Gluon CV

	7.5.2 K-means Clustering Image Segmentation
	7.5.3 Watershed Image Segmentation

	7.6 Background Removal
	7.6.1 Background Removal with OpenCV
	7.6.2 Background Removal with PaddlePaddle
	7.6.3 Background Removal with PixelLib

	7.7 Depth Estimation
	7.7.1 Depth Estimation from a Single Image
	7.7.2 Depth Estimation from Stereo Images

	7.8 Augmented Reality
	7.9 Summary
	7.10 Chapter Review Questions

	Chapter 8 Pose Detection
	8.1 Introduction
	8.2 Hand Gesture Detection
	8.2.1 OpenCV
	8.2.2 TensorFlow.js

	8.3 Sign Language Detection
	8.4 Body Pose Detection
	8.4.1 OpenPose
	8.4.2 OpenCV
	8.4.3 Gluon
	8.4.4 PoseNet
	8.4.5 ML5JS
	8.4.6 MediaPipe

	8.5 Human Activity Recognition
	ActionAI
	Gluon Action Detection
	Accelerometer Data HAR

	8.6 Summary
	8.7 Chapter Review Questions

	Chapter 9 GAN and Neural-Style Transfer
	9.1 Introduction
	9.2 Generative Adversarial Network
	9.2.1 CycleGAN
	9.2.2 StyleGAN
	9.2.3 Pix2Pix
	9.2.4 PULSE
	9.2.5 Image Super-Resolution
	9.2.6 2D to 3D

	9.3 Neural-Style Transfer
	9.4 Adversarial Machine Learning
	9.5 Music Generation
	9.6 Summary
	9.7 Chapter Review Questions

	Chapter 10 Natural Language Processing
	10.1 Introduction
	10.1.1 Natural Language Toolkit
	10.1.2 spaCy
	10.1.3 Gensim
	10.1.4 TextBlob

	10.2 Text Summarization
	10.3 Text Sentiment Analysis
	10.4 Text/Poem Generation
	10.5.1 Text to Speech
	10.5.2 Speech to Text

	10.6 Machine Translation
	10.7 Optical Character Recognition
	10.8 QR Code
	10.9 PDF and DOCX Files
	10.10 Chatbots and Question Answering
	10.10.1 ChatterBot
	10.10.2 Transformers
	10.10.3 J.A.R.V.I.S.
	10.10.4 Chatbot Resources and Examples

	10.11 Summary
	10.12 Chapter Review Questions

	Chapter 11 Data Analysis
	11.1 Introduction
	11.2 Regression
	11.2.1 Linear Regression
	11.2.2 Support Vector Regression
	11.2.3 Partial Least Squares Regression

	11.3 Time-Series Analysis
	11.3.1 Stock Price Data
	11.3.2 Stock Price Prediction
	Streamlit Stock Price Web App

	11.3.4 Seasonal Trend Analysis
	11.3.5 Sound Analysis

	11.4 Predictive Maintenance Analysis
	11.5 Anomaly Detection and Fraud Detection
	11.5.1 Numenta Anomaly Detection
	11.5.2 Textile Defect Detection
	11.5.3 Healthcare Fraud Detection
	11.5.4 Santander Customer Transaction Prediction

	11.6 COVID-19 Data Visualization and Analysis
	11.7 KerasClassifier and KerasRegressor
	11.7.1 KerasClassifier
	11.7.2 KerasRegressor

	11.8 SQL and NoSQL Databases
	11.9 Immutable Database
	11.9.1 Immudb
	11.9.2 Amazon Quantum Ledger Database

	11.10 Summary
	11.11 Chapter Review Questions

	Chapter 12 Advanced AI Computing
	12.1 Introduction
	12.2 AI with Graphics Processing Unit
	12.3 AI with Tensor Processing Unit
	12.4 AI with Intelligence Processing Unit
	12.5 AI with Cloud Computing
	12.5.1 Amazon AWS
	12.5.2 Microsoft Azure
	12.5.3 Google Cloud Platform
	12.5.4 Comparison of AWS, Azure, and GCP

	12.6 Web-Based AI
	12.6.1 Django
	12.6.2 Flask
	12.6.3 Streamlit
	12.6.4 Other Libraries

	12.7 Packaging the Code
	Pyinstaller
	Nbconvert
	Py2Exe
	Py2app
	Auto-Py-To-Exe
	cx_Freeze
	Cython
	Kubernetes
	Docker
	PIP

	12.8 AI with Edge Computing
	12.8.1 Google Coral
	12.8.2 TinyML
	12.8.3 Raspberry Pi

	12.9 Create a Mobile AI App
	12.10 Quantum AI
	12.11 Summary
	12.12 Chapter Review Questions

	Index
	EULA

avtfcalnte

