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Praise for Applied Machine Learning
and AI for Engineers

This book is a fantastic guide to machine learning and AI algorithms. It’s
succinct while being comprehensive, and the concrete examples with working

code show how to take the theory into practice.
—Mark Russinovich, Azure CTO

and Technical Fellow, Microsoft

When Jeff Prosise is passionate about something (whether it be
technology, his pet yellow-nape Amazon “Hawkeye,” or his hobby of building and flying

radio-controlled jets), you definitely want to listen in. He combines that passion with a
clarity of explanation that enables him to communicate and teach complex topics better

than anyone I’ve ever known. He brings you along on a personal journey of learning and
understanding. Now Jeff brings these skills to the current and ongoing “technological
tsunami” (as he puts it) of machine learning and AI. In this new book, he builds your

understanding from the foundations up, always emphasizing an intuitive approach and
connecting concepts and solutions to the real world. If you want to understand how AI

and ML really work under the hood, and how these technologies have
evolved and come to be, READ THIS BOOK.
—Todd Fine, Chief Strategy Officer, Atmosera

Jeff distills years of working AI/ML knowledge into a practical and
understandable guide for practitioners of all levels.

—Ken Muse, 4x Azure MVP and Senior
DevOps Architect, GitHub



Applied Machine Learning and AI for Engineers is the book I wish I had when first
introduced to machine learning. It’s a fantastic introduction for novice ML engineers and
a great reference for those more experienced. It is now my go-to source when refreshing

and enhancing my understanding of various ML techniques and their applicability. I love
that Jeff uses real-world examples and datasets to demonstrate each tool set and approach.

Just like a neural net, I have no idea how Jeff came up with this material, but it’s
tremendously useful all the same.

—Brent Rector, Principal Technical Program Manager, Amazon;
Founder, Wise Owl Consulting, LLC, Wise Owl Aviation Services, LLC,

and Rector Aviation Law PC

I’ve known Jeff for decades and he has always possessed the ability to plainly explain
complicated concepts. He has done it again with Applied Machine Learning and AI for

Engineers. The examples, analogies, and color figures make the material truly
understandable for the beginner to the more advanced reader.

—Jeffrey Richter, Software Architect, Microsoft

This book fills an extremely important gap for engineers and scientists that want to bring
the power of AI to bear on their most challenging data analysis problems. It strikes just

the right balance between technical depth and practical application, with tools and many
hands-on examples, to empower the reader to become an effective AI practitioner in their

own application domain (including business, science, and other data-rich fields).
—Shaun S. Gleason, PhD, Director, Cyber Resilience and

Intelligence, Oak Ridge National Laboratory

Applied Machine Learning and AI for Engineers has the potential to become the go-to for
ML and AI enthusiasts. What sets this book apart is how relevant the problem statements

are in today’s fast-paced adoption of machine learning in the tech world.
A must-read for newbies and professionals alike!
—Lipi Deepaakshi Patnaik, Software Development

Engineer, Zeta Suite

Jeff has always been able to wrap great stories around deep technical concepts that make
learning markedly easier. This might be his best book yet, and perhaps his most relevant

subject matter as well. Reading this book will make you want to go build something.
—Doug Turnure, Azure Specialist, Microsoft



Applied Machine Learning and AI for Engineers is a practical handbook for building useful
machine learning systems. It provides accessible guidance on how to apply cutting-edge

AI algorithms to solve contemporary business problems.
—Brian Spiering, Data Science Instructor, Metis

This book is a perfect start for engineers and software developers who want to get into
machine learning. It covers good ground in ML and quickly gets you started for a wide

variety of problems that are driven by data rather than algorithms.
—Dr. Manjeet Dahiya, VP and Head,

AI and Machine Learning, Ecom Express

Whether you’re new to applied ML or a seasoned developer looking for a reference, this
book is a must-have, up-to-date, comprehensive guide to all major classes of machine

learning algorithms (with clean code implementations
to really solidify your understanding).

—Goku Mohandas, Founder, Made With ML

Applied Machine Learning and AI for Engineers is a brilliant primer for beginner to
intermediate readers in AI/ML. The book builds a comfortable flow from conventional

ML to deep learning with the desirable bonus of AI implementation on the cloud, making
it a complete end-to-end guide for any enthusiastic reader or professional practitioner.

—Satyarth Praveen, Computing Science Engineer,
Lawrence Berkeley National Lab

Jeff Prosise is one of the best teachers I have ever encountered, and regardless of the
platform (classroom, blog, magazine article, webinar, book, etc.), he has a special talent of

taking complex topics and making them accessible for the rest of us. In this book, Jeff
goes beyond simply providing a very clear understanding of the basic concepts that

undergird machine learning to provide easy-to-follow examples that demonstrate those
concepts within the current environment. He delivers a great introduction/overview of a
wide variety of topics within machine learning and gives clear guidance on how each can
(and should) be used. Jeff is one of the very few that could have taken this complex topic

and put it into a form that could be easily absorbed and applied. This book
is a MUST READ for engineers and other problem solvers who are

looking to use machine learning to augment their skill set.
—Larry Clement, Assistant Professor, Computing, Software, and

Data Sciences, and former Department Chair, California Baptist University. Formerly a
senior engineer-scientist with the Boeing Corporation on the C-17 program.



Infused with author Jeff Prosise’s iconic teaching style that has helped thousands of
developers over the years, Applied Machine Learning and AI for Engineers layers context

around complex topics and provides easy-to-understand examples and tutorials.
Highly recommended for engineers who want to incorporate

machine learning concepts and skills in their repertoire.
—Vani Mandava, Head of Engineering, Scientific Software

Engineering Center at University of Washington eScience Institute
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Foreword

When your dad is insatiably curious about what you are studying, home is not a safe
harbor.

I received my master’s in analytics in 2018. Through the course of my graduate school
program, my cohort learned how to leverage machine learning, AI, and analytics to
add value to businesses and develop solutions for real-world challenges. I have a pas‐
sion for these things—a passion that I share with my dad, Jeff Prosise. In fact, I can’t
tell you the number of times he asked if he could join me in class (I’m not kidding) or
launched a salvo of questions about what we were studying in the kitchen when I
escaped the grind at my parents’ house.

If you have ever been on an airplane experiencing turbulence and the person next to
you coped by striking up a conversation about what a marvel of engineering modern
jetliners are because they do not have a single point of failure, you know exactly how I
felt.

Our love of data and analytics grew into a shared love of the value it provides. Using
the tools and techniques outlined in this book, one can draw certitude in the face of
uncertainty. Data science allows you to find underlying truth—to discover what is
really happening and how it drives behaviors and outcomes. The ability to peek
behind the curtain using analytics, rather than intuition, is an appreciating skill set in
our information economy and is vital for people and institutions navigating modern
uncertainty.

Equally important is effectively communicating these findings to a nontechnical audi‐
ence while having a deep technical understanding of just what is going on under the
hood. This level of communication can’t be faked (I’ve tried a time or two during
those kitchen discussions with my dad).

Analytics, AI, and machine learning do not have insurmountable technical or deploy‐
ment issues. Rather, the challenge and accessibility of understanding just what is hap‐
pening and how they work is the impediment, because this understanding is often

xi



shrouded in technical jargon and industry shibboleths. These barriers to entry act as
a limiting principle and stunt the utilization of data science to address problems and
questions.

That is what this book seeks to change: it removes the shroud and jargon, making
these tools and resources accessible.

And, to be completely honest, my dad is very good at writing and teaching intimidat‐
ing technical topics in a manner that makes learning them almost effortless, and he
has been for all my life. He has made subjects all the way back to DOS understandable
for the movers and shakers in today’s business world. He has made subjects that I
frankly can’t wrap my head around accessible for generations of programmers over
the last few decades. To put it simply, he’s the best.

The secret is this: his ethos of how he approaches teaching a topic centers around
“how would I want this explained to me if I had never heard of it but was interested?”
Given the unique challenges data science poses and the myriad perspectives profes‐
sionals in this space come from, his approach provides a level of accessibility not
found in many other places.

Take it from me: you couldn’t have a better guide through the complexities of ML and
AI. If you’re already familiar, then this book will hone your understanding, as it did
for me. (Looking at you, Chapter 13.) If you’re interested in machine learning, AI,
analytics, and the value they add to humanity, you’re in the right place.

Regardless of which camp you fall in, you’ll come away with deeper knowledge of the
subjects he outlines, empowering you to use these tools and then tell the story of what
you found.

Usually I would end something like this by saying, “I hope you enjoy the book and
learn something,” but in this case, that would not be the truth. I don’t hope—I know. I
know you will learn from and alongside my dad, as I have.

There’s no person I’ve tried to be more like in my life than Jeff Prosise, and I couldn’t
be more excited to share this aspect of him with you. And maybe—just maybe—it
will ignite a passion for this stuff, as it did with me.

I’ll leave you with this. I’ll say to you what he apocryphally told me as he held me on
the day I was born: “Welcome to the show, kid.”

— Adam Prosise
Process and Innovation Specialist, Delta Air Lines

xii | Foreword



Preface

I have witnessed three great technical revolutions in my lifetime: first the personal
computer, then the internet, and lastly the smartphone. Machine learning (ML) and
AI are just as fundamentally important as all three and will have an equally profound
impact on our lives.

I first became interested in machine learning the day my credit card company called
to confirm that I was trying to purchase a $700 necklace. I was not, but I was curious:
how did they know it wasn’t me? I use my card all over the world, and for the record,
I do buy my wife nice things from time to time. Not once had the credit card com‐
pany declined a legitimate purchase, but several times they had correctly flagged frau‐
dulent purchases, the one prior to this being an attempt by someone in Brazil to use
my card to buy an airline ticket. This time was different: the jewelry store was 2 miles
from my house. I tried to imagine an algorithm that could so reliably detect credit
card fraud at the point of sale. It didn’t take long to realize that something more pow‐
erful than a mere algorithm was at work.

It turned out that the credit card company runs every transaction through a sophisti‐
cated machine learning model that is incredibly adept at detecting fraud. That
moment changed my life. It’s a splendid example of how ML and AI are making the
world a better place. Moreover, understanding how ML could analyze credit card
transactions in real time and pick out the bad ones while allowing legitimate charges
to go through became a mountain that I had to climb.

Who Should Read This Book
Recently, I received a call from the head of engineering at a manufacturing company.
He started the conversation like this: “Until last week, I didn’t know what ML and AI
stood for. Now my CEO has tasked me with figuring out how they can improve our
business, and to do it before our competitors get ahead of us. I am starting at square
one. Can you help?”
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The next call came from a government contracting firm interested in using machine
learning to detect tax fraud and money laundering. The team there was reasonably
well versed in machine learning theory but wondered how best to go about building
the models they needed.

Professionals everywhere are realizing that ML and AI represent a technological tsu‐
nami, and they’re trying to get on top of the wave before it crashes over them. This
book is for them: engineers, software developers, IT managers, and others whose goal
is to build a practical understanding of ML and AI and put that knowledge to work
solving problems that were difficult or even intractable before. It seeks to impart an
intuitive understanding and resorts to equations only when necessary. Despite what
you may have heard, you don’t have to be an expert in calculus or linear algebra to
build systems that recognize objects in photos, translate English to French, or expose
drug traffickers and tax cheats.

Why I Wrote This Book
Inside every author is a tiny gremlin that says they can tell the story in a way that no
one else has. I wrote my first computer book more than 30 years ago and my last one
more than 20 years ago, and I didn’t intend to write another one. But now I have a
story to tell. It’s an important story—one that every engineer and software developer
should hear. I’m not entirely satisfied with the way others have told it, so I wrote the
book that I wish I had had when I was learning the craft. It starts with the basics and
leads you on a journey to the heights of ML and AI. By the end, you’ll understand
how credit card companies detect fraud, how aircraft companies use machine learn‐
ing to perform predictive maintenance on jet engines, how self-driving cars see the
world around them, how Google Translate translates text between languages, and
how facial recognition systems work. Moreover, you’ll be able to build systems like
them yourself, or use existing systems to infuse AI into the apps that you write.

Today’s most advanced machine learning models are trained on computers equipped
with graphics processing units (GPUs) or tensor processing units (TPUs), often at
great time and expense. A point of emphasis in this book is presenting examples that
can be built on a typical PC or laptop without a GPU. When we tackle computer-
vision models that recognize objects in photos, I’ll describe how such models work
and how they’re trained with millions of images on GPU clusters. But then I’ll show
you how to use a technique called transfer learning to repurpose existing models to
solve domain-specific problems and train them on an ordinary laptop.
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This book draws heavily from the classes and workshops that I teach at companies
and research institutions around the world. I love teaching because I love seeing the
light bulbs come on. I often kick off classes on ML and AI by saying I’m not here to
teach; I’m here to change your life. Here’s hoping that your life will be a little bit dif‐
ferent, and a little bit better, than it was before you read this book.

Running the Book’s Code Samples
Engineers learn best by doing, not merely by reading. This book contains numerous
code samples that you can run to reinforce the concepts presented in each chapter.
Most are written in Python and use popular open source libraries such as Scikit-
Learn, Keras, and TensorFlow. All are available in a public GitHub repo. It’s the single
source of truth for the code samples because I can update it at any time.

There are machine learning platforms that allow you to build and train models with
no code. But the best way to understand what these platforms do and how they do it
is to write code. Python is a simple programming language. It’s easy to learn. Engi‐
neers today have to be comfortable writing code. You can learn Python as you go by
working the examples in this book, and if you’re already comfortable with Python
(and with programming in general), then you’re ahead of the game.

To run my samples on your PC or laptop, you need a 64-bit version of Python 3.7 or
higher. You can download a Python runtime from Python.org, or you can install a
Python distribution such as Anaconda. You also need to make sure the following
packages and their dependencies are installed:

• Scikit-Learn and TensorFlow for building machine learning models
• Pandas, Matplotlib, and Seaborn for data wrangling and visualization
• OpenCV and Pillow for handling images
• Flask and Requests for calling REST APIs and building web services
• Sklearn-onnx and Onnxruntime for Open Neural Network Exchange (ONNX)

models
• Librosa for generating spectrogram images from audio files
• MTCNN and Keras-vggface for building facial recognition systems
• KerasNLP, Transformers, Datasets, and PyTorch for building natural language

processing (NLP) models
• Azure-cognitiveservices-vision-computervision, Azure-ai-textanalytics, and

Azure-cognitiveservices-speech for calling Azure Cognitive Services
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You can install most of these packages with pip install commands. If you installed
Anaconda, many of these packages are already there, and you can install the rest
using conda install commands or an equivalent.

Speaking of environments, it’s never a bad idea to use virtual Python environments to
prevent package installs from conflicting with other package installs. If you’re not
familiar with virtual environments, you can read about them at Python.org. If you use
Anaconda, virtual environments are baked right in.

Most of my code samples were built for Jupyter notebooks, which provide an interac‐
tive platform for writing and executing Python code. Notebooks are incredibly popu‐
lar in the data science community for exploring data and training machine learning
models. You can run Jupyter notebooks locally by installing packages such as Note‐
book or JupyterLab, or you can use cloud-hosted environments like Google Colab.
One of the advantages of Colab is that you don’t have to install anything on your
computer—not even Python. And in the rare cases in which my samples require a
GPU, Colab provides it for you.

Python development environments are notoriously finicky to set up and maintain,
especially on Windows. If you’d prefer not to have to create such an environment, or
if you tried but failed to get it working, help is only a download away. I packaged a
complete development environment suitable for running every sample in this book in
a Docker container image. Assuming you have the Docker Engine installed on your
computer, you can launch the container with the following command:

docker run -it -p 8888:8888 jeffpro/applied-machine-learning:latest

Navigate in your browser to the URL that appears in the output. You’ll land in a full
Jupyter environment with all my code samples and everything needed to run them.
They’re in a folder named Applied-Machine-Learning cloned from the GitHub repo of
the same name. The downside to using a container is that changes you make aren’t
persisted by default. One way to remedy that is to use a -v switch in the docker com‐
mand to bind to a local directory. For more information, refer to “Use Bind Mounts”
in the Docker documentation.
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Navigating This Book
This book is organized into two parts:

• Part I (Chapters 1 through 7) teaches the ABCs of machine learning and intro‐
duce popular learning algorithms such as logistic regression and gradient
boosting.

• Part II (Chapters 8 through 14) covers deep learning, which is synonymous with
AI today and uses deep neural networks to fit mathematical models to data.

I highly encourage you to work the exercises as you read the book. You’ll come away
with a deeper understanding of the material, and you’ll no doubt think of ways to
modify my examples to play “what if?” with the code.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.
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Using Code Examples
As mentioned, supplemental material (code examples, exercises, etc.) is available for
download at https://oreil.ly/applied-machine-learning-code.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Applied Machine Learn‐
ing and AI for Engineers by Jeff Prosise (O’Reilly). Copyright 2023 Jeff Prosise,
978-1-492-09805-8.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.
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How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/applied-machine-learning.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Follow us on Twitter: https://twitter.com/oreillymedia

Watch us on YouTube: https://youtube.com/oreillymedia
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PART I

Machine Learning with Scikit-Learn





CHAPTER 1

Machine Learning

Machine learning expands the boundaries of what’s possible by allowing computers
to solve problems that were intractable just a few short years ago. From fraud detec‐
tion and medical diagnoses to product recommendations and cars that “see” what’s in
front of them, machine learning impacts our lives every day. As you read this, scien‐
tists are using machine learning to unlock the secrets of the human genome. When
we one day cure cancer, we will thank machine learning for making it possible.

Machine learning is revolutionary because it provides an alternative to algorithmic
problem-solving. Given a recipe, or algorithm, it’s not difficult to write an app that
hashes a password or computes a monthly mortgage payment. You code up the algo‐
rithm, feed it input, and receive output in return. It’s another proposition altogether
to write code that determines whether a photo contains a cat or a dog. You can try to
do it algorithmically, but the minute you get it working, you’ll come across a cat or
dog picture that breaks the algorithm.

Machine learning takes a different approach to turning input into output. Rather than
relying on you to implement an algorithm, it examines a dataset of inputs and out‐
puts and learns how to generate output of its own in a process known as training.
Under the hood, special algorithms called learning algorithms fit mathematical mod‐
els to the data and codify the relationship between data going in and data coming out.
Once trained, a model can accept new inputs and generate outputs consistent with
the ones in the training data.

To use machine learning to distinguish between cats and dogs, you don’t code a cat-
versus-dog algorithm. Instead, you train a machine learning model with cat and dog
photos. Success depends on the learning algorithm used and the quality and volume
of the training data.
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Part of becoming a machine learning engineer is familiarizing yourself with the vari‐
ous learning algorithms and developing an intuition for when to use one versus
another. That intuition comes from experience and from an understanding of how
machine learning fits mathematical models to data. This chapter represents the first
step on that journey. It begins with an overview of machine learning and the most
common types of machine learning models, and it concludes by introducing two
popular learning algorithms and using them to build simple yet fully functional
models.

What Is Machine Learning?
At an existential level, machine learning (ML) is a means for finding patterns in num‐
bers and exploiting those patterns to make predictions. ML makes it possible to train
a model with rows or sequences of 1s and 0s, and to learn from the data so that, given
a new sequence, the model can predict what the result will be. Learning is the process
by which ML finds patterns that can be used to predict future outputs, and it’s where
the “learning” in “machine learning” comes from.

As an example, consider the table of 1s and 0s depicted in Figure 1-1. Each number in
the fourth column is somehow based on the three numbers preceding it in the same
row. What’s the missing number?

Figure 1-1. Simple dataset consisting of 0s and 1s

One possible solution is that for a given row, if the first three columns contain more
0s than 1s, then the fourth contains a 0. If the first three columns contain more 1s
than 0s, then the answer is 1. By this logic, the empty box should contain a 1. Data
scientists refer to the column containing answers (the red column in the figure) as the
label column. The remaining columns are feature columns. The goal of a predictive
model is to find patterns in the rows in the feature columns that allow it to predict
what the label will be.

4 | Chapter 1: Machine Learning



If all datasets were this simple, you wouldn’t need machine learning. But real-world
datasets are larger and more complex. What if the dataset contained millions of rows
and thousands of columns, which, as it happens, is common in machine learning?
For that matter, what if the dataset resembled the one in Figure 1-2?

Figure 1-2. A more complex dataset

It’s difficult for any human to examine this dataset and come up with a set of rules for
predicting whether the red box should contain a 0 or a 1. (And no, it’s not as simple as
counting 1s and 0s.) Just imagine how much more difficult it would be if the dataset
really did have millions of rows and thousands of columns.

That’s what machine learning is all about: finding patterns in massive datasets of
numbers. It doesn’t matter whether there are 100 rows or 1,000,000 rows. In many
cases, more is better, because 100 rows might not provide enough samples for pat‐
terns to be discerned.

It isn’t an oversimplification to say that machine learning solves problems by mathe‐
matically modeling patterns in sets of numbers. Most any problem can be reduced to
a set of numbers. For example, one of the common applications for ML today is senti‐
ment analysis: looking at a text sample such as a movie review or a comment left on a
website and assigning it a 0 for negative sentiment (for example, “The food was bland
and the service was terrible.”) or a 1 for positive sentiment (“Excellent food and ser‐
vice. Can’t wait to visit again!”). Some reviews might be mixed—for example, “The
burger was great but the fries were soggy”—so we use the probability that the label is a
1 as a sentiment score. A very negative comment might score a 0.1, while a very posi‐
tive comment might score a 0.9, as in there’s a 90% chance that it expresses positive
sentiment.

Sentiment analyzers and other models that work with text are frequently trained on
datasets like the one in Figure 1-3, which contains one row for every text sample and
one column for every word in the corpus of text (all the words in the dataset). A typi‐
cal dataset like this one might contain millions of rows and 20,000 or more columns.
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Each row contains a 0 for negative sentiment in the label column, or a 1 for positive
sentiment. Within each row are word counts—the number of times a given word
appears in an individual sample. The dataset is sparse, meaning it is mostly 0s with an
occasional nonzero number sprinkled in. But machine learning doesn’t care about the
makeup of the numbers. If there are patterns that can be exploited to determine
whether the next sample expresses positive or negative sentiment, it will find them.
Spam filters use datasets such as these with 1s and 0s in the label column denoting
spam and nonspam messages. This allows modern spam filters to achieve an aston‐
ishing degree of accuracy. Moreover, these models grow smarter over time as they are
trained with more and more emails.

Figure 1-3. Dataset for sentiment analysis

Sentiment analysis is an example of a text classification task: analyzing a text sample
and classifying it as positive or negative. Machine learning has proven adept at image
classification as well. A simple example of image classification is looking at photos of
cats and dogs and classifying each one as a cat picture (0) or a dog picture (1). Real-
world uses for image classification include flagging defective parts coming off an
assembly line, identifying objects in view of a self-driving car, and recognizing faces
in photos.

Image classification models are trained with datasets like the one in Figure 1-4, in
which each row represents an image and each column holds a pixel value. A dataset
with 1,000,000 images that are 200 pixels wide and 200 pixels high contains 1,000,000
rows and 40,000 columns. That’s 40 billion numbers in all, or 120,000,000,000 if the
images are color rather than grayscale. (In color images, pixel values comprise three
numbers rather than one.) The label column contains a number representing the class
or category to which the corresponding image belongs—in this case, the person
whose face appears in the picture: 0 for Gerhard Schroeder, 1 for George W. Bush,
and so on.

6 | Chapter 1: Machine Learning



Figure 1-4. Dataset for image classification

These facial images come from a famous public dataset called Labeled Faces in the
Wild, or LFW for short. It is one of countless labeled datasets that are published in
various places for public consumption. Machine learning isn’t hard when you have
labeled datasets to work with—datasets that others (often grad students) have labori‐
ously spent hours labeling with 1s and 0s. In the real world, engineers sometimes
spend the bulk of their time generating these datasets. One of the more popular repo‐
sitories for public datasets is Kaggle.com, which makes lots of useful datasets available
and holds competitions allowing budding ML practitioners to test their skills.

Machine Learning Versus Artificial Intelligence
The terms machine learning and artificial intelligence (AI) are used almost inter‐
changeably today, but in fact, each term has a specific meaning, as shown in
Figure 1-5.

Technically speaking, machine learning is a subset of AI, which encompasses not only
machine learning models but also other types of models such as expert systems (sys‐
tems that make decisions based on rules that you define) and reinforcement learning
systems, which learn behaviors by rewarding positive outcomes while penalizing neg‐
ative ones. An example of a reinforcement learning system is AlphaGo, which was the
first computer program to beat a professional human Go player. It trains on games
that have already been played and learns strategies for winning on its own.

As a practical matter, what most people refer to as AI today is in fact deep learning,
which is a subset of machine learning. Deep learning is machine learning performed
with neural networks. (There are forms of deep learning that don’t involve neural net‐
works—deep Boltzmann machines are one example—but the vast majority of deep
learning today involves neural networks.) Thus, ML models can be divided into
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conventional models that use learning algorithms to model patterns in data, and
deep-learning models that use neural networks to do the same.

Figure 1-5. Relationship between machine learning, deep learning, and AI

A Brief History of AI
ML and AI have surged in popularity in recent years. AI was a big deal in the 1980s,
when it was widely believed that computers would soon be able to mimic the human
mind. But excitement waned, and for decades—up until 2010 or so—AI rarely made
the news. Then a strange thing happened.

Thanks to the availability of graphics processing units (GPUs) from companies such
as NVIDIA, researchers finally had the horsepower they needed to train advanced
neural networks. This led to advancements in the state of the art, which led to
renewed enthusiasm, which led to additional funding, which precipitated further
advancements, and suddenly AI was a thing again. Neural networks have been
around (at least in theory) since the 1950s, but researchers lacked the computational
power to train them on large datasets. Today anyone can buy a GPU or spin up a
GPU cluster in the cloud. AI is advancing more rapidly now than ever before, and
with that progress comes the ability to do things in software that engineers could only
have dreamed about as recently as a decade ago.
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Over time, data scientists have devised special types of neural networks that excel at
certain tasks, including tasks involving computer vision—for example, distilling
information from images—and tasks that involve human languages such as translat‐
ing English to French. We’ll take a deep dive into neural networks beginning in Chap‐
ter 8, and you’ll learn specifically how deep learning has elevated machine learning to
new heights.

Supervised Versus Unsupervised Learning
Most ML models fall into one of two broad categories: supervised learning models and
unsupervised learning models. The purpose of supervised learning models is to make
predictions. You train them with labeled data so that they can take future inputs and
predict what the labels will be. Most of the ML models in use today are supervised
learning models. A great example is the model that the US Postal Service uses to turn
handwritten zip codes into digits that a computer can recognize to sort the mail.
Another example is the model that your credit card company uses to authorize
purchases.

Unsupervised learning models, by contrast, don’t require labeled data. Their purpose
is to provide insights into existing data, or to group data into categories and catego‐
rize future inputs accordingly. A classic example of unsupervised learning is inspect‐
ing records regarding products purchased from your company and the customers
who purchased them to determine which customers might be most interested in a
new product you are launching and then building a marketing campaign that targets
those customers.

A spam filter is a supervised learning model. It requires labeled data. A model that
segments customers based on incomes, credit scores, and purchasing history is an
unsupervised learning model, and the data that it consumes doesn’t have to be
labeled. To help drive home the difference, the remainder of this chapter explores
supervised and unsupervised learning in greater detail.

Unsupervised Learning with k-Means Clustering
Unsupervised learning frequently employs a technique called clustering. The purpose
of clustering is to group data by similarity. The most popular clustering algorithm is
k-means clustering, which takes n data samples and groups them into m clusters,
where m is a number you specify.
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Grouping is performed using an iterative process that computes a centroid for each
cluster and assigns samples to clusters based on their proximity to the cluster cent‐
roids. If the distance from a particular sample to the centroid of cluster 1 is 2.0 and
the distance from the same sample to the center of cluster 2 is 3.0, then the sample is
assigned to cluster 1. In Figure 1-6, 200 samples are loosely arranged in three clusters.
The diagram on the left shows the raw, ungrouped samples. The diagram on the right
shows the cluster centroids (the red dots) with the samples colored by cluster.

Figure 1-6. Data points grouped using k-means clustering

How do you code up an unsupervised learning model that implements k-means clus‐
tering? The easiest way to do it is to use the world’s most popular machine learning
library: Scikit-Learn. It’s free, it’s open source, and it’s written in Python. The docu‐
mentation is great, and if you have a question, chances are you’ll find an answer by
Googling it. I’ll use Scikit for most of the examples in the first half of this book. The
book’s Preface describes how to install Scikit and configure your computer to run my
examples (or use a Docker container to do the same), so if you haven’t done so
already, now’s a great time to set up your environment.

To get your feet wet with k-means clustering, start by creating a new Jupyter note‐
book and pasting the following statements into the first cell:

%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()

Run that cell, and then run the following code in the next cell to generate a semiran‐
dom assortment of x and y coordinate pairs. This code uses Scikit’s make_blobs func‐
tion to generate the coordinate pairs, and Matplotlib’s scatter function to plot them:
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from sklearn.datasets import make_blobs

points, cluster_indexes = make_blobs(n_samples=300, centers=4,
                                     cluster_std=0.8, random_state=0)
 
x = points[:, 0]
y = points[:, 1]
 
plt.scatter(x, y, s=50, alpha=0.7)

Your output should be identical to mine, thanks to the random_state parameter that
seeds the random-number generator used internally by make_blobs:

Next, use k-means clustering to divide the coordinate pairs into four groups. Then
render the cluster centroids in red and color-code the data points by cluster. Scikit’s
KMeans class does the heavy lifting, and once it’s fit to the coordinate pairs, you can
get the locations of the centroids from KMeans’ cluster_centers_ attribute:

from sklearn.cluster import KMeans

kmeans = KMeans(n_clusters=4, random_state=0)
kmeans.fit(points)
predicted_cluster_indexes = kmeans.predict(points)
 
plt.scatter(x, y, c=predicted_cluster_indexes, s=50, alpha=0.7, cmap='viridis')
 
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='red', s=100)
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Here is the result:

Try setting n_clusters to other values, such as 3 and 5, to see how the points are
grouped with different cluster counts. Which begs the question: how do you know
what the right number of clusters is? The answer isn’t always obvious from looking at
a plot, and if the data has more than three dimensions, you can’t plot it anyway.

One way to pick the right number is with the elbow method, which plots inertias (the
sum of the squared distances of the data points to the closest cluster center) obtained
from KMeans.inertia_ as a function of cluster counts. Plot inertias this way and look
for the sharpest elbow in the curve:

inertias = []

for i in range(1, 10):
    kmeans = KMeans(n_clusters=i, random_state=0)
    kmeans.fit(points)
    inertias.append(kmeans.inertia_)

plt.plot(range(1, 10), inertias)
plt.xlabel('Number of clusters')
plt.ylabel('Inertia')
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In this example, it appears that 4 is the right number of clusters:

In real life, the elbow might not be so distinct. That’s OK, because by clustering the
data in different ways, you sometimes obtain insights that you wouldn’t obtain
otherwise.

Applying k-Means Clustering to Customer Data
Let’s use k-means clustering to tackle a real problem: segmenting customers to iden‐
tify ones to target with a promotion to increase their purchasing activity. The dataset
that you’ll use is a sample customer segmentation dataset named customers.csv. Start
by creating a subdirectory named Data in the folder where your notebooks reside,
downloading customers.csv, and copying it into the Data subdirectory. Then use the
following code to load the dataset into a Pandas DataFrame and display the first five
rows:

import pandas as pd

customers = pd.read_csv('Data/customers.csv')
customers.head()
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From the output, you learn that the dataset contains five columns, two of which
describe the customer’s annual income and spending score. The latter is a value from
0 to 100. The higher the number, the more this customer has spent with your com‐
pany in the past:

Now use the following code to plot the annual incomes and spending scores:

%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()

points = customers.iloc[:, 3:5].values
x = points[:, 0]
y = points[:, 1]

plt.scatter(x, y, s=50, alpha=0.7)
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score')

From the results, it appears that the data points fall into roughly five clusters:

Use the following code to segment the customers into five clusters and highlight the
clusters:
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from sklearn.cluster import KMeans

kmeans = KMeans(n_clusters=5, random_state=0)
kmeans.fit(points)
predicted_cluster_indexes = kmeans.predict(points)

plt.scatter(x, y, c=predicted_cluster_indexes, s=50, alpha=0.7, cmap='viridis')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score')

centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='red', s=100)

Here is the result:

The customers in the lower-right quadrant of the chart might be good ones to target
with a promotion to increase their spending. Why? Because they have high incomes
but low spending scores. Use the following statements to create a copy of the Data
Frame and add a column named Cluster containing cluster indexes:

df = customers.copy()
df['Cluster'] = kmeans.predict(points)
df.head()

Here is the output:
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Now use the following code to output the IDs of customers who have high incomes
but low spending scores:

import numpy as np

# Get the cluster index for a customer with a high income and low spending score
cluster = kmeans.predict(np.array([[120, 20]]))[0]

# Filter the DataFrame to include only customers in that cluster
clustered_df = df[df['Cluster'] == cluster]

# Show the customer IDs
clustered_df['CustomerID'].values

You could easily use the resulting customer IDs to extract names and email addresses
from a customer database:

array([125, 129, 131, 135, 137, 139, 141, 145, 147, 149, 151, 153, 155,
       157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181,
       183, 185, 187, 189, 191, 193, 195, 197, 199], dtype=int64)

The key here is that you used clustering to group customers by annual income and
spending score. Once customers are grouped in this manner, it’s a simple matter to
enumerate the customers in each cluster.

Segmenting Customers Using More Than Two Dimensions
The previous  example was an easy one because you used just two variables: annual
incomes and spending scores. You could have done the same without help from
machine learning. But now let’s segment the customers again, this time using every‐
thing except the customer IDs. Start by replacing the strings "Male" and "Female" in
the Gender column with 1s and 0s, a process known as label encoding. This is neces‐
sary because machine learning can only deal with numerical data:

from sklearn.preprocessing import LabelEncoder

df = customers.copy()
encoder = LabelEncoder()
df['Gender'] = encoder.fit_transform(df['Gender'])
df.head()

The Gender column now contains 1s and 0s:
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Extract the gender, age, annual income, and spending score columns. Then use the
elbow method to determine the optimum number of clusters based on these features:

points = df.iloc[:, 1:5].values
inertias = []

for i in range(1, 10):
    kmeans = KMeans(n_clusters=i, random_state=0)
    kmeans.fit(points)
    inertias.append(kmeans.inertia_)

plt.plot(range(1, 10), inertias)
plt.xlabel('Number of Clusters')
plt.ylabel('Inertia')

The elbow is less distinct this time, but 5 appears to be a reasonable number:

Segment the customers into five clusters and add a column named Cluster contain‐
ing the index of the cluster (0-4) to which the customer was assigned:

kmeans = KMeans(n_clusters=5, random_state=0)
kmeans.fit(points)

df['Cluster'] = kmeans.predict(points)
df.head()

Here is the output:
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You have a cluster number for each customer, but what does it mean? You can’t plot
gender, age, annual income, and spending score in a two-dimensional chart the way
you plotted annual income and spending score in the previous example. But you can
get the mean (average) of these values for each cluster from the cluster centroids.
Create a new DataFrame with columns for average age, average income, and so on,
and then show the results in a table:

results = pd.DataFrame(columns = ['Cluster', 'Average Age', 'Average Income',
                                   'Average Spending Index', 'Number of Females',
                                   'Number of Males'])

for i, center in enumerate(kmeans.cluster_centers_):
    age = center[1]    # Average age for current cluster
    income = center[2] # Average income for current cluster
    spend = center[3]  # Average spending score for current cluster

    gdf = df[df['Cluster'] == i]
    females = gdf[gdf['Gender'] == 0].shape[0]
    males = gdf[gdf['Gender'] == 1].shape[0]

    results.loc[i] = ([i, age, income, spend, females, males])

results.head()

The output is as follows:

Based on this, if you were going to target customers with high incomes but low
spending scores for a promotion, which group of customers (which cluster) would
you choose? Would it matter whether you targeted males or females? For that matter,
what if your goal was to create a loyalty program rewarding customers with high
spending scores, but you wanted to give preference to younger customers who might
be loyal customers for a long time? Which cluster would you target then?

Among the more interesting insights that clustering reveals is that some of the biggest
spenders are young people (average age = 25.5) with modest incomes. Those custom‐
ers are more likely to be female than male. All of this is useful information to have if
you’re growing a company and want to better understand the demographics that you
serve.
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k-means might be the most commonly used clustering algorithm,
but it’s not the only one. Others include agglomerative clustering,
which clusters data points in a hierarchical manner, and DBSCAN,
which stands for density-based spatial clustering of applications with
noise. DBSCAN doesn’t require the cluster count to be specified
ahead of time. It can also identify points that fall outside the clus‐
ters it identifies, which is useful for detecting outliers—anomalous
data points that don’t fit in with the rest. Scikit-Learn provides
implementations of both algorithms in its Agglomerative

Clustering and DBSCAN classes.

Do real companies use clustering to extract insights from customer data? Indeed they
do. During grad school, my son, now a data analyst for Delta Air Lines, interned at a
pet supplies company. He used k-means clustering to determine that the number one
reason that leads coming in through the company’s website weren’t converted to sales
was the length of time between when the lead came in and Sales first contacted the
customer. As a result, his employer introduced additional automation to the sales
workflow to ensure that leads were acted on quickly. That’s unsupervised learning at
work. And it’s a splendid example of a company using machine learning to improve
its business processes.

Supervised Learning
Unsupervised learning is an important branch of machine learning, but when most
people hear the term machine learning they think about supervised learning. Recall
that supervised learning models make predictions. For example, they predict whether
a credit card transaction is fraudulent or a flight will arrive on time. They’re also
trained with labeled data.

Supervised learning models come in two varieties: regression models and classification
models. The purpose of a regression model is to predict a numeric outcome such as
the price that a home will sell for or the age of a person in a photo. Classification
models, by contrast, predict a class or category from a finite set of classes defined in
the training data. Examples include whether a credit card transaction is legitimate or
fraudulent and what number a handwritten digit represents. The former is a binary
classification model because there are just two possible outcomes: the transaction is
legitimate or it’s not. The latter is an example of multiclass classification. Because there
are 10 digits (0–9) in the Western Arabic numeral system, there are 10 possible
classes that a handwritten digit could represent.

The two types of supervised learning models are pictured in Figure 1-7. On the left,
the goal is to input an x and predict what y will be. On the right, the goal is to input
an x and a y and predict what class the point corresponds to: a triangle or an ellipse.
In both cases, the purpose of applying machine learning to the problem is to build a
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model for making predictions. Rather than build that model yourself, you train a
machine learning model with labeled data and allow it to devise a mathematical
model for you.

Figure 1-7. Regression versus classification

For these datasets, you could easily build mathematical models without resorting to
machine learning. For a regression model, you could draw a line through the data
points and use the equation of that line to predict a y given an x (Figure 1-8). For a
classification model, you could draw a line that cleanly separates triangles from ellip‐
ses—what data scientists call a classification boundary—and predict which class a new
point represents by determining whether the point falls above or below the line. A
point just above the line would be a triangle, while a point just below it would classify
as an ellipse.

Figure 1-8. Regression line and linear separation boundary
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In the real world, datasets are rarely this orderly. They typically look more like the
ones in Figure 1-9, in which there is no single line you can draw to correlate the x and
y values on the left or cleanly separate the classes on the right. The goal, therefore, is
to build the best model you can. That means picking the learning algorithm that pro‐
duces the most accurate model.

Figure 1-9. Real-world datasets

There are many supervised learning algorithms. They go by names such as linear
regression, random forests, gradient-boosting machines (GBMs), and support vector
machines (SVMs). Many, but not all, can be used for regression and classification.
Even seasoned data scientists frequently experiment to determine which learning
algorithm produces the most accurate model. These and other learning algorithms
will be covered in subsequent chapters.

k-Nearest Neighbors
One of the simplest supervised learning algorithms is k-nearest neighbors. The prem‐
ise behind it is that given a set of data points, you can predict a label for a new point
by examining the points nearest it. For a simple regression problem in which each
data point is characterized by x and y coordinates, this means that given an x, you can
predict a y by finding the n points with the nearest xs and averaging their ys. For a
classification problem, you find the n points closest to the point whose class you want
to predict and choose the class with the highest occurrence count. If n = 5 and the
five nearest neighbors include three triangles and two ellipses, then the answer is a
triangle, as pictured in Figure 1-10.
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Figure 1-10. Classification with k-nearest neighbors

Here’s an example involving regression. Suppose you have 20 data points describing
how much programmers earn per year based on years of experience. Figure 1-11
plots years of experience on the x-axis and annual income on the y-axis. Your goal is
to predict what someone with 10 years of experience should earn. In this example,
x = 10, and you want to predict what y should be.

Figure 1-11. Programmers’ salaries in dollars versus years of experience

Applying k-nearest neighbors with n = 10 identifies the points highlighted in orange
in Figure 1-12 as the nearest neighbors—the 10 whose x coordinates are closest to
x = 10. The average of these points’ y coordinates is 94,838. Therefore, k-nearest
neighbors with n = 10 predicts that a programmer with 10 years of experience will
earn $94,838, as indicated by the red dot.
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Figure 1-12. Regression with k-nearest neighbors and n = 10

The value of n that you use with k-nearest neighbors frequently influences the out‐
come. Figure 1-13 shows the same solution with n = 5. The answer is slightly different
this time because the average y for the five nearest neighbors is 98,713.

In real life, it’s a little more nuanced because while the dataset has just one label col‐
umn, it probably has several feature columns—not just x, but x1, x2, x3, and so on. You
can compute distances in n-dimensional space easily enough, but there are several
ways to measure distances to identify a point’s nearest neighbors, including Euclidean
distance, Manhattan distance, and Minkowski distance. You can even use weights so
that nearby points contribute more to the outcome than faraway points. And rather
than find the n nearest neighbors, you can select all the neighbors within a given
radius, a technique known as radius neighbors. Still, the principle is the same regard‐
less of the number of dimensions in the dataset, the method used to measure dis‐
tance, or whether you choose n nearest neighbors or all the neighbors within a
specified radius: find data points that are similar to the target point and use them to
regress or classify the target.
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Figure 1-13. Regression with k-nearest neighbors and n = 5

Using k-Nearest Neighbors to Classify Flowers
Scikit-Learn includes classes named KNeighborsRegressor and KNeighbors

Classifier to help you train regression and classification models using the
k-nearest neighbors learning algorithm. It also includes classes named
RadiusNeighborsRegressor and RadiusNeighborsClassifier that accept a radius
rather than a number of neighbors. Let’s look at an example that uses KNeighbors
Classifier to classify flowers using the famous Iris dataset. That dataset includes
150 samples, each representing one of three species of iris. Each row contains four
measurements—sepal length, sepal width, petal length, and petal width, all in centi‐
meters—plus a label: 0 for a setosa iris, 1 for versicolor, and 2 for virginica.
Figure 1-14 shows an example of each species and illustrates the difference between
petals and sepals.
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Figure 1-14. Iris dataset (Middle panel: “Blue Flag Flower Close-Up [Iris Versicolor]” by
Danielle Langlois is licensed under CC BY-SA 2.5, https://creativecommons.org/licenses/
by-sa/2.5/deed.en; rightmost panel: “Image of Iris Virginica Shrevei BLUE FLAG” by
Frank Mayfield is licensed under CC BY-SA 2.0, https://creativecommons.org/licenses/
by-sa/2.0/deed.en)

To train a machine learning model to differentiate between species of iris based on
sepal and petal measurements, begin by running the following code in a Jupyter note‐
book to load the dataset, add a column containing the class name, and show the first
five rows:

import pandas as pd
from sklearn.datasets import load_iris
 
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['class'] = iris.target
df['class name'] = iris.target_names[iris['target']]
df.head()

The Iris dataset is one of several sample datasets included with Scikit. That’s why you
can load it by calling Scikit’s load_iris function rather than reading it from an exter‐
nal file. Here’s the output from the code:
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Before you train a machine learning model from the data, you need to split the data‐
set into two datasets: one for training and one for testing. That’s important, because if
you don’t test a model with data it hasn’t seen before—that is, data it wasn’t trained
with—you have no idea how accurate it is at making predictions.

Fortunately, Scikit’s train_test_split function makes it easy to split a dataset using
a fractional split that you specify. Use the following statements to perform an 80/20
split with 80% of the rows set aside for training and 20% reserved for testing:

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(
    iris.data, iris.target, test_size=0.2, random_state=0)

Now, x_train and y_train hold 120 rows of randomly selected measurements and
labels, while x_test and y_test hold the remaining 30. Although 80/20 splits are
customary for small datasets like this one, there’s no rule saying you have to split
80/20. The more data you train with, the more accurate the model is. (That’s not
strictly true, but generally speaking, you always want as much training data as you
can get.) The more data you test with, the more confidence you have in measure‐
ments of the model’s accuracy. For a small dataset, 80/20 is a reasonable place to start.

The next step is to train a machine learning model. Thanks to Scikit, that requires just
a few lines of code:

from sklearn.neighbors import KNeighborsClassifier

model = KNeighborsClassifier()
model.fit(x_train, y_train)

In Scikit, you create a machine learning model by instantiating the class encapsulat‐
ing the learning algorithm you selected—in this case, KNeighborsClassifier. Then
you call fit on the model to train it by fitting it to the training data. With just 120
rows of training data, training happens very quickly.

The final step is to use the 30 rows of test data split off from the original dataset to
measure the model’s accuracy. In Scikit, that’s accomplished by calling the model’s
score method:

model.score(x_test, y_test)

In this example, score returns 0.966667, which means the model got it right about
97% of the time when making predictions with the features in x_test and comparing
the predicted labels to the actual labels in y_test.

Of course, the whole purpose of training a predictive model is to make predictions
with it. In Scikit, you make a prediction by calling the model’s predict method. Use
the following statements to predict the class—0 for setosa, 1 for versicolor, and 2 for
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virginica—identifying the species of an iris whose sepal length is 5.6 cm, sepal width
is 4.4 cm, petal length is 1.2 cm, and petal width is 0.4 cm:

model.predict([[5.6, 4.4, 1.2, 0.4]])

The predict method can make multiple predictions in a single call. That’s why you
pass it a list of lists rather than just a list. It returns a list whose length equals the
number of lists you passed in. Since you passed just one list to predict, the return
value is a list with one value. In this example, the predicted class is 0, meaning the
model predicted that an iris whose sepal length is 5.6 cm, sepal width is 4.4 cm, petal
length is 1.2 cm, and petal width is 0.4 cm is mostly likely a setosa iris.

When you create a KNeighborsClassifier without specifying the number of neigh‐
bors, it defaults to 5. You can specify the number of neighbors this way:

model = KNeighborsClassifier(n_neighbors=10)

Try fitting (training) and scoring the model again using n_neighbors=10. Does the
model score the same? Does predict still predict class 0? Feel free to experiment with
other n_neighbors values to get a feel for their effect on the outcome.

KNeighborsClassifier Internals
k-nearest neighbors is sometimes referred to as a lazy learning algorithm because
most of the work is done when you call predict rather than when you call fit. In
fact, training technically doesn’t have to do anything except make a copy of the train‐
ing data for when predict is called. So what happens inside KNeighborsClassifier’s
fit method?

In most cases, fit constructs a binary tree in memory that makes predict faster by
preventing it from having to perform a brute-force search for neighboring samples. If
it determines that a binary tree won’t help, KNeighborsClassifier resorts to brute
force when making predictions. This typically happens when the training data is
sparse—that is, mostly zeros with a few nonzero values sprinkled in.

One of the wonderful things about Scikit-Learn is that it is open source. If you care to
know more about how a particular class or method works, you can go straight to the
source code on GitHub. You’ll find the source code for KNeighborsClassifier and
RadiusNeighborsClassifier on GitHub.

The process employed here—load the data, split the data, create a classifier or regres‐
sor, call fit to fit it to the training data, call score to assess the model’s accuracy
using test data, and finally, call predict to make predictions—is one that you will use
over and over with Scikit. In the real world, data frequently requires cleaning before
it’s used for training and testing. For example, you might have to remove rows with
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missing values or dedupe the data to eliminate redundant rows. You’ll see plenty of
examples of this later, but in this example, the data was complete and well structured
right out of the box, and therefore required no further preparation.

Summary
Machine learning offers engineers and software developers an alternative approach to
problem-solving. Rather than use traditional computer algorithms to transform input
into output, machine learning relies on learning algorithms to build mathematical
models from training data. Then it uses those models to turn future inputs into
outputs.

Most machine learning models fall into either of two categories. Unsupervised learn‐
ing models are widely used to analyze datasets by highlighting similarities and differ‐
ences. They don’t require labeled data. Supervised learning models learn from labeled
data in order to make predictions—for example, to predict whether a credit card
transaction is legitimate. Supervised learning can be used to solve regression prob‐
lems or classification problems. Regression models predict numeric outcomes, while
classification models predict classes (categories).

k-means clustering is a popular unsupervised learning algorithm, while k-nearest
neighbors is a simple yet effective supervised learning algorithm. Many, but not all,
supervised learning algorithms can be used for regression and for classification.
Scikit-Learn’s KNeighborsRegressor class, for example, applies k-nearest neighbors to
regression problems, while KNeighborsClassifier applies the same algorithm to
classification problems.

Educators often use k-nearest neighbors to introduce supervised learning because it’s
easily understood and it performs reasonably well in a variety of problem domains.
With k-nearest neighbors under your belt, the next step on the road to machine
learning proficiency is getting to know other supervised learning algorithms. That’s
the focus of Chapter 2, which introduces several popular learning algorithms in the
context of regression modeling.

28 | Chapter 1: Machine Learning



CHAPTER 2

Regression Models

You learned in Chapter 1 that supervised learning models come in two varieties:
regression models and classification models. You also learned that regression models
predict numeric outcomes, such as the price that a home will sell for or the number of
visitors a website will attract. Regression modeling is a vital and sometimes underap‐
preciated aspect of machine learning. Retailers use it to forecast demand. Banks use it
to screen loan applications, factoring in variables such as credit scores, debt-to-
income ratios, and loan-to-value ratios. Insurance companies use it to set premiums.
Whenever you need numerical predictions, regression modeling is the right tool for
the job.

When building a regression model, the first and most important decision you make is
what learning algorithm to use. Chapter 1 presented a simple three-class classification
model that used the k-nearest neighbors learning algorithm to identify a species of
iris given the flower’s sepal and petal measurements. k-nearest neighbors can be used
for regression too, but it’s one of many you can choose from for making numerical
predictions. Other learning algorithms frequently produce more accurate models.

This chapter introduces common regression algorithms, many of which can be used
for classification also, and guides you through the process of building a regression
model that predicts taxi fares using data published by the New York City Taxi and
Limousine Commission. It also describes various means for assessing a regression
model’s accuracy and introduces an important technique for measuring accuracy
called cross-validation.
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Linear Regression
Next to k-nearest neighbors, linear regression is perhaps the simplest learning algo‐
rithm of all. It works best with data that is relatively linear—that is, data points that
fall roughly along a line. Thinking back to high school math class, you’ll recall that
the equation for a line in two dimensions is:

y = mx + b

where m is the slope of the line and b is where the line intersects the y-axis. The
income-versus-years-of-experience dataset in Figure 1-11 lends itself well to linear
regression. Figure 2-1 shows a regression line fit to the data points. Predicting the
income for a programmer with 10 years of experience is as simple as finding the point
on the line where x = 10. The equation of the line is y = 3,984x + 60,040. Plugging 10
into that equation for x, the predicted income is $99,880.

Figure 2-1. Linear regression

The goal when training a linear regression model is to find values for m and b that
produce the most accurate predictions. This is typically done using an iterative pro‐
cess that starts with assumed values for m and b and repeats until it converges on
suitable values.
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The most common technique for fitting a line to a set of points is ordinary least
squares regression, or OLS for short. It works by squaring the distance in the y direc‐
tion between each point and the regression line, summing the squares, and dividing
by the number of points to compute the mean squared error, or MSE. (Squaring each
distance prevents negative distances from offsetting positive distances.) Then it
adjusts m and b to reduce the MSE the next time around and repeats until the MSE is
sufficiently low. I won’t go into the details of how it determines in which direction to
adjust m and b (it’s not hard, but it involves a smidgeon of calculus—specifically,
using partial derivatives of the MSE function to determine whether to increase or
decrease m and b in the next iteration), but OLS can often fit a line to a set of points
with a dozen or fewer iterations.

Scikit-Learn  has a number of classes to help you build linear regression models,
including the LinearRegression class, which embodies OLS, and the Polynomial
Features class, which fits a polynomial curve rather than a straight line to the train‐
ing data. Training a linear regression model can be as simple as this:

model = LinearRegression()
model.fit(x, y)

Scikit has other linear regression classes with names such as Ridge and Lasso. One
scenario in which they’re useful is when the training data contains outliers. Recall
from Chapter 1 that outliers are data points that don’t conform with the rest. Outliers
can bias a model or make it less accurate. Ridge and Lasso add regularization, which
mitigates the effect of outliers by lessening their influence on the outcome as coeffi‐
cients are adjusted during training. An alternate approach to dealing with outliers is
to remove them altogether, which is what you’ll do in the taxi-fare example at the end
of this chapter.

Lasso regression has a secondary benefit too. If the training data
suffers from multicollinearity, a condition in which two or more
input variables are linearly correlated so that one can be predicted
from another with a reasonable degree of accuracy, Lasso effec‐
tively ignores the redundant data.
A classic example of multicollinearity occurs when a dataset
includes one column specifying the number of rooms in a house
and another column specifying the square footage. More rooms
generally means more area, so the two variables are correlated to
some degree.
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Linear regression isn’t limited to two dimensions (x and y values); it works with any
number of dimensions. Linear regression with one independent variable (x) is known
as simple linear regression, while linear regression with two or more independent vari‐
ables—for example, x1, x2, x3, and so on—is called multiple linear regression. If a data‐
set is two dimensional, it’s simple enough to plot the data to determine its shape. You
can plot three-dimensional data too, but plotting datasets with four or five dimen‐
sions is more challenging, and datasets with hundreds or thousands of dimensions
are impossible to visualize.

How do you determine whether a high-dimensional dataset might lend itself to linear
regression? One way to do it is to reduce n dimensions to two or three using tech‐
niques such as principal component analysis (PCA) and t-distributed stochastic
neighbor embedding (t-SNE) so that you can plot them. These techniques are cov‐
ered in Chapter 6. Both reduce the dimensionality of a dataset without incurring a
commensurate loss of information. With PCA, for example, it isn’t uncommon to
reduce the number of dimensions by 90% while retaining 90% of the information in
the original dataset. It might sound like magic, but it’s not. It’s math.

If the number of dimensions is relatively small, a simpler technique for visualizing
high-dimensional datasets is pair plots, which plot pairs of dimensions in conven‐
tional 2D charts. Figure 2-2 shows a pair plot charting sepal length versus petal
length, sepal width versus petal width, and other parameter pairs for the Iris dataset
introduced in Chapter 1.

Seaborn’s pairplot function makes it easy to create pair plots. The plot in Figure 2-2
was generated with one line of code:

sns.pairplot(df)

The pair plot not only helps you visualize relationships in the dataset, but in this
example, the histogram in the lower-right corner reveals that the dataset is balanced
too. There is an equal number of samples of all three classes, and for reasons you’ll
learn in Chapter 3, you always prefer to train classification models with balanced
datasets.

Linear regression is a parametric learning algorithm, which means that its purpose is
to examine a dataset and find the optimum values for parameters in an equation—for
example, m and b. k-nearest neighbors, by contrast, is a nonparametric learning algo‐
rithm because it doesn’t fit data to an equation. Why does it matter whether a learn‐
ing algorithm is parametric or nonparametric? Because datasets used to train
parametric models frequently need to be normalized. At its simplest, normalizing data
means making sure all the values in all the columns have consistent ranges. I’ll cover
normalization in Chapter 5, but for now, realize that training parametric models with
unnormalized data—for example, a dataset that contains values from 0 to 1 in one
column and 0 to 1,000,000 in another—can make those models less accurate or
prevent them from converging on a solution altogether. This is particularly true with
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support vector machines and neural networks, but it applies to other parametric
models as well. Even k-nearest neighbors models work best with normalized data
because while the learning algorithm isn’t parametric, it uses distance-based calcula‐
tions internally.

Figure 2-2. Pair plot revealing relationships between variable pairs

Decision Trees
Even if you’ve never taken a computer science course, you probably know what a
binary tree is. In machine learning, a decision tree is a tree structure that predicts an
outcome by answering a series of questions. Most decision trees are binary trees, in
which case the questions require simple yes-or-no answers.
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Figure 2-3 shows a decision tree built by Scikit from the income-versus-experience
dataset introduced in Chapter 1. The tree is simple because the dataset contains just
one feature column (years of experience) and I limited the tree’s depth to 3, but the
technique extends to trees of unlimited size and complexity. In this example, predict‐
ing a salary for a programmer with 10 years of experience requires just three yes/no
decisions, as indicated by the red arrows. The answer is about $100K, which is pretty
close to what k-nearest neighbors and linear regression predicted when applied to the
same dataset.

Figure 2-3. Decision tree

Decision trees can be used for regression and classification. For a regressor, the leaf
nodes (the nodes that lack children) represent regression values. For a classifier, they
represent classes. The output from a decision tree regressor isn’t continuous. The out‐
put will always be one of the values assigned to a leaf node, and the number of leaf
nodes is finite. The output from a linear regression model, by contrast, is continuous.
It can assume any value along the line fit to the training data. In the previous exam‐
ple, you get the same answer if you ask the tree to predict a salary for someone with
10 years of experience and someone with 13 years of experience. Bump years of expe‐
rience up to 14, however, and the predicted salary jumps to $125K (Figure 2-4). If you
allow the tree to grow deeper, the answers become more refined. But allowing it to
grow too deep can lead to big problems for reasons we’ll cover momentarily.

Once a decision tree model is trained—that is, once the tree is built—predictions are
made quickly. But how do you decide what decisions to make at each node? For
example, why is the number of years represented by the root node in Figure 2-3 equal
to 13.634? Why not 10.000 or 8.742 or some other number? For that matter, if the
dataset has multiple feature columns, how do you decide which column to break on
at each decision node?
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Figure 2-4. Mathematical model created from a decision tree

Decision trees are built by recursively splitting the training data. The fundamental
decisions that the splitting algorithm makes when it adds a node to the tree are 1)
which column will this node split, and 2) what is the value that the split is based
upon. In each iteration, the goal is to select a column and split value that does the
most to reduce the “impurity” of the remaining data for classification problems or the
variance of the remaining data for regression problems. A common impurity mea‐
sure for classifiers is Gini, which roughly quantifies the percentage of samples that a
split value would misclassify. For regressors, the sum of the squared error or absolute
error, where “error” is the difference between the split value and the values on either
side of the split, is typically used instead. The tree-building process starts at the root
node and works its way recursively downward until the tree is fully leafed out or
external constraints (such as a limit on maximum depth) prevent further growth.

Scikit’s DecisionTreeRegressor class and DecisionTree Classifier class make
building decision trees easy. Each implements the well-known CART algorithm for
building binary trees, and each lets you choose from a handful of criteria for measur‐
ing impurity or variance. Each also supports parameters such as max_depth, min
_samples_split, and min_samples_leaf that let you constrain a decision tree’s
growth. If you accept the default values, building a decision tree can be as simple as
this:
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model = DecisionTreeRegressor()
model.fit(x, y)

Decision trees are nonparametric. Training a decision tree model involves building a
binary tree, not fitting an equation to a dataset. This means data used to build a deci‐
sion tree doesn’t have to be normalized.

Decision trees have a big upside: they work as well with nonlinear data as they do
with linear data. In fact, they largely don’t care how the data is shaped. But there’s a
downside too. It’s a big one, and it’s one of the reasons standalone decision trees are
rarely used in machine learning. That reason is overfitting.

Decision trees are highly prone to overfitting. If allowed to grow large enough, a deci‐
sion tree can essentially memorize the training data. It might appear to be accurate,
but if it’s fit too tightly to the training data, it might not generalize well. That means it
won’t be as accurate when it’s asked to make predictions with data it hasn’t seen
before. Figure 2-5 shows a decision tree fit to the income-versus-experience dataset
with no constraints on depth. The jagged path followed by the red line as it passes
through all the points is a clear sign of overfitting. Overfitting is the bane of data sci‐
entists. The only thing worse than a model that’s inaccurate is one that appears to be
accurate but in reality is not.

Figure 2-5. Decision tree overfit to the training data
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One way to prevent overfitting when using decision trees is to constrain their growth
so that they can’t memorize the training data. Another way is to use groups of deci‐
sion trees called random forests.

Random Forests
A random forest is a collection of decision trees (often hundreds of them), each
trained differently on the same data, as depicted in Figure 2-6. Typically, each tree is
trained on randomly selected rows in the dataset, and branching is based on columns
that are randomly selected at every split. The model can’t fit too tightly to the training
data because every tree trains on a different subset of the data. The trees are built
independently, and when the model makes a prediction, it runs the input through all
the decision trees and averages the result. Because the trees are constructed inde‐
pendently, training can be parallelized on hardware that supports it.

Figure 2-6. Random forests

It’s a simple concept, and one that works well in practice. Random forests can be used
for both regression and classification, and Scikit provides classes such as Random
ForestRegressor and RandomForestClassifier to help out. They feature a number
of tunable parameters, including n_estimators, which specifies the number of trees
in the random forest (default = 100); max_depth, which limits the depth of each tree;
and max_samples, which specifies the fraction of the rows in the training data used to
build individual trees. Figure 2-7 shows how RandomForestRegressor fits to the
income-versus-experience dataset with max_depth=3 and max_samples=0.5, meaning
no tree sees more than 50% of the rows in the dataset.
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Figure 2-7. Mathematical model created from a random forest

Because decision trees are nonparametric, random forests are nonparametric also.
And even though Figure 2-7 shows how a random forest fits a linear dataset, random
forests are perfectly capable of modeling nonlinear datasets too.

Gradient-Boosting Machines
Random forests are proof of the supposition that you can take many weak learners—
models that by themselves are not strong predictors—and combine them to form
accurate models. No individual tree in a random forest can predict an outcome with a
great deal of accuracy. But put all the trees together and average the results and they
often outperform other models. Data scientists refer to this as ensemble modeling or
ensemble learning.

Another way to exploit ensemble modeling is gradient boosting. Models that use it
are called gradient-boosting machines, or GBMs. Most GBMs use decision trees and
are sometimes referred to as gradient-boosted decision trees (GBDTs). Like random
forests, GBDTs comprise collections of decision trees. But rather than build inde‐
pendent decision trees from random subsets of the data, GBDTs build dependent
decision trees, one after another, training each using output from the last. The first
decision tree models the dataset. The second decision tree models the error in the
output from the first, the third models the error in the output from the second, and
so on. To make a prediction, a GBDT runs the input through each decision tree and
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sums all the outputs to arrive at a result. With each addition, the result becomes
slightly more accurate, giving rise to the term additive modeling. It’s like driving a golf
ball down the fairway and hitting successively shorter shots until you finally reach the
hole.

Each decision tree in a GBDT model is a weak learner. In fact, GBDTs typically use
decision tree stumps, which are decision trees with depth 1 (a root node and two child
nodes), as shown in Figure 2-8. During training, you start by taking the mean of all
the target values in the training data to create a baseline for predictions. Then you
subtract the mean from the target values to generate a new set of target values or
residuals for the first tree to predict. After training the first tree, you run the input
through it to generate a set of predictions. Then you add the predictions to the previ‐
ous set of predictions, generate a new set of residuals by subtracting the sum from the
original (actual) target values, and train a second tree to predict those residuals.
Repeating this process for n trees, where n is typically 100 or more, produces an
ensemble model. To help ensure that each decision tree is a weak learner, GBDT
models multiply the output from each decision tree by a learning rate to reduce their
influence on the outcome. The learning rate is usually a small number such as 0.1 and
is a parameter that you can specify when using classes that implement GBMs.

Figure 2-8. Gradient-boosting machines

Scikit includes classes named GradientBoostingRegressor and GradientBoosting
Classifier to help you build GBDTs. But if you really want to understand how
GBDTs work, you can build one yourself with Scikit’s DecisionTreeRegressor class.
The code in Example 2-1 implements a GBDT with 100 decision tree stumps and pre‐
dicts the annual income of a programmer with 10 years of experience.
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Example 2-1. Gradient-boosted decision tree implementation

learning_rate = 0.1 # Learning rate
n_trees = 100 # Number of decision trees
trees = [] # Trees that comprise the model

# Compute the mean of all the target values
y_pred = np.array([y.mean()] * len(y))
baseline = y_pred 

# Create n_trees and train each with the error
# in the output from the previous tree
for i in range(n_trees): 
    error = y - y_pred
    tree = DecisionTreeRegressor(max_depth=1, random_state=0) 
    tree.fit(x, error) 
    predictions = tree.predict(x)
    y_pred = y_pred + (learning_rate * predictions)
    trees.append(tree) 

# Predict a y for x=10
y_pred = np.array([baseline[0]] * len(x)) 

for tree in trees: 
    y_pred = y_pred + (learning_rate * tree.predict([[10.0]]))

y_pred[0]

The diagram on the left in Figure 2-9 shows the output from a single decision tree
stump applied to the income-versus-experience dataset. That model is such a weak
learner that it can predict only two different income levels. The diagram on the right
shows the output from the model in Example 2-1. The additive effect of the weak
learners produces a strong learner that predicts a programmer with 10 years of expe‐
rience should earn $99,082 per year, which is consistent with the predictions made by
other models.

Figure 2-9. Single decision tree versus gradient-boosted decision trees
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GBDTs can be used for regression and classification, and they are nonparametric.
Aside from neural networks and support vector machines, GBDTs are frequently the
ones that data scientists find most capable of modeling complex datasets.

Unlike linear regression models and random forests, GBDTs are susceptible to over‐
fitting. One way to mitigate overfitting when using GradientBoostingRegressor and
GradientBoostingClassifier is to use the subsample parameter to prevent individ‐
ual trees from seeing the entire dataset, analogous to what max_samples does for ran‐
dom forests. Another way is to use the learning_rate parameter to lower the
learning rate, which defaults to 0.1.

Support Vector Machines
I will save a full treatment of support vector machines (SVMs) for Chapter 5, but
along with GBMs, they represent the cutting edge of statistical machine learning.
They can often fit models to highly nonlinear datasets that other learning algorithms
cannot. They’re so important that they merit separate treatment from all other algo‐
rithms. They work by employing a mathematical device called kernel tricks to simu‐
late the effect of adding dimensions to data. The idea is that data that isn’t separable in
m dimensions might be separable in n dimensions. Here’s a quick example.

The classes in the two-dimensional dataset on the left in Figure 2-10 can’t be separa‐
ted with a line. But if you add a third dimension so that points closer to the center
have higher z values and points farther from the center have lower z values, as shown
on the right, you can slide a plane between the red points and the purple points and
achieve 100% separation of the classes. That is the principle by which SVMs work. It
is mathematically complex when generalized to work with arbitrary datasets, but it is
an extremely powerful technique that is vastly simplified by Scikit.

Figure 2-10. Support vector machines
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SVMs are primarily used for classification, but they can be used for regression as well.
Scikit includes classes for doing both, including SVC for classification problems and
SVR for regression problems. You will learn all about these classes in Chapter 5. For
now, drop the term support vector machine at the next machine learning gathering
you attend and you will instantly become the life of the party.

Accuracy Measures for Regression Models
As you learned in Chapter 1, you need one set of data for training a model and
another set for testing it, and you can score a model for accuracy by passing test data
to the model’s score method. Testing quantifies how accurate the model is at making
predictions. It is incredibly important to test a model with a dataset other than the
one it was trained with because it will probably learn the training data reasonably
well, but that doesn’t mean it will generalize well—that is, make accurate predictions.
And if you don’t test a model, you don’t know how accurate it is.

Engineers frequently use Scikit’s train_test_split function to split a dataset into a
training dataset and a test dataset. But when you split a small dataset this way, you
can’t necessarily trust the score returned by the model’s score method. And what
does the score mean, anyway? The answer is different for regression models and clas‐
sification models, and while there are a handful of ways to score regression models,
there are many ways to score classification models. Let’s take a moment to understand
the number that score returns for a regression model, and what you can do to have
more faith in that number.

To demonstrate why you need to be somewhat skeptical of the value returned by
score when dealing with small datasets, try a simple experiment. Use the following
code to load Scikit’s California housing dataset, shuffle the rows, and extract the first
1,000 rows:

from sklearn.utils import shuffle
from sklearn.datasets import fetch_california_housing

df = fetch_california_housing(as_frame=True).frame
df = shuffle(df, random_state=0)
df = df.head(1000)
df.head()

The dataset contains columns with names such as MedInc (median income) and Med
HouseVal (median home value), as shown in the following figure. The details aren’t
important for now. What is important is that you are going to build a model that uses
the values in all the other columns to predict MedHouseVal values:
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Use the following code to split the data 80/20, train a linear regression model with
80% of the data to predict the price of a house, and score the model with 20% of the
data split off for testing:

from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
 
x = df.drop(['MedHouseVal'], axis=1)
y = df['MedHouseVal']
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2,
                                                    random_state=0)
 
model = LinearRegression()
model.fit(x_train, y_train)
model.score(x_test, y_test)

In this example, score returns 0.5863, which ostensibly indicates that the model was
about 59% accurate using the features in the test data to make predictions. So far, so
good.

Now change the random_state value passed to train_test_split from 0 to 1 and
run the code again:

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2,
                                                    random_state=1)
 
model = LinearRegression()
model.fit(x_train, y_train)
model.score(x_test, y_test)

This time, score returns 0.6255. So which is it? Is the model 59% accurate at making
predictions or 63% accurate? Why did score return two different values?

When train_test_split splits a dataset, it randomly selects rows for the training
dataset and the test dataset. The random_state parameter seeds the random-number
generator used to make selections. By specifying two different seed values, you train
the model with two different datasets and test it with two different datasets too. Sure,
there is overlap between them. But the fact remains that the number you seed
train_test_split’s random-number generator with affects the outcome. The
smaller the dataset, the greater that effect is likely to be.
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The solution is cross-validation. To cross-validate a model, you partition the dataset
into folds, as pictured in Figure 2-11. Using five folds is common, but you can use any
number of folds you like. Then you train the model five times—once for each fold—
using a different 80% of the dataset for training and a different 20% for testing each
time, and average the scores to generate a cross-validated score. That score is more
reliable than the score returned by score because it is less sensitive to how the data is
split. This process is known as k-fold cross-validation.

Figure 2-11. 5-fold cross-validation

The downside to cross-validation is that it takes longer. With 5-fold cross-validation,
you’re training the model five times. The good news is that cross-validation is gener‐
ally applied only to small datasets, and if the dataset is small, the model probably
trains quickly.

You could write the code to do cross-validation yourself, but you don’t have to
because Scikit does it for you. Cross-validating a model requires just one line of code:

cross_val_score(model, x, y, cv=5).mean()

The cross-validated score in this example should come out to about 0.61, which lies
between the two values generated by the model’s score method. It is a more accurate
measure of the model’s accuracy than either of the other scores.

You  don’t have to train a model before cross-validating it since cross_val_score
trains it for you. However, cross_val_score trains a copy of the model, not the
model itself, so once you’ve used cross-validation to gauge the model’s accuracy, you
still need to call fit before making predictions:

model.fit(x, y)
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Note that you pass the entire dataset to fit rather than a subset split off for training.
That’s another benefit of cross-validation: you train your model with all of the data,
which is a big deal if the dataset is small to begin with. There’s no longer a hard
requirement to hold some of it out for testing. However, even with cross-validation,
it’s still useful to score the model with data reserved exclusively for testing if such data
is available. Remember: you don’t truly know how accurate a model is until you know
how it responds to data it wasn’t trained with.

As a rule of thumb, you should reserve cross-validation for small
datasets and use train/test splits for large datasets. The larger the
dataset, the less sensitive it is to how the data is split.

Which begs the question: precisely what does the value returned when you score or
cross-validate a model represent? For a regression model, it’s the coefficient of deter‐
mination, also known as the R-squared score or simply R2. The coefficient of determi‐
nation is usually a value from 0 to 1 (“usually” because it can, in certain
circumstances, go negative) which quantifies the variance in the output that can be
explained by the variables in the input. A simple way to think of it is that an R2 score
of 0.8 means that the model should, on average, be about 80% accurate in making
predictions, or get the answer right within 20%. The higher the R2 score, the more
accurate the model. There are other ways to measure the accuracy of a regression
model, including mean squared error (MSE) and mean absolute error (MAE). Those
numbers are meaningful only in the context of the range of output values, whereas R2

gives you one simple number that is independent of range. You can read more about
regression metrics and methods for retrieving them in the Scikit documentation.

The value returned by a model’s score method is completely different for a classifica‐
tion model. I will address the various ways to quantify the accuracy of classification
models in Chapter 3.

Using Regression to Predict Taxi Fares
Imagine that you work for a taxi company, and one of your customers’ biggest com‐
plaints is that they don’t know how much a ride will cost until it’s over. That’s because
distance isn’t the only variable that determines a fare amount. You decide to do some‐
thing about it by building a mobile app that customers can use when they climb into
a taxi to estimate what the fare will be. To provide the intelligence for the app, you
intend to use the massive amounts of fare data the company has collected over the
years to build a machine learning model.
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Let’s train a regression model to predict a fare amount given the time of day, the day
of the week, and the pickup and drop-off locations. Start by downloading the CSV file
containing the dataset and copying it into the Data subdirectory where your Jupyter
notebooks are hosted. Then use the following code to load the dataset into a note‐
book. The dataset contains about 55,000 rows and is a subset of a much larger dataset
used in Kaggle’s New York City Taxi Fare Prediction competition. The data requires a
fair amount of prep work before it’s of any use—something that’s not uncommon in
machine learning. Data scientists often find that collecting and preparing data
accounts for 90% or more of their time:

import pandas as pd

df = pd.read_csv('Data/taxi-fares.csv', parse_dates=['pickup_datetime'])
df.head()

Note the use of the read_csv function’s parse_dates parameter to parse the strings in
the pickup_datetime column into Python datetime objects. Here’s the output from
the code:

Each row represents a taxi ride and contains information such as the fare amount, the
pickup and drop-off locations (expressed as latitudes and longitudes), and the pas‐
senger count. It’s the fare amount that we want to predict. Use the following code to
draw a histogram showing how many rows contain a passenger count of 1, how many
contain a passenger count of 2, and so on:

%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()

sns.countplot(x=df['passenger_count'])
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Here is the output:

Most of the rows in the dataset have a passenger count of 1. Since we’re interested in
predicting the fare amount only for single passengers, use the following code to
remove all rows with multiple passengers and remove the key column from the data‐
set since that column isn’t needed—in other words, it’s not one of the features that we
will try to predict on:

df = df[df['passenger_count'] == 1]
df = df.drop(['key', 'passenger_count'], axis=1)
df.head()

That leaves 38,233 rows in the dataset, which you can see for yourself with the follow‐
ing statement:

df.shape

Now use Pandas’ corr method to find out how much influence input variables such
as latitude and longitude have on the values in the fare_amount column:

corr_matrix = df.corr()
corr_matrix['fare_amount'].sort_values(ascending=False)

The output looks like this:

fare_amount          1.000000
dropoff_longitude    0.020438
pickup_longitude     0.015742
pickup_latitude     -0.015915
dropoff_latitude    -0.021711
Name: fare_amount, dtype: float64
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The numbers don’t look very encouraging. Latitudes and longitudes have little to do
with fare amounts, at least in their present form. And yet, intuitively, they should
have a lot to do with fare amounts since they specify starting and ending points, and
longer rides incur higher fares.

Now comes the fun part: creating whole new columns of data that have more impact
on the outcome—columns whose values are computed from values in other columns.
Add columns specifying the day of the week (0=Monday, 1=Sunday, and so on), the
hour of the day that the passenger was picked up (0–23), and the distance (by air, not
on the street) in miles that the ride covered. To compute distances, this code assumes
that most rides are short and that it is therefore safe to ignore the curvature of the
Earth:

from math import sqrt

for i, row in df.iterrows():
    dt = row['pickup_datetime']
    df.at[i, 'day_of_week'] = dt.weekday()
    df.at[i, 'pickup_time'] = dt.hour
    x = (row['dropoff_longitude'] - row['pickup_longitude']) * 54.6
    y = (row['dropoff_latitude'] - row['pickup_latitude']) * 69.0
    distance = sqrt(x**2 + y**2)
    df.at[i, 'distance'] = distance

df.head()

You no longer need all the columns, so use these statements to remove the ones that
won’t be used:

df.drop(columns=['pickup_datetime', 'pickup_longitude', 'pickup_latitude',
                 'dropoff_longitude', 'dropoff_latitude'], inplace=True)
df.head()

Let’s check the correlation again:

corr_matrix = df.corr()
corr_matrix['fare_amount'].sort_values(ascending=False)

There still isn’t a strong correlation between distance traveled and fare amount. Per‐
haps this will explain why:

df.describe()
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Here is the output:

The dataset contains outliers, and outliers frequently skew the results of machine
learning models. Filter the dataset by eliminating negative fare amounts and placing
reasonable limits on fares and distance, and then run a correlation again:

df = df[(df['distance'] > 1.0) & (df['distance'] < 10.0)]
df = df[(df['fare_amount'] > 0.0) & (df['fare_amount'] < 50.0)]

corr_matrix = df.corr()
corr_matrix['fare_amount'].sort_values(ascending=False)

Once more, here is the output:

fare_amount    1.000000
distance       0.851913
day_of_week   -0.003570
pickup_time   -0.023085
Name: fare_amount, dtype: float64

That looks better! Most (85%) of the variance in fare amounts is explained by the dis‐
tance traveled. The correlation between the day of the week, the hour of the day, and
the fare amount is still weak, but that’s not surprising since distance traveled is the
main factor that drives taxi fares. Let’s leave those columns in since it makes sense
that it might take longer to get from point A to point B during rush hour, or that traf‐
fic at 5:00 p.m. on Friday might be different than traffic at 5:00 p.m. on Saturday.

Now it’s time to train a regression model. Let’s try three different learning algorithms
to determine which one yields the most accurate fit, and use cross-validation to gauge
accuracy. Start with a linear regression model:

from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_val_score

x = df.drop(['fare_amount'], axis=1)
y = df['fare_amount']
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model = LinearRegression()
cross_val_score(model, x, y, cv=5).mean()

Try a RandomForestRegressor with the same dataset and see how its accuracy com‐
pares. Recall that random-forest models train multiple decision trees on the data and
average the results of all the trees to make a prediction:

from sklearn.ensemble import RandomForestRegressor

model = RandomForestRegressor(random_state=0)
cross_val_score(model, x, y, cv=5).mean()

Finally, try GradientBoostingRegressor. Gradient-boosting machines use multiple
decision trees, each of which is trained to compensate for the error in the output from
the previous one:

from sklearn.ensemble import GradientBoostingRegressor

model = GradientBoostingRegressor(random_state=0)
cross_val_score(model, x, y, cv=5).mean()

Assuming the GradientBoostingRegressor produced the highest cross-validated
coefficient of determination, train it using the entire dataset:

model.fit(x, y)

Finish up by using the trained model to make a pair of predictions. First, estimate
what it will cost to hire a taxi for a 2-mile trip at 5:00 p.m. on Friday afternoon.
Because you passed DataFrames containing column names to the fit method, recent
versions of Scikit will display a warning if you pass lists or NumPy arrays to predict.
Therefore, input a DataFrame instead:

model.predict(pd.DataFrame({ 'day_of_week': [4], 'pickup_time': [17],
                             'distance': [2.0] }))

Now predict the fare amount for a 2-mile trip taken at 5:00 p.m. one day later (on
Saturday):

model.predict(pd.DataFrame({ 'day_of_week': [5], 'pickup_time': [17],
                             'distance': [2.0] }))

Does the model predict a higher or lower fare amount for the same trip on Saturday
afternoon? Do the answers make sense given that the data comes from New York City
cabs? Consider that rush-hour traffic is likely to be heavier on Friday afternoon than
on Saturday afternoon.

Summary
Regression models are supervised learning models that predict numeric outcomes
such as the cost of a taxi ride. Prominent learning algorithms used for regression
include the following:
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Linear regression
Models training data by fitting it to the equation of a line

Decision trees
Use binary trees to predict an outcome by answering a series of yes-and-no
questions

Random forests
Use multiple independent decision trees to model the data and are resistant to
overfitting

Gradient-boosting machines
Use multiple dependent decision trees, each modeling the error in the output
from the last

Support vector machines
Take an entirely different approach to modeling data by adding dimensionality
under the supposition that data that isn’t linearly separable in the original prob‐
lem space might be linearly separable in higher-dimensional space

Scikit provides convenient implementations of these and other learning algorithms in
classes such as LinearRegression, RandomForestRegressor, and GradientBoosting
Regressor.

A common metric for quantifying the accuracy of regression models is the R2 score,
also known as the coefficient of determination. It’s typically a value from 0 to 1, with
higher numbers indicating higher accuracy. Technically, it’s a measure of the variance
in the output that can be explained by the values in the input. For small datasets,
k-fold cross-validation gives you more confidence in the R2 score than simply split‐
ting the data once for training and testing. k-fold trains the model k times, each time
with the dataset split differently.

Real-world datasets tend to be messy and often require further preparation to be use‐
ful for machine learning. As the taxi-fare example demonstrated, outliers in training
data can affect a model’s accuracy or prevent the model from being useful at all. One
solution is to identify the outliers and remove them before training the model.
Another is to employ a learning algorithm such as ridge regression or lasso regression
that supports regularization.

Regression models are common in machine learning, but classification models are
more common still. Chapter 3 tackles classification models head-on, introduces
another leading learning algorithm called logistic regression, and builds on what you
learned in this chapter.
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CHAPTER 3

Classification Models

The machine learning model featured in the previous chapter used various forms of
regression to predict taxi fares based on distance to travel, the day of the week, and
the time of day. Regression models predict numerical outcomes and are widely used
in industry to forecast sales, prices, demand, and other numbers that drive business
decisions. Equally important are classification models, which predict categorical out‐
comes such as whether a credit card transaction is fraudulent or which letter of the
alphabet a handwritten character represents.

Most classification models fall into two categories: binary classification models, in
which there are just two possible outcomes, and multiclass classification models, in
which there are more than two possible outcomes. In both instances, the model
assigns a single class, or class label, to an input. Less common are multilabel classifica‐
tion models, which can classify a single input as belonging to several classes—for
example, predicting that a document is both a paper on machine learning and a paper
on genomics. Some can predict that an input belongs to none of the possible
classes too.

Much of what you know about regression models also applies to classification mod‐
els. For example, many of the learning algorithms that power regression models work
equally well with classification models. One substantive difference between regression
and classification is how you measure a model’s accuracy. There’s no such thing as an
R2 score for a classification model. In its place are an abundance of measures, such as
precision, recall, specificity, sensitivity, and F1 score, to name but a few. One of the
keys to becoming proficient with classification models is getting comfortable with the
various accuracy metrics and, more importantly, understanding which one (or ones)
to use based on the model’s intended application.
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You’ve seen one example of multiclass classification in the iris tutorial in Chapter 1.
It’s time to delve deeper into machine learning classifiers, starting with one of the
most tried-and-true learning algorithms of all, one that works only for classification
models: logistic regression.

Logistic Regression
Many learning algorithms exist for classification problems. In Chapter 2, you learned
how decision trees, random forests, and gradient-boosting machines (GBMs) fit
regression models to training data. These algorithms can be used for classification as
well, and Scikit helps out by offering classes such as DecisionTreeClassifier,
RandomForestClassifier, and GradientBoostingClassifier. In Chapter 1, you
used Scikit’s KNeighborsClassifier class to build a three-class classification model
with k-nearest neighbors as the learning algorithm.

These are important learning algorithms, and they see use in many contemporary
machine learning models. But one of the most popular classification algorithms is
logistic regression, which analyzes a distribution of data and fits an equation to it that
defines the probability that a given sample belongs to each of two possible classes. It
might determine, for example, that there’s a 10% chance the values in a sample corre‐
spond to class 0 and a 90% chance they correspond to class 1. In this case, logistic
regression will predict that the sample corresponds to class 1. Despite the name,
logistic regression is a classification algorithm, not a regression algorithm. Its purpose
is not to create regression models but to quantify probabilities for the purpose of clas‐
sifying input samples.

As an example, consider the data points in Figure 3-1, which belong to two classes: 0
(blue) and 1 (red). Let’s assume that the x-axis specifies the number of hours a person
studied for an exam and the y-axis indicates whether they passed (1) or failed (0). The
blues fall in the range x = 0 to x = 10, while the reds fall in the range x = 5 to x = 15.
You can’t pick a value for x that separates the classes since both have values between
x = 5 and x = 10. (Try drawing a vertical line that has only reds on one side and only
blues on the other.) But you can draw a curve that, given an x, shows the probability
that a point with that x belongs to class 1. As x increases, so too does the likelihood
that the point represents class 1 (pass) rather than class 0 (fail). From the curve, you
can see that if x = 2, there is less than a 5% chance that the point corresponds to class
1. But if x = 10, there is about a 76% chance that it’s class 1. If asked to classify that
point as a red or a blue, you would conclude that it’s a red because it’s much more
likely to be red than blue.
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Figure 3-1. Logistic regression

The curve in Figure 3-1 is a sigmoid curve. It charts a function known as the logistic
function (also known as the logit function) that has been used in statistics for decades.
For logistic regression, the function is defined this way, where x is the input value and
m and b are parameters learned during training:

y = 1

1 + e− mx + b

This equation reveals why logistic regression is called logistic regression, despite the
fact that it’s a classification algorithm. The exponent of e happens to be the equation
for linear regression.

The logistic regression learning algorithm fits the logistic function to a distribution of
data and uses the resulting y values as probabilities to classify data points. It works
with any number of features (not just x, but x1, x2, x3, and so on), and it is a paramet‐
ric learning algorithm since it uses training data to find optimum values for m and b.
How it finds the optimum values is an implementational detail that libraries such as
Scikit-Learn handle for you. Scikit defaults to a numerical optimization algorithm
known as Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) but sup‐
ports other optimization methods as well. This, incidentally, is one reason why Scikit
is so popular in the machine learning community. It’s not difficult to calculate m and
b from the training data for a linear regression model, but it’s harder to do it for a
logistic regression model, not to mention more sophisticated parametric models such
as support vector machines.

Scikit’s LogisticRegression class is logistic regression in a box. With it, training a
logistic regression model can be as simple as this:
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model = LogisticRegression()
model.fit(x, y)

Once the model is trained, you can call its predict method to predict which class the
input belongs to, or its predict_proba method to get the computed probabilities for
each class. If you fit a LogisticRegression model to the dataset in Figure 3-1, the
following statement predicts whether x = 10 corresponds to class 0 or class 1:

predicted_class = model.predict([[10.0]])[0]
print(predicted_class) # Outputs 1

And these statements show the probabilities computed for each class:

predicted_probabilities = model.predict_proba([[10.0]])[0]
print(f'Class 0: {predicted_probabilities[0]}') # 0.23508543966167028
print(f'Class 1: {predicted_probabilities[1]}') # 0.7649145603383297

Scikit also includes the LogisticRegressionCV class for training logistic regression
models with built-in cross-validation. (If you need a refresher, cross-validation was
introduced in Chapter 2.) At the expense of additional training time, the following
statements train a logistic regression model using five folds:

model = LogisticRegressionCV(cv=5)
model.fit(x, y)

Logistic regression is technically a binary classification algorithm, but it can be used
for multiclass classification too. I’ll say more about this toward the end of the chapter.
For now, think of logistic regression as a machine learning algorithm that uses the
well-known logistic function to quantify the probability that an input corresponds to
each of two classes, and you’ll have an accurate conceptual understanding of what
logistic regression is.

Accuracy Measures for Classification Models
You can quantify the accuracy of a classification model the same way you do for a
regression model: by calling the model’s score method. For a classifier, score returns
the sum of the true positives and the true negatives divided by the total number of
samples. If the test data includes 10 positives (samples of class 1) and 10 negatives
(samples of class 0) and the model correctly identifies 8 of the positives and 7 of the
negatives, then the score is (8 + 7) / 20, or 0.75. This is sometimes referred to as the
model’s accuracy score.

There are many other ways to score a classification model, and which one is “right”
often depends on how the model will be used. Rather than compute an accuracy
score, data scientists sometimes measure a classification model’s precision and recall
instead:
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Precision
Computed by dividing the number of true positives by the sum of the true posi‐
tives and false positives

Recall
Computed by dividing the number of true positives by the sum of the true posi‐
tives and false negatives

In effect, precision imposes a penalty on false positives (instances in which the model
incorrectly predicts a 1), while recall penalizes false negatives by lowering the score
when a model incorrectly predicts a 0.

Figure 3-2 illustrates the difference. Suppose you train a model to differentiate
between polar bear images and walrus images, and to test it you submit three polar
bear images and three walrus images. Furthermore, assume that the model correctly
classifies two of the polar bear images, but incorrectly classifies two walrus images as
polar bear images, as indicated by the red boxes. In this case, the model’s precision in
identifying polar bears is 50% because only two of the four images the model classi‐
fied as polar bears were in fact polar bears. But recall is 67% since the model correctly
identified two of the three polar bear images. That’s precision and recall in a nutshell.
The former quantifies how confident you can be that a positive prediction is accurate,
while the latter quantifies the model’s ability to accurately identify positive samples.
The two can be combined into one score called the F1 score (also known as the
F-score) using a simple formula.

Figure 3-2. Using precision and recall to measure the accuracy of a classifier

Scikit provides helpful functions such as precision_score, recall_score, and
f1_score for retrieving classification metrics. Whether you prefer precision or recall
depends on which is higher: the cost of false positives or the cost of false negatives.
Use precision when the cost of false positives is high—for example, when “positive”
means an email is spam. You would rather a spam filter send a few spam mails to
your inbox than route a legitimate (and potentially important) email to your junk
folder. By contrast, use recall if the cost of false negatives is high. A great example is
when using machine learning to spot tumors in X-rays and MRI scans. You would
much rather mistakenly send a patient to a doctor due to a false positive than tell that
patient there are no tumors when there really are.
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Spotting Polar Bears in the Wild
The polar bear versus walrus example was taken from a tutorial I wrote for Microsoft
that began with the following introduction:

You’re the leader of a group of climate scientists who are concerned about the dwin‐
dling polar bear population in the Arctic. To address the problem, your team has
placed hundreds of motion-activated cameras at strategic locations throughout the
region. Instead of manually examining each photo that’s taken to determine whether
it contains a polar bear, your challenge is to devise an automated system that pro‐
cesses data from these cameras in real time and displays an alert on a map when one
of your cameras photographs a polar bear. You need a solution that uses artificial
intelligence (AI) to determine with a high degree of accuracy whether a photo con‐
tains a polar bear. And you need it fast, because climate change won’t wait.

The tutorial combines several Azure services to form an end-to-end solution, and it
uses Microsoft’s Power BI for visualizations. If you’re interested, you can check it out
online.

Accuracy score, precision, recall, and F1 score apply to binary classification and multi‐
class classification models. An additional metric—one that applies to binary classifi‐
cation only—is the receiver operating characteristic (ROC) curve, which plots the true-
positive rate (TPR) against the false-positive rate (FPR) at various probability
thresholds. A sample ROC curve is shown in Figure 3-3. A straight line stretching
from the lower left to the upper right would indicate that the model gets it right just
50% of the time, which is no better than guessing for a binary classifier. The more the
curve arches toward the upper-left corner, the more accurate the model. Data scien‐
tists often use the area under the curve (AUC, or ROC AUC) as an overall measure of
accuracy. Scikit provides a class named RocCurveDisplay for plotting ROC curves,
and a function named roc_auc_score for retrieving ROC AUC scores. Scores
returned by this function are values from 0.0 to 1.0. The higher the score, the more
accurate the model.

Yet another way to assess the accuracy of a classification model is to plot a confusion
matrix like the one in Figure 3-4. It works for binary and multiclass classification, and
it shows for each class how the model performed during testing. In this example, the
model was asked to differentiate between images containing masked faces and images
containing unmasked faces. It got it right 78 out of 85 times when presented with pic‐
tures of people wearing masks, and 41 out of 58 times when presented with pictures
of people not wearing masks. Scikit offers a confusion_matrix function for comput‐
ing a confusion matrix, and a ConfusionMatrixDisplay class with methods named
from_estimator and from_predictions for plotting confusion matrices.
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Figure 3-3. Receiver operating characteristic curve

Figure 3-4. Confusion matrix

Countless code samples online use Scikit’s plot_confusion_matrix
function to display confusion matrices. ConfusionMatrixDisplay
was introduced in Scikit 1.0 and is the proper way to generate con‐
fusion matrices. plot_confusion_matrix is slated to be removed
from the library in version 1.2.

Accuracy Measures for Classification Models | 59



Other terms you might come across when discussing the accuracy of classification
models include sensitivity and specificity. Sensitivity is identical to recall, so Scikit
doesn’t include a separate method for computing it. Specificity is recall for the nega‐
tive class rather than the positive class and is calculated by dividing the number of
true negatives by the sum of the true negatives and false positives. Scikit doesn’t pro‐
vide a dedicated function for calculating specificity, either, but you can do it easily
enough by calling recall_score with a pos_label parameter indicating that 0
(rather than 1) is the positive label:

recall_score(y_test, y_predicted, pos_label=0)

Sensitivity and specificity are frequently used in drug testing and cancer screening.
Suppose you’re traveling abroad and require a negative COVID test before returning
home. If you don’t have COVID, what are the chances that a test will incorrectly say
you do? (I have asked myself that question many times recently while traveling over‐
seas.) The answer is the test’s specificity—a measure of how accurate the test is at
identifying negative samples. Sensitivity, on the other hand, reveals how likely the test
is to be correct if it says you do have COVID. It’s a subtle distinction, but an impor‐
tant one if you’re concerned that a faulty test might keep you from going home (spe‐
cificity) or if you want to be certain you don’t have COVID before visiting an elderly
relative (sensitivity).

Categorical Data
Machine learning finds patterns in numbers. It works only with numbers. Yet many
datasets have columns containing string values such as "male" and "female" or
"red", "green", and "blue". Data scientists refer to these as categorical values and the
columns that contain them as categorical columns. Machine learning can’t handle cat‐
egorical values directly. To use them in a model, you must convert them into
numbers.

Two popular techniques exist for converting categorical values into numerical values.
One is label encoding, which you briefly saw in the k-means clustering example in
Chapter 1. Label encoding replaces categorical values with integers. If there are three
unique values in a column, label encoding replaces them with 0s, 1s, and 2s. To
demonstrate, run the following code in a Jupyter notebook:

import pandas as pd
from sklearn.preprocessing import LabelEncoder

data = [[10, 'red'], [20, 'blue'], [12, 'red'], [16, 'green'], [22, 'blue']]
df = pd.DataFrame(data, columns=['Length', 'Color'])

encoder = LabelEncoder()
df['Color'] = encoder.fit_transform(df['Color'])
df.head()
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This code creates a DataFrame containing a numeric column named Length and a
categorical column named Color, which contains three different categorical values.
Here’s what the dataset looks like before encoding:

And here’s how it looks after the values in the Color column are label-encoded using
Scikit’s LabelEncoder class:

The encoded dataset can be used to train a machine learning model. The unencoded
dataset cannot. You can get an ordered list of the classes that were encoded from the
encoder’s classes_ attribute.

The other, more common means for converting categorical values into numeric val‐
ues is one-hot encoding, which adds one column to the dataset for each unique value
in a categorical column and fills the encoded columns with 1s and 0s. One-hot
encoding can be performed with Scikit’s OneHotEncoder class or by calling get
_dummies on a Pandas DataFrame. Here is how the latter is used to encode the dataset:

data = [[10, 'red'], [20, 'blue'], [12, 'red'], [16, 'green'], [22, 'blue']]
df = pd.DataFrame(data, columns=['Length', 'Color'])

df = pd.get_dummies(df, columns=['Color'])
df.head()
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And here are the results:

Label encoding and one-hot encoding are used with regression problems and classifi‐
cation problems. The obvious question is, which one should you use? Generally
speaking, data scientists prefer one-hot encoding to label encoding. The former gives
every unique value an equal weight, whereas the latter implies that some values may
be more important than others—for example, that "red" (2) is more important than
"blue" (0). Label encoding, on the other hand, is more memory efficient. The num‐
ber of columns is the same before and after encoding, whereas one-hot encoding
adds one column per unique value. For very large datasets with thousands of unique
values in a categorical column, label encoding requires substantially less memory.

The accuracy of a machine learning model is rarely impacted by the encoding
method you choose. If you’re in doubt, you’ll rarely go wrong with one-hot encoding.
If you want to be certain, you can encode the data both ways and compare the results
after training a machine learning model.

Binary Classification
Binary classifiers are supervised learning models trained with labeled data: 0s for the
negative class and 1s for the positive. The predictions they make are 0s and 1s too.
They also divulge a probability for each class that you can factor into your conclu‐
sions. For example, a credit card company might decide that a transaction will be
declined only if the model predicts with at least 99% certainty that the transaction is
fraudulent. In that case, the probability that the model computed is more important
than the raw prediction that it made.

To help bring home everything presented thus far regarding binary classification, let’s
use Scikit to build a couple of models: first a simple one that demonstrates core prin‐
ciples, followed by a second one that solves a genuine business problem.

Classifying Passengers Who Sailed on the Titanic
One of the more famous public datasets in machine learning is the Titanic dataset,
which contains information regarding hundreds of passengers who sailed on the ill-
fated voyage of the RMS Titanic, including which ones survived and which ones did
not. Let’s use logistic regression to build a binary classification model from the dataset
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and see if we can predict the odds that a passenger will survive given that person’s
gender, age, and fare class (whether they traveled in first, second, or third class).

The first step is to download the dataset and copy it to the Data subdirectory of the
directory that hosts your Jupyter notebooks. Then run the following code in a note‐
book to load the dataset and get a feel for its contents:

import pandas as pd

df = pd.read_csv('Data/titanic.csv')
df.head()

Here is the output:

The dataset contains 891 rows and 12 columns. Some of the columns, such as
PassengerId and Name, aren’t relevant to a machine learning model. Others are very
relevant. The ones we’ll focus on are:

Survived

Indicates whether the passenger survived the voyage (1) or did not (0)

Pclass

Indicates whether the passenger was traveling in first class (1), second class (2),
or third class (3)

Sex

Indicates the passenger’s gender

Age

Indicates the passenger’s age

The Survived column is the label column—the one we’ll try to predict. The other col‐
umns are relevant because first-class passengers were more likely to survive the sink‐
ing because their cabins were closer to the top deck of the ship and nearer the
lifeboats. Plus, women and children were more likely to be given space in lifeboats.

Now use the following statement to see if the dataset is missing any values:

df.info()
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Here’s the output:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
 #   Column       Non-Null Count  Dtype  
---  ------       --------------  -----  
 0   PassengerId  891 non-null    int64  
 1   Survived     891 non-null    int64  
 2   Pclass       891 non-null    int64  
 3   Name         891 non-null    object 
 4   Sex          891 non-null    object 
 5   Age          714 non-null    float64
 6   SibSp        891 non-null    int64  
 7   Parch        891 non-null    int64  
 8   Ticket       891 non-null    object 
 9   Fare         891 non-null    float64
 10  Cabin        204 non-null    object 
 11  Embarked     889 non-null    object 
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB

The Cabin column is missing a lot of values, but we don’t care since we’re not using
that column. We will use the Age column, and that column is missing some values as
well. We could replace the missing values with the mean of all the other ages—an
approach that data scientists refer to as imputing missing values—but we’ll take the
simpler approach of removing rows with missing values. Use the following statements
to remove the columns that aren’t needed, drop rows with missing values, and one-
hot-encode the values in the Sex and Pclass columns:

df = df[['Survived', 'Age', 'Sex', 'Pclass']]
df = pd.get_dummies(df, columns=['Sex', 'Pclass'])
df.dropna(inplace=True)
df.head()

Here is the resulting dataset:
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The next task is to split the dataset for training and testing:

from sklearn.model_selection import train_test_split

x = df.drop('Survived', axis=1)
y = df['Survived']

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2,
                                                    stratify=y, random_state=0)

Note the stratify=y parameter passed to train_test_split. That’s important,
because of the 714 samples remaining after rows with missing values are removed,
290 represent passengers who survived and 424 represent passengers who did not.
We want the training dataset and the test dataset to contain similar proportions of
both classes, and stratify=y accomplishes that. Without stratification, the model
might appear to be more or less accurate than it really is.

Now create a logistic regression model, train it with the data split off for training, and
score it with the test data:

from sklearn.linear_model import LogisticRegression

model = LogisticRegression(random_state=0)
model.fit(x_train, y_train)
model.score(x_test, y_test)

Score the model again using cross-validation in order to have more confidence in the
score. Remember that this is the accuracy score computed by summing the true posi‐
tives and true negatives and dividing by the total number of samples:

from sklearn.model_selection import cross_val_score

cross_val_score(model, x, y, cv=5).mean()

Use the following statements to display a confusion matrix showing precisely how the
model performed during testing:

%matplotlib inline
from sklearn.metrics import ConfusionMatrixDisplay as cmd

cmd.from_estimator(model, x_test, y_test,
                   display_labels=['Perished', 'Survived'],
                   cmap='Blues', xticks_rotation='vertical')

Observe that the model is more accurate when predicting that passengers won’t sur‐
vive than when predicting that they will. That’s because the dataset used to train the
model contained more examples of passengers who perished than of passengers who
survived. You always prefer to train a binary classification model with a perfectly bal‐
anced dataset containing an equal number of positive and negative samples, but it’s
acceptable to train with an imbalanced dataset if you take the imbalance into account
when assessing the model’s accuracy.
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Now use Scikit’s precision_score and recall_score functions to compute the mod‐
el’s precision, recall, sensitivity, and specificity:

from sklearn.metrics import precision_score, recall_score

y_pred = model.predict(x_test)
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
sensitivity = recall
specificity = recall_score(y_test, y_pred, pos_label=0)

print(f'Precision: {precision}')
print(f'Recall: {recall}')
print(f'Sensitivity: {sensitivity}')
print(f'Specificity: {specificity}')

Is the high specificity score consistent with the observation that the model is more
adept at identifying passengers who won’t survive than those who will? How would
you explain the relatively low recall and sensitivity scores?

Now let’s use the trained model to make some predictions. First, find out whether a
30-year-old female traveling in first class is likely to survive the voyage. Since the
model was trained with a DataFrame containing column names, we’ll use the same
column names to formulate an input:

female = pd.DataFrame({ 'Age': [30], 'Sex_female': [1], 'Sex_male': [0],
                        'Pclass_1': [1], 'Pclass_2': [0], 'Pclass_3': [0] })

model.predict(female)[0]

The model predicts she will survive, but what are the odds that she we will survive?

probability = model.predict_proba(female)[0][1]
print(f'Probability of survival: {probability:.1%}')

A 30-year-old female traveling in first class is more than 90% likely to survive the
voyage, but what about a 60-year-old male traveling in third class?

male = pd.DataFrame({ 'Age': [60], 'Sex_female': [0], 'Sex_male': [1],
                      'Pclass_1': [0], 'Pclass_2': [0], 'Pclass_3': [1] })

probability = model.predict_proba(male)[0][1]
print(f'Probability of survival: {probability:.1%}')

Feel free to experiment with other inputs to see what the model says. How likely, for
example, is a 12-year-old boy traveling in second class to survive the sinking of the
Titanic?
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Detecting Credit Card Fraud
One of the most compelling uses for machine learning today is spotting fraudulent
financial transactions. Credit card companies apply machine learning at the point of
sale to decide whether to accept or decline individual charges. While these companies
are understandably reluctant to publish the details of how they do it or the data they
use to train their models, at least one such dataset has been published for public con‐
sumption. The data in it was anonymized using a technique called  principal compo‐
nent analysis (PCA), which I’ll introduce in Chapter 6.

The dataset is pictured in Figure 3-5. The data comes from real transactions made by
European credit card holders in September 2013. Most of the columns have uninfor‐
mative names, such as V1 and V2, and contain similarly opaque values. Three
columns—Time, Amount, and Class—have real names and unaltered values revealing
when the transaction took place, the amount of the transaction, and whether the
transaction was legitimate (Class=0) or fraudulent (Class=1).

Figure 3-5. The fraud-detection dataset

Each row represents one transaction. Of the 284,807 transactions in the dataset, only
492 are fraudulent. The dataset is highly imbalanced, so you would expect a machine
learning model trained on it to be much better at classifying legitimate transactions
than fraudulent ones. That’s not necessarily a problem, because credit card companies
would rather misclassify fraudulent transactions and allow 100 of them to slide
through than misclassify one legitimate transaction and anger a customer.

Begin by downloading a ZIP file containing the dataset. Copy creditcard.csv from the
ZIP file into your notebooks’ Data subdirectory, and then run the following code in a
Jupyter notebook to load the dataset and show the first several rows:
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import pandas as pd

df = pd.read_csv('Data/creditcard.csv')
df.head()

Find out how many rows the dataset contains and whether any of those rows have
missing values:

df.info()

The dataset contains 284,807 rows, and none of them are missing values. Split the
data for training and testing, and use train_test_split’s stratify parameter to
ensure that the ratio of legitimate and fraudulent transactions is consistent in the
training dataset and the testing dataset:

from sklearn.model_selection import train_test_split

x = df.drop(['Time', 'Class'], axis=1)
y = df['Class']

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2,
                                                    stratify=y, random_state=0)

Train a logistic regression model to separate the classes:

from sklearn.linear_model import LogisticRegression

lr_model = LogisticRegression(random_state=0, max_iter=5000)
lr_model.fit(x_train, y_train)

Note the max_iter=5000 parameter passed to the LogisticRegression function.
max_iter specifies the maximum number of iterations allowed to converge on a solu‐
tion when fitting the logistic function to a dataset. The default is 100, which isn’t
enough in this example. Raising the limit to 5,000 gives the internal solver the head‐
room it needs to find a solution.

A typical accuracy score computed by dividing the sum of the true positives and true
negatives by the number of test samples isn’t very helpful because the dataset is so
imbalanced. Fraudulent transactions represent less than 0.2% of all the samples,
which means that the model could simply guess that every transaction is legitimate
and get it right about 99.8% of the time. Use a confusion matrix to visualize how the
model performs during testing:

%matplotlib inline
from sklearn.metrics import ConfusionMatrixDisplay as cmd

labels = ['Legitimate', 'Fraudulent']
cmd.from_estimator(lr_model, x_test, y_test, display_labels=labels,
                   cmap='Blues', xticks_rotation='vertical')
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A logistic regression model correctly identified 56,853 transactions as legitimate
while misclassifying legitimate transactions as fraudulent just 11 times. We want to
minimize the latter number because we don’t want to annoy customers by declining
legitimate transactions. Let’s see if a random-forest classifier can do better:

from sklearn.ensemble import RandomForestClassifier

rf_model = RandomForestClassifier(random_state=0)
rf_model.fit(x_train, y_train)

cmd.from_estimator(rf_model, x_test, y_test, display_labels=labels,
                   cmap='Blues', xticks_rotation='vertical')
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A random forest mistook just four legitimate transactions as fraudulent. That’s an
improvement over logistic regression. Let’s see if a gradient-boosting classifier can do
better still:

from sklearn.ensemble import GradientBoostingClassifier

gbm_model = GradientBoostingClassifier(random_state=0)
gbm_model.fit(x_train, y_train)

cmd.from_estimator(gbm_model, x_test, y_test, display_labels=labels,
                   cmap='Blues', xticks_rotation='vertical')

The GBM misclassified more legitimate transactions than the random forest, so we’ll
stick with the random forest. Out of 56,864 legitimate transactions, the random forest
correctly classified 56,860 of them. This means that legitimate transactions are classi‐
fied correctly more than 99.99% of the time. Meanwhile, the model caught about 75%
of the fraudulent transactions.

Use the following statements to measure the random-forest classifier’s precision,
recall, sensitivity, and specificity:

from sklearn.metrics import precision_score, recall_score

y_pred = rf_model.predict(x_test)
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
sensitivity = recall
specificity = recall_score(y_test, y_pred, pos_label=0)

print(f'Precision: {precision}')
print(f'Recall: {recall}')
print(f'Sensitivity: {sensitivity}')
print(f'Specificity: {specificity}')
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Here is the output:

Precision: 0.9466666666666667
Recall: 0.7244897959183674
Sensitivity: 0.7244897959183674
Specificity: 0.9999296567248172

Given credit card companies’ desire to keep customers happy and spending money,
which of these metrics do you think they’re most interested in? If you answered spe‐
cificity, you answered correctly. Specificity is a measure of how reliable the test is at
not falsely classifying a negative sample as positive—in this case, at not classifying a
legitimate transaction as fraudulent.

Unfortunately, you can’t make predictions with this model because you don’t know
the meaning of the numbers in the V1 through V28 columns, and you can’t generate
columnar values from a new transaction because you don’t have the transform
applied to the original dataset. You don’t even know what the original dataset looks
like. Most likely each row contains information about the card holder—for example,
annual income, credit score, age, country of residence, and amount of money spent
on the card last year—plus information about the product that was purchased and
where it was purchased. The feature-engineering aspect of machine learning—figur‐
ing out what data is relevant to the model you’re attempting to build—is just as chal‐
lenging, if not more so, than data preparation and choosing a learning algorithm.

In real life, the models that credit card companies use to detect fraud are more
sophisticated than this, and they often incorporate several models since no single
model is 100% accurate. A company might build three models, for example, and
allow them to vote on whether a given transaction is legitimate. Regardless, you have
proven the principle that, given the right features, you can build a classification
model that is reasonably accurate at detecting credit card fraud. And you have seen
firsthand how easy Scikit makes it to experiment with different learning algorithms to
determine which produces the most useful model.

Multiclass Classification
Now it’s time to tackle multiclass classification, in which there are n possible out‐
comes rather than just two. A great example of multiclass classification is performing
optical character recognition: examining a handwritten digit and predicting which
digit 0 through 9 it corresponds to. Another example is looking at a facial photo and
identifying the person in the photo by running it through a model trained to recog‐
nize hundreds of people.

Virtually everything you learned about binary classification applies to multiclass clas‐
sification too. In Scikit, any classifier that works with binary classification also works
with multiclass classification models. The importance of this can’t be overstated.
Some learning algorithms, such as logistic regression, work only in binary
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classification scenarios. Many machine learning libraries make you write explicit code
to extend logistic regression to perform multiclass classification—or use a different
form of logistic regression altogether. Scikit doesn’t. Instead, it makes sure classifiers
such as LogisticRegression work in either scenario, and when necessary, it does
extra work behind the scenes to make it happen.

For logistic regression, Scikit uses one of two strategies to extend the algorithm to
work in multiclass scenarios. (You can specify which strategy to use with the
LogisticRegression class’s multi_class parameter, or accept the default of 'auto'
and allow Scikit to choose.) One is multinomial logistic regression, which replaces the
logistic function with a softmax function that yields multiple probabilities—one per
class. The other is one-vs-rest, also known as one-vs-all, which trains n binary classifi‐
cation models, where n is the number of classes that the model can predict. Each of
the n models pairs one class against all the other classes, and when the model is asked
to make a prediction, it runs the input through all n models and uses the output from
the one that yields the highest probability. This strategy is depicted in Figure 3-6.

Figure 3-6. Strategies for extending binary classification algorithms to support multiclass
classification

The one-vs-rest approach works well for logistic regression, but for some binary-only
classification algorithms, Scikit uses a one-vs-one approach instead. When you use
Scikit’s SVC class (a support vector machine classifier that you’ll learn about in Chap‐
ter 5) to perform multiclass classification, for example, Scikit builds one model for
each pair of classes. If the model includes four possible classes, Scikit builds no fewer
than seven models under the hood.

You don’t have to know any of this to build a multiclass classification model. But it
does explain why some multiclass classification models require more memory and
train more slowly than others. Some classification algorithms, such as random forests
and GBMs, support multiclass classification natively. For algorithms that don’t, Scikit
has your back. It fills the gap and does so as transparently as possible.
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To reiterate: all Scikit classifiers are capable of performing binary classification and
multiclass classification. This simplifies the code you write and lets you focus on
building and training models rather than understanding the underlying mechanics of
the algorithms.

Building a Digit Recognition Model
Want to experience multiclass classification firsthand? How about a model that exam‐
ines scanned, handwritten digits and predicts what digits 0–9 they correspond to?
The US Postal Service built a similar model many years ago to recognize handwritten
zip codes as part of an effort to automate mail sorting. We’ll use a sample dataset
that’s built into Scikit: the University of California Irvine’s Optical Recognition of
Handwritten Digits dataset, which contains almost 1,800 handwritten digits. Each
digit is represented by an 8 × 8 array of numbers from 0 to 16, with higher numbers
indicating darker pixels. We will use logistic regression to make predictions from the
data. Figure 3-7 shows the first 50 digits in the dataset.

Figure 3-7. First 50 digits in the Optical Recognition of Handwritten Digits dataset

Start by creating a Jupyter notebook and executing the following statements in the
first cell:

from sklearn import datasets

digits = datasets.load_digits()
print('digits.images: ' + str(digits.images.shape))
print('digits.target: ' + str(digits.target.shape))
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Here’s what the first digit looks like in numerical form:

digits.images[0]

And here’s how it looks to the eye:

%matplotlib inline
import matplotlib.pyplot as plt

plt.tick_params(axis='both', which='both', bottom=False, top=False, left=False,
                right=False, labelbottom=False, labelleft=False)
plt.imshow(digits.images[0], cmap=plt.cm.gray_r)

It’s obviously a 0, but you can confirm that from its label:

digits.target[0]

Plot the first 50 images and show the corresponding labels:

fig, axes = plt.subplots(5, 10, figsize=(12, 7),
                         subplot_kw={'xticks': [], 'yticks': []})

for i, ax in enumerate(axes.flat):
    ax.imshow(digits.images[i], cmap=plt.cm.gray_r)
    ax.text(0.45, 1.05, str(digits.target[i]), transform=ax.transAxes)

Classification models work best with balanced datasets. Use the following statements
to plot the distribution of the samples:

plt.xticks([])
plt.hist(digits.target, rwidth=0.9)

Here is the output:

The dataset is almost perfectly balanced, so let’s split it and train a logistic regression
model:

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
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x_train, x_test, y_train, y_test = train_test_split(
    digits.data, digits.target, test_size=0.2, random_state=0)

model = LogisticRegression(max_iter=5000)
model.fit(x_train, y_train)

Use the score method to quantify the model’s accuracy:

model.score(x_test, y_test)

Use a confusion matrix to see how the model performs on the test dataset:

%matplotlib inline
import matplotlib.pyplot as plt
from sklearn.metrics import ConfusionMatrixDisplay as cmd
import seaborn as sns
sns.set()

fig, ax = plt.subplots(figsize=(8, 8))
ax.grid(False)
cmd.from_estimator(model, x_test, y_test, cmap='Blues', colorbar=False, ax=ax)

The resulting output paints an encouraging picture: large numbers and dark colors
along the diagonal, and small numbers and light colors outside the diagonal. A per‐
fect model would have all zeros outside the diagonal, but of course, perfect models
don’t exist:
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Pick one of the digits from the dataset and plot it to see what it looks like:

sns.reset_orig() # Undo sns.set()
plt.tick_params(axis='both', which='both', bottom=False, top=False, left=False,
                right=False, labelbottom=False, labelleft=False)
plt.imshow(digits.images[100], cmap=plt.cm.gray_r)

Pass it to the model and see what digit the model predicts it is:

model.predict([digits.data[100]])[0]

What probabilities does the model predict for each possible digit?

model.predict_proba([digits.data[100]])

What is the probability that the digit is a 4?

model.predict_proba([digits.data[100]])[0][4]

When used for binary classification, predict_proba returns two probabilities: one for
the negative class and one for the positive class. For multiclass classification,
predict_proba returns probabilities for each possible class. This permits you to
assess the model’s confidence in the prediction returned by predict. Not surprisingly,
predict returns the class assigned the highest probability.

Summary
Classification models are widely used in industry to predict categorical outcomes
such as whether a credit card transaction should be accepted or declined. Binary clas‐
sification models predict either of two outcomes, while multiclass classification mod‐
els predict more than two outcomes. One of the most widely used learning
algorithms for classification models is logistic regression, which fits an equation to
training data and uses it to predict outcomes by computing the possibility that each is
the correct one and selecting the outcome with the highest probability.

There are many ways to score classification models. Which method is correct
depends on how you intend to use the model. For example, when the cost of false
positives is high, use precision to assess the model’s accuracy. Precision is computed
by dividing the number of true positives by the sum of the true positives and false
positives. On the other hand, if the cost of false negatives is high, use recall instead.
Recall is computed by dividing the number of true positives by the sum of the true
positives and false negatives. Closely related to precision and recall are sensitivity and
specificity. Sensitivity is identical to recall, while specificity is recall for the negative
class rather than the positive class. Confusion matrices offer a convenient way to visu‐
alize how a model performs on test data without reducing the accuracy to a single
number.

Some learning algorithms work only with binary classification, but Scikit works some
magic under the hood to make sure any learning algorithm can be used for binary or
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multiclass classification. This isn’t true of all machine learning libraries. Some restrict
their learning algorithms to specific scenarios or require you to write extra code to
use a binary classification algorithm in a multiclass model.

All the models in this chapter were trained with numerical data, even though some of
the datasets contained categorical values—values that are strings rather than
numbers—that had to be converted to numbers using one-hot encoding. You may
wonder how to build a classification model that works solely on text—for example, a
model that scores restaurant reviews for sentiment or classifies emails as spam or not
spam. It’s a perfectly legitimate question to ask. And it happens to be the subject of
Chapter 4.
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CHAPTER 4

Text Classification

One of the more novel uses for binary classification is sentiment analysis, which
examines a sample of text such as a product review, a tweet, or a comment left on a
website and scores it on a scale of 0.0 to 1.0, where 0.0 represents negative sentiment
and 1.0 represents positive sentiment. A review such as “great product at a great
price” might score 0.9, while “overpriced product that barely works” might score 0.1.
The score is the probability that the text expresses positive sentiment. Sentiment anal‐
ysis models are difficult to build algorithmically but are relatively easy to craft with
machine learning. For examples of how sentiment analysis is used in business today,
see the article “8 Sentiment Analysis Real-World Use Cases” by Nicholas Bianchi.

Sentiment analysis is one example of a task that involves classifying textual data
rather than numerical data. Because machine learning works with numbers, you must
convert text to numbers before training a sentiment analysis model, a model that
identifies spam emails, or any other model that classifies text. A common approach is
to build a table of word frequencies called a bag of words. Scikit-Learn provides
classes to help. It also includes support for normalizing text so that, for example,
“awesome” and “Awesome” don’t count as two different words.

This chapter begins by describing how to prepare text for use in classification models.
After building a sentiment analysis model, you’ll learn about another popular learn‐
ing algorithm called Naive Bayes that works particularly well with text and use it to
build a model that distinguishes between legitimate emails and spam emails. Finally,
you’ll learn about a mathematical technique for measuring the similarity of two text
samples and use it to build an app that recommends movies based on other movies
you enjoy.
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Preparing Text for Classification
Before you train a model to classify text, you must convert the text into numbers, a
process known as vectorization. Chapter 1 presented the illustration reproduced in
Figure 4-1, which demonstrates a common technique for vectorizing text. Each row
represents a text sample such as a tweet or a movie review, and each column repre‐
sents a word in the training text. The numbers in the rows are word counts, and the
final number in each row is a label: 0 for negative and 1 for positive.

Figure 4-1. Dataset for sentiment analysis

Text is typically cleaned before it’s vectorized. Examples of cleaning include convert‐
ing characters to lowercase (so, for example, “Excellent” is equivalent to “excellent”),
removing punctuation symbols, and optionally removing stop words—common
words such as the and and that are likely to have little impact on the outcome. Once
cleaned, sentences are divided into individual words (tokenized) and the words are
used to produce datasets like the one in Figure 4-1.

Scikit-Learn has three classes that handle the bulk of the work of cleaning and vecto‐
rizing text:

CountVectorizer

Creates a dictionary (vocabulary) from the corpus of words in the training text
and generates a matrix of word counts like the one in Figure 4-1

HashingVectorizer

Uses word hashes rather than an in-memory vocabulary to produce word counts
and is therefore more memory efficient

TfidfVectorizer

Creates a dictionary from words provided to it and generates a matrix similar to
the one in Figure 4-1, but rather than containing integer word counts, the matrix
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contains term frequency-inverse document frequency (TFIDF) values between
0.0 and 1.0 reflecting the relative importance of individual words

All three classes are capable of converting text to lowercase, removing punctuation
symbols, removing stop words, splitting sentences into individual words, and more.
They also support n-grams, which are combinations of two or more consecutive
words (you specify the number n) that should be treated as a single word. The idea is
that words such as credit and score might be more meaningful if they appear next to
each other in a sentence than if they appear far apart. Without n-grams, the relative
proximity of words is ignored. The downside to using n-grams is that it increases
memory consumption and training time. Used judiciously, however, it can make text
classification models more accurate.

Neural networks have other, more powerful ways of taking word
order into account that don’t require related words to occur next to
each other. A conventional machine learning model can’t connect
the words blue and sky in the sentence “I like blue, for it is the color
of the sky,” but a neural network can. I will shed more light on this
in Chapter 13.

Here’s an example demonstrating what CountVectorizer does and how it’s used:

import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer

lines = [
    'Four score and 7 years ago our fathers brought forth,',
    '... a new NATION, conceived in liberty $$$,',
    'and dedicated to the PrOpOsItIoN that all men are created equal',
    'One nation\'s freedom equals #freedom for another $nation!'
]

# Vectorize the lines
vectorizer = CountVectorizer(stop_words='english')
word_matrix = vectorizer.fit_transform(lines)

# Show the resulting word matrix
feature_names = vectorizer.get_feature_names_out()
line_names = [f'Line {(i + 1):d}' for i, _ in enumerate(word_matrix)]

df = pd.DataFrame(data=word_matrix.toarray(), index=line_names,
                  columns=feature_names)

df.head()
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Here’s the output:

The corpus of text in this case is four strings in a Python list. CountVectorizer broke
the strings into words, removed stop words and symbols, and converted all remain‐
ing words to lowercase. Those words comprise the columns in the dataset, and the
numbers in the rows show how many times a given word appears in each string. The
stop_words='english' parameter tells CountVectorizer to remove stop words
using a built-in dictionary of more than 300 English-language stop words. If you pre‐
fer, you can provide your own list of stop words in a Python list. (Or you can leave
the stop words in there; it often doesn’t matter.) And if you’re training with text writ‐
ten in another language, you can get lists of multilanguage stop words from other
Python libraries such as the Natural Language Toolkit (NLTK) and Stop-words.

Observe from the output that equal and equals count as separate words, even
though they have similar meaning. Data scientists sometimes go a step further when
preparing text for machine learning by stemming or lemmatizing words. If the preced‐
ing text were stemmed, all occurrences of equals would be converted to equal. Scikit
lacks support for stemming and lemmatization, but you can get it from other libraries
such as NLTK.

CountVectorizer removes punctuation symbols, but it doesn’t remove numbers. It
ignored the 7 in line 1 because it ignores single characters. But if you changed 7 to
777, the term 777 would appear in the vocabulary. One way to fix that is to define a
function that removes numbers and pass it to CountVectorizer via the preprocessor
parameter:

import re

def preprocess_text(text):
    return re.sub(r'\d+', '', text).lower()

vectorizer = CountVectorizer(stop_words='english', preprocessor=preprocess_text)
word_matrix = vectorizer.fit_transform(lines)

Note the call to lower to convert the text to lowercase. CountVectorizer doesn’t con‐
vert text to lowercase if you provide a preprocessing function, so the preprocessing
function must convert it itself. It still removes punctuation characters, however.
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Another useful parameter to CountVectorizer is min_df, which ignores words that
appear fewer than the specified number of times. It can be an integer specifying a
minimum count (for example, ignore words that appear fewer than five times in the
training text, or min_df=5), or it can be a floating-point value from 0.0 to 1.0 specify‐
ing the minimum percentage of samples in which a word must appear—for example,
ignore words that appear in less than 10% of the samples (min_df=0.1). It’s great for
filtering out words that probably aren’t meaningful anyway, and it reduces memory
consumption and training time by decreasing the size of the vocabulary. Count
Vectorizer also supports a max_df parameter for eliminating words that appear too
frequently.

The preceding examples use CountVectorizer, which probably leaves you wondering
when (and why) you would use HashingVectorizer or TfidfVectorizer instead.
HashingVectorizer is useful when dealing with large datasets. Rather than store
words in memory, it hashes each word and uses the hash as an index into an array of
word counts. It can therefore do more with less memory and is very useful for reduc‐
ing the size of vectorizers when serializing them so that you can restore them later—a
topic I’ll say more about in Chapter 7. The downside to HashingVectorizer is that it
doesn’t let you work backward from vectorized text to the original text. Count
Vectorizer does, and it provides an inverse_transform method for that purpose.

TfidfVectorizer is frequently used to perform keyword extraction: examining a
document or set of documents and extracting keywords that characterize their con‐
tent. It assigns words numerical weights reflecting their importance, and it uses two
factors to determine the weights: how often a word appears in individual documents,
and how often it appears in the overall document set. Words that appear more fre‐
quently in individual documents but occur in fewer documents receive higher
weights. I won’t go further into it here, but if you’re curious to learn more, this book’s
GitHub repo contains a notebook that uses Tfidf Vectorizer to extract keywords
from the manuscript of Chapter 1.

Sentiment Analysis
To train a sentiment analysis model, you need a labeled dataset. Several such datasets
are available in the public domain. One of those is the IMDB movie review dataset,
which contains 25,000 samples of negative reviews and 25,000 samples of positive
reviews posted on the Internet Movie Database website. Each review is meticulously
labeled with a 0 for negative sentiment or a 1 for positive sentiment. To demonstrate
how sentiment analysis works, let’s build a binary classification model and train it
with this dataset. We’ll use logistic regression as the learning algorithm. A sentiment
analysis score yielded by this model is simply the probability that the input expresses
positive sentiment, which is easily retrieved by calling LogisticRegression’s
predict_proba method.
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Start by downloading the dataset and copying it to the Data subdirectory of the direc‐
tory that hosts your Jupyter notebooks. Then run the following code in a notebook to
load the dataset and show the first five rows:

import pandas as pd
 
df = pd.read_csv('Data/reviews.csv', encoding='ISO-8859-1')
df.head()

The encoding attribute is necessary because the CSV file uses ISO-8859-1 character
encoding rather than UTF-8. The output is as follows:

Find out how many rows the dataset contains and confirm that there are no missing
values:

df.info()

Use the following statement to see how many instances there are of each class (0 for
negative and 1 for positive):

df.groupby('Sentiment').describe()

Here is the output:

There is an even number of positive and negative samples, but in each case, the num‐
ber of unique samples is less than the number of samples for that class. That means
the dataset has duplicate rows, and duplicate rows could bias a machine learning
model. Use the following statements to delete the duplicate rows and check for bal‐
ance again:

df = df.drop_duplicates()
df.groupby('Sentiment').describe()
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Now there are no duplicate rows, and the number of positive and negative samples is
roughly equal.

Next, use CountVectorizer to prepare and vectorize the text in the Text column. Set
min_df to 20 to ignore words that appear infrequently in the training text. This
reduces the likelihood of out-of-memory errors and will probably make the model
more accurate as well. Also use the ngram_range parameter to allow Count
Vectorizer to include word pairs as well as individual words:

from sklearn.feature_extraction.text import CountVectorizer
 
vectorizer = CountVectorizer(ngram_range=(1, 2), stop_words='english',
                             min_df=20)

x = vectorizer.fit_transform(df['Text'])
y = df['Sentiment']

Now split the dataset for training and testing. We’ll use a 50/50 split since there are
almost 50,000 samples in total:

from sklearn.model_selection import train_test_split
 
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.5,
                                                    random_state=0)

The next step is to train a classifier. We’ll use Scikit’s LogisticRegression class,
which uses logistic regression to fit a model to the data:

from sklearn.linear_model import LogisticRegression
 
model = LogisticRegression(max_iter=1000, random_state=0)
model.fit(x_train, y_train)

Validate the trained model with the 50% of the dataset set aside for testing and show
the results in a confusion matrix:

%matplotlib inline
from sklearn.metrics import ConfusionMatrixDisplay as cmd

cmd.from_estimator(model, x_test, y_test,
                   display_labels=['Negative', 'Positive'],
                   cmap='Blues', xticks_rotation='vertical')
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The confusion matrix reveals that the model correctly identified 10,795 negative
reviews while misclassifying 1,574 of them. It correctly identified 10,966 positive
reviews and got it wrong 1,456 times:

Now comes the fun part: analyzing text for sentiment. Use the following statements to
produce a sentiment score for the sentence “The long lines and poor customer service
really turned me off ”:

text = 'The long lines and poor customer service really turned me off'
model.predict_proba(vectorizer.transform([text]))[0][1]

Here’s the output:

0.09183447847778639

Now do the same for “The food was great and the service was excellent!”:

text = 'The food was great and the service was excellent!'
model.predict_proba(vectorizer.transform([text]))[0][1]

If you expected a higher score for this one, you won’t be disappointed:

0.8536277207125618

Feel free to try sentences of your own and see if you agree with the sentiment scores
the model predicts. It’s not perfect, but it’s good enough that if you run hundreds of
reviews or comments through it, you should get a reliable indication of the sentiment
expressed in the text.
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Sometimes CountVectorizer’s built-in list of stop words lowers the
accuracy of a model because the list is so broad. As an experiment,
remove stop_words='english' from CountVectorizer and run
the code again. Check the confusion matrix. Does the accuracy
increase or decrease? Feel free to vary other parameters such as
min_df and ngram_range too. In the real world, data scientists often
try many different parameter combinations to determine which
one produces the best results.

Naive Bayes
Logistic regression is a go-to algorithm for classification models and is often very
effective at classifying text. But in scenarios involving text classification, data scien‐
tists often turn to another learning algorithm called Naive Bayes. It’s a classification
algorithm based on Bayes’ theorem, which provides a means for calculating condi‐
tional probabilities. Mathematically, Bayes’ theorem is stated this way:

P A B = P B A · P A
P B

This says the probability that A is true given that B is true is equal to the probability
that B is true given that A is true multiplied by the probability that A is true divided
by the probability that B is true. That’s a mouthful, and while accurate, it doesn’t
explain why Naive Bayes is so useful for classifying text—or how you apply it, for
example, to a collection of emails to determine which ones are spam.

Let’s start with a simple example. Suppose 10% of all the emails you receive are spam.
That’s P(A). Analysis reveals that 5% of the spam emails you receive contain the word
congratulations, but just 1% of all your emails contain the same word. Therefore,
P(B|A) is 0.05 and P(B) is 0.01. The probability of an email being spam if it contains
the word congratulations is P(A|B), which is (0.05 x 0.10) / 0.01, or 0.50.

Of course, a spam filter must consider all the words in an email, not just one. It turns
out that if you make some simple (naive) assumptions—that the order of the words in
an email doesn’t matter, and that every word has equal weight—you can write Bayes’
equation this way for a spam classifier:

P S message = P S · P word1 S · P word2 S ...P wordn S
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In plain English, the probability that a message is spam is proportional to the prod‐
uct of:

• The probability that any message in the dataset is spam, or P(S)
• The probability that each word in the message appears in a spam message, or

P(word|S)

P(S) can be calculated easily enough: it’s simply the fraction of the messages in the
dataset that are spam messages. If you train a machine learning model with 1,000
messages and 500 of them are spam, then P(S) = 0.5. For a given word, P(word|S) is
simply the number of times the word appears in spam messages divided by the num‐
ber of words in all the spam messages. The entire problem reduces to word counts.
You can do a similar calculation to compute the probability that the message is not
spam, and then use the higher of the two probabilities to make a prediction.

Here’s an example involving four sample emails. The emails are:

Text Spam
Raise your credit score in minutes 1
Here are the minutes from yesterday’s meeting 0
Meeting tomorrow to review yesterday’s scores 0
Score tomorrow’s meds at yesterday’s prices 1

If you remove stop words, convert characters to lowercase, and stem the words such
that tomorrow’s becomes tomorrow, you’re left with this:

Text Spam
raise credit score minute 1
minute yesterday meeting 0
meeting tomorrow review yesterday score 0
score tomorrow med yesterday price 1

Because two of the four messages are spam and two are not, the probability that any
message is spam (P(S)) is 0.5. The same goes for the probability that any message is
not spam (P(N) = 0.5). In addition, the spam messages contain nine unique words,
while the nonspam messages contain a total of eight.
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The next step is to build the following table of word frequencies. Take the word yes‐
terday as an example. It appears once in a message that’s labeled as spam, so P(yester‐
day|S) is 1/9, or 0.111. It appears twice in nonspam messages, so P(yesterday|N) is 2/8,
or 0.250:

Word P(word|S) P(word|N)
raise 1/9 = 0.111 0/8 = 0.000
credit 1/9 = 0.111 0/8 = 0.000
score 2/9 = 0.222 1/8 = 0.125
minute 1/9 = 0.111 1/8 = 0.125
yesterday 1/9 = 0.111 2/8 = 0.250
meeting 0/9 = 0.000 2/8 = 0.250
tomorrow 1/9 = 0.111 1/8 = 0.125
review 0/9 = 0.000 1/8 = 0.125
med 1/9 = 0.111 0/8 = 0.000
price 1/9 = 0.111 0/8 = 0.000

This works up to a point, but the zeros in the table are a problem. Let’s say you want
to determine whether “Scores must be reviewed by tomorrow” is spam. Removing
stop words leaves you with “score review tomorrow.” You can compute the probability
that the message is spam this way:

P S score review tomorrow = P S · P score S · P review S · P tomorrow S
P S score review tomorrow = 0.5 · 0.222 · 0.0 · 0.111 = 0
P S score review tomorrow = 0

The result is 0 because review doesn’t appear in a spam message, and 0 times anything
is 0. The algorithm simply can’t assign a spam probability to “Scores must be
reviewed by tomorrow.”

A common way to resolve this is to apply Laplace smoothing, also known as additive
smoothing. Typically, this involves adding 1 to each numerator and the number of
unique words in the dataset (in this case, 10) to each denominator. Now, P(review|S)
evaluates to (0 + 1) / (9 + 10), which equals 0.053. It’s not much, but it’s better than
nothing (literally). Here are the word frequencies again, this time revised with La‐
place smoothing:
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Word P(word|S) P(word|N)
raise (1 + 1) / (9 + 10) = 0.105 (0 + 1) / (8 + 10) = 0.056
credit (1 + 1) / (9 + 10) = 0.105 (0 + 1) / (8 + 10) = 0.056
score (2 + 1) / (9 + 10) = 0.158 (1 + 1) / (8 + 10) = 0.111
minute (1 + 1) / (9 + 10) = 0.105 (1 + 1) / (8 + 10) = 0.111
yesterday (1 + 1) / (9 + 10) = 0.105 (2 + 1) / (8 + 10) = 0.167
meeting (0 + 1) / (9 + 10) = 0.053 (2 + 1) / (8 + 10) = 0.167
tomorrow (1 + 1) / (9 + 10) = 0.105 (1 + 1) / (8 + 10) = 0.111
review (0 + 1) / (9 + 10) = 0.053 (1 + 1) / (8 + 10) = 0.111
med (1 + 1) / (9 + 10) = 0.105 (0 + 1) / (8 + 10) = 0.056
price (1 + 1) / (9 + 10) = 0.105 (0 + 1) / (8 + 10) = 0.056

Now you can determine whether “Scores must be reviewed by tomorrow” is spam by
performing two simple calculations:

P S score review tomorrow = 0.5 · 0.158 · 0.053 · 0.105 = 0.000440
P N score review tomorrow = 0.5 · 0.111 · 0.111 · 0.111 = 0.000684

By this measure, “Scores must be reviewed by tomorrow” is likely not to be spam.
The probabilities are relative, but you could normalize them and conclude there’s
about a 40% chance the message is spam and a 60% chance it’s not based on the
emails the model was trained with.

Fortunately, you don’t have to do these computations by hand. Scikit-Learn provides
several classes to help out, including the MultinomialNB class, which works great with
tables of word counts produced by CountVectorizer.

Spam Filtering
It’s no coincidence that modern spam filters are remarkably adept at identifying
spam. Virtually all of them rely on machine learning. Such models are difficult to
implement algorithmically because an algorithm that uses keywords such as credit
and score to determine whether an email is spam is easily fooled. Machine learning,
by contrast, looks at a body of emails and uses what it learns to classify the next email.
Such models often achieve more than 99% accuracy. And they get smarter over time
as they’re trained with more and more emails.

The previous example used logistic regression to predict whether text input to it
expresses positive or negative sentiment. It used the probability that the text expresses
positive sentiment as a sentiment score, and you saw that expressions such as “The
long lines and poor customer service really turned me off ” score close to 0.0, while
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expressions such as “The food was great and the service was excellent” score close to
1.0. Now let’s build a binary classification model that classifies emails as spam or not
spam and use Naive Bayes to fit the model to the training data.

There are several spam classification datasets available in the public domain. Each
contains a collection of emails with samples labeled with 1s for spam and 0s for not
spam. We’ll use a relatively small dataset containing 1,000 samples. Begin by down‐
loading the dataset and copying it into your notebooks’ Data subdirectory. Then load
the data and display the first five rows:

import pandas as pd
 
df = pd.read_csv('Data/ham-spam.csv')
df.head()

Now check for duplicate rows in the dataset:

df.groupby('IsSpam').describe()

The dataset contains one duplicate row. Let’s remove it and check for balance:

df = df.drop_duplicates()
df.groupby('IsSpam').describe()

The dataset now contains 499 samples that are not spam, and 500 that are. The next
step is to use CountVectorizer to vectorize the emails. Once more, we’ll allow Count
Vectorizer to consider word pairs as well as individual words and remove stop
words using Scikit’s built-in dictionary of English stop words:

from sklearn.feature_extraction.text import CountVectorizer
 
vectorizer = CountVectorizer(ngram_range=(1, 2), stop_words='english')
x = vectorizer.fit_transform(df['Text'])
y = df['IsSpam']

Split the dataset so that 80% can be used for training and 20% for testing:

from sklearn.model_selection import train_test_split
 
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2,
                                                    random_state=0)

The next step is to train a Naive Bayes classifier using Scikit’s MultinomialNB class:

from sklearn.naive_bayes import MultinomialNB
 
model = MultinomialNB()
model.fit(x_train, y_train)
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Validate the trained model with the 20% of the dataset set aside for testing using a
confusion matrix:

%matplotlib inline
from sklearn.metrics import ConfusionMatrixDisplay as cmd

cmd.from_estimator(model, x_test, y_test,
                   display_labels=['Not Spam', 'Spam'],
                   cmap='Blues', xticks_rotation='vertical')

The model correctly identified 101 of 102 legitimate emails as not spam, and 95 of 98
spam emails as spam:

Use the score method to get a rough measure of the model’s accuracy:

model.score(x_test, y_test)

Now use Scikit’s RocCurveDisplay class to visualize the ROC curve:

from sklearn.metrics import RocCurveDisplay as rcd
import seaborn as sns
sns.set()

rcd.from_estimator(model, x_test, y_test)

The results are encouraging. Trained with just 999 samples, the area under the ROC
curve (AUC) indicates the model is more than 99.9% accurate at classifying emails as
spam or not spam:
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Let’s see how the model classifies a few emails that it hasn’t seen before, starting with
one that isn’t spam. The model’s predict method predicts a class—0 for not spam, or
1 for spam:

msg = 'Can you attend a code review on Tuesday to make sure the logic is solid?'
input = vectorizer.transform([msg])
model.predict(input)[0]

The model says this message is not spam, but what’s the probability that it’s not spam?
You can get that from predict_proba, which returns an array containing two values:
the probability that the predicted class is 0, and the probability that the predicted
class is 1, in that order:

model.predict_proba(input)[0][0]

The model seems very sure that this email is legitimate:

0.9999497111473539

Now test the model with a spam message:

msg = 'Why pay more for expensive meds when you can order them online ' \
      'and save $$$?'

input = vectorizer.transform([msg])
model.predict(input)[0]

What is the probability that the message is not spam?

model.predict_proba(input)[0][0]

The answer is:

0.00021423891260677753
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What is the probability that the message is spam?

model.predict_proba(input)[0][1]

And the answer is:

0.9997857610873945

Observe that predict and predict_proba accept a list of inputs. Based on that, could
you classify an entire batch of emails with one call to either method? How would you
get the results for each email?

Recommender Systems
Another branch of machine learning that has proven its mettle in recent years is rec‐
ommender systems—systems that recommend products or services to customers.
Amazon’s recommender system reportedly drives 35% of its sales. The good news is
that you don’t have to be Amazon to benefit from a recommender system, nor do you
have to have Amazon’s resources to build one. They’re relatively simple to create once
you learn a few basic principles.

Recommender systems come in many forms. Popularity-based systems present
options to customers based on what products and services are popular at the time—
for example, “Here are this week’s bestsellers.” Collaborative systems make recommen‐
dations based on what others have selected, as in “People who bought this book also
bought these books.” Neither of these systems requires machine learning.

Content-based systems, by contrast, benefit greatly from machine learning. An exam‐
ple of a content-based system is one that says “if you bought this book, you might like
these books also.” These systems require a means for quantifying similarity between
items. If you liked the movie Die Hard, you might or might not like Monty Python
and the Holy Grail. If you liked Toy Story, you’ll probably like A Bug’s Life too. But
how do you make that determination algorithmically?

Content-based recommenders require two ingredients: a way to vectorize—convert to
numbers—the attributes that characterize a service or product, and a means for cal‐
culating similarity between the resulting vectors. The first one is easy. Count
Vectorizer converts text into tables of word counts. All you need is a way to measure
similarity between rows of word counts and you can build a recommender system.
And one of the simplest and most effective ways to do that is a technique called cosine
similarity.

Cosine Similarity
Cosine similarity is a mathematical means for computing the similarity between pairs
of vectors (or rows of numbers treated as vectors). The basic idea is to take each value
in a sample—for example, word counts in a row of vectorized text—and use them as

94 | Chapter 4: Text Classification

https://oreil.ly/ue81Q
https://oreil.ly/948eP


endpoint coordinates for a vector, with the other endpoint at the origin of the coordi‐
nate system. Do that for two samples, and then compute the cosine between vectors
in m-dimensional space, where m is the number of values in each sample. Because the
cosine of 0 is 1, two identical vectors have a similarity of 1. The more dissimilar the
vectors, the closer the cosine will be to 0.

Here’s an example in two-dimensional space to illustrate. Suppose you have three
rows containing two values each:

1 2
2 3
3 1

You want to determine whether row 2 is more similar to row 1 or row 3. It’s hard to
tell just by looking at the numbers, and in real life, there are many more numbers. If
you simply added the numbers in each row and compared the sums, you would con‐
clude that row 2 is more similar to row 3. But what if you treated each row as a vector,
as shown in Figure 4-2?

• Row 1: (0, 0) → (1, 2)
• Row 2: (0, 0) → (2, 3)
• Row 3: (0, 0) → (3, 1)

Figure 4-2. Cosine similarity

Now you can plot each row as a vector, compute the cosines of the angles formed by 1
and 2 and 2 and 3, and determine that row 2 is more like row 1 than row 3. That’s
cosine similarity in a nutshell.
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Cosine similarity isn’t limited to two dimensions; it works in higher-dimensional
space as well. To help compute cosine similarities regardless of the number of dimen‐
sions, Scikit offers the cosine_similarity function. The following code computes
the cosine similarities of the three samples in the preceding example:

data = [[1, 2], [2, 3], [3, 1]]
cosine_similarity(data)

The return value is a similarity matrix containing the cosines of every vector pair. The
width and height of the matrix equals the number of samples:

array([[1.        , 0.99227788, 0.70710678],
       [0.99227788, 1.        , 0.78935222],
       [0.70710678, 0.78935222, 1.        ]])

From this, you can see that the similarity of rows 1 and 2 is 0.992, while the similarity
of rows 2 and 3 is 0.789. In other words, row 2 is more similar to row 1 than it is to
row 3. There is also more similarity between rows 2 and 3 (0.789) than there is
between rows 1 and 3 (0.707).

Building a Movie Recommendation System
Let’s put cosine similarity to work building a content-based recommender system for
movies. Start by downloading the dataset, which is one of several movie datasets
available from Kaggle.com. This one has information for about 4,800 movies, includ‐
ing title, budget, genres, keywords, cast, and more. Place the CSV file in your Jupyter
notebooks’ Data subdirectory. Then load the dataset and peruse its contents:

import pandas as pd
 
df = pd.read_csv('Data/movies.csv')
df.head()

The dataset contains 24 columns, only a few of which are needed to describe a movie.
Use the following statements to extract key columns such as title and genres and
fill missing values with empty strings:

df = df[['title', 'genres', 'keywords', 'cast', 'director']]
df = df.fillna('') # Fill missing values with empty strings
df.head()

Next, add a column named features that combines all the words in the other
columns:

df['features'] = df['title'] + ' ' + df['genres'] + ' ' + \
            df['keywords'] + ' ' + df['cast'] + ' ' + \
            df['director']
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Use CountVectorizer to vectorize the text in the features column:

from sklearn.feature_extraction.text import CountVectorizer
 
vectorizer = CountVectorizer(stop_words='english', min_df=20)
word_matrix = vectorizer.fit_transform(df['features'])
word_matrix.shape

The table of word counts contains 4,803 rows—one for each movie—and 918 col‐
umns. The next task is to compute cosine similarities for each row pair:

from sklearn.metrics.pairwise import cosine_similarity
 
sim = cosine_similarity(word_matrix)

Ultimately, the goal of this system is to input a movie title and identify the n movies
that are most similar to that movie. To that end, define a function named get
_recommendations that accepts a movie title, a DataFrame containing information
about all the movies, a similarity matrix, and the number of movie titles to return:

def get_recommendations(title, df, sim, count=10):
    # Get the row index of the specified title in the DataFrame
    index = df.index[df['title'].str.lower() == title.lower()]
     
    # Return an empty list if there is no entry for the specified title
    if (len(index) == 0):
        return []
 
    # Get the corresponding row in the similarity matrix
    similarities = list(enumerate(sim[index[0]]))
     
    # Sort the similarity scores in that row in descending order
    recommendations = sorted(similarities, key=lambda x: x[1], reverse=True)
     
    # Get the top n recommendations, ignoring the first entry in the list since
    # it corresponds to the title itself (and thus has a similarity of 1.0)
    top_recs = recommendations[1:count + 1]
 
    # Generate a list of titles from the indexes in top_recs
    titles = []
 
    for i in range(len(top_recs)):
        title = df.iloc[top_recs[i][0]]['title']
        titles.append(title)
 
    return titles

This function sorts the cosine similarities in descending order to identify the count
movies most like the one identified by the title parameter. Then it returns the titles
of those movies.
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Now use get_recommendations to search the database for similar movies. First ask
for the 10 movies that are most similar to the James Bond thriller Skyfall:

get_recommendations('Skyfall', df, sim)

Here is the output:

['Spectre',
 'Quantum of Solace',
 'Johnny English Reborn',
 'Clash of the Titans',
 'Die Another Day',
 'Diamonds Are Forever',
 'Wrath of the Titans',
 'I Spy',
 'Sanctum',
 'Blackthorn']

Call get_recommendations again to list movies that are like Mulan:

get_recommendations('Mulan', df, sim)

Feel free to try other movies as well. Note that you can only input movie titles that are
in the dataset. Use the following statements to print a complete list of titles:

pd.set_option('display.max_rows', None)
print(df['title'])

I think you’ll agree that the system does a pretty credible job of picking similar mov‐
ies. Not bad for about 20 lines of code!

Summary
Machine learning models that classify text are common and see a variety of uses in
industry and in everyday life. What rational human being doesn’t wish for a magic
wand that eradicates all spam mails, for example?

Text used to train a text classification model must be prepared and vectorized prior to
training. Preparation includes converting characters to lowercase and removing
punctuation characters, and may include removing stop words, removing numbers,
and stemming or lemmatizing. Once prepared, text is vectorized by converting it into
a table of word frequencies. Scikit’s CountVectorizer class makes short work of the
vectorization process and handles some of the preparation duties too.

Logistic regression and other popular classification algorithms can be used to classify
text once it’s converted to numerical form. For text classification tasks, however, the
Naive Bayes learning algorithm frequently outperforms other algorithms. By making
a few “naive” assumptions such as that the order in which words appear in a text sam‐
ple doesn’t matter, Naive Bayes reduces to a process of word counting. Scikit’s
MultinomialNB class provides a handy Naive Bayes implementation.
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Cosine similarity is a mathematical means for computing the similarity between two
rows of numbers. One use for it is building systems that recommend products or
services based on other products or services that a customer has purchased. Word
frequency tables produced from textual descriptions by CountVectorizer can be
combined with cosine similarity to create intelligent recommender systems intended
to supplement a company’s bottom line.

Feel free to use this chapter’s examples as a starting point for experiments of your
own. For instance, see if you can tweak the parameters passed to CountVectorizer in
any of the examples and increase the accuracy of the resulting model. Data scientists
call the search for the optimum parameter combination hyperparameter tuning, and
it’s a subject you’ll learn about in the next chapter.
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CHAPTER 5

Support Vector Machines

Support vector machines (SVMs) represent the cutting edge of machine learning.
They are most often used to solve classification problems, but they can also be used
for regression. Due to the unique way in which they fit mathematical models to data,
SVMs often succeed at finding separation between classes when other models do not.
They technically perform binary classification only, but Scikit-Learn enables them to
do multiclass classification as well using techniques discussed in Chapter 3.

Scikit-Learn makes building SVMs easy with classes such as SVC (short for support
vector classifier) for classification models and SVR (support vector regressor) for
regression models. You can use these classes without understanding how SVMs work,
but you’ll get more out of them if you do understand how they work. It’s also impor‐
tant to know how to tune SVMs for individual datasets and how to prepare data
before you train a model. Toward the end of this chapter, we’ll build an SVM that per‐
forms facial recognition. But first, let’s look behind the scenes and discover why
SVMs are often the go-to mechanism for modeling real-world datasets.

How Support Vector Machines Work
First, why are they called support vector machines? The purpose of an SVM classifier
is the same as any other classifier: to find a decision boundary that cleanly separates
the classes. SVMs do this by finding a line in 2D space, a plane in 3D space, or a
hyperplane in higher-dimensional space that allows them to distinguish between dif‐
ferent classes with the greatest certainty possible. In the example in Figure 5-1, there
are an infinite number of lines you can draw to separate the two classes, but the best
line is the one that produces the widest margin (the one shown on the right). The
width of the margin is the distance between the points closest to the boundary in each
class along a line perpendicular to the boundary. These points are called support vec‐
tors and are circled in red.
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Figure 5-1. Maximum-margin classification

Of course, real data rarely lends itself to such clean separation. Overlap between
classes inevitably prevents a perfect fit. To accommodate this, SVMs support a regula‐
rization parameter usually referred to as C that can be adjusted to loosen or tighten
the fit. Lower values of C produce a wider margin with more errors on either side of
the decision boundary, as shown in Figure 5-2. Higher values yield a tighter fit to the
training data with a correspondingly thinner margin and fewer errors. If C is too high,
the model might not generalize well. The optimum value varies by dataset. Data sci‐
entists typically try different values of C to determine which one performs the best
against test data.

All of the aforementioned is true, but none of it explains why SVMs are so good at
what they do. SVMs aren’t the only models that mathematically look for boundaries
separating the classes. What makes SVMs special are kernels, some of which add
dimensions to data to find boundaries that don’t exist at lower dimensions. Consider
Figure 5-3. You can’t draw a line that completely separates the red dots from the pur‐
ple dots. But if you add a third dimension as shown on the right—a z dimension
whose value is based on a point’s distance from the center—then you can slide a plane
between the purples and the reds and achieve 100% separation. In this example, data
that isn’t linearly separable in two dimensions is linearly separable in three dimen‐
sions. The principle at work is Cover’s theorem, which states that data that isn’t line‐
arly separable might be linearly separable if projected into higher-dimensional space
using a nonlinear transform.
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Figure 5-2. Effect of C on margin width

Figure 5-3. Adding dimensions to achieve linear separability
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1 RBF is short for radial basis function.

The kernel transformation used in this example, which projects two-dimensional
data to three dimensions by adding a z to every x and y, works well with this particu‐
lar dataset. But for SVMs to be broadly useful, you need a kernel that isn’t tied to the
shape of a specific dataset.

Kernels
Scikit-Learn has several general-purpose kernels built in, including the linear kernel,
the RBF kernel,1 the polynomial kernel, and the sigmoid kernel. The linear kernel
doesn’t add dimensions. It works well with data that is linearly separable out of the
box, but it doesn’t perform very well with data that isn’t. Applying it to the problem in
Figure 5-3 produces the decision boundary on the left in Figure 5-4. Applying the
RBF kernel to the same data produces the decision boundary on the right. The RBF
kernel projects the x and y values into a higher-dimensional space and finds a hyper‐
plane that cleanly separates the purples from the reds. When projected back to two
dimensions, the decision boundary roughly forms a circle. Similar results can be
achieved on this dataset with a properly tuned polynomial kernel, but generally
speaking, the RBF kernel can find decision boundaries in nonlinear data that the poly‐
nomial kernel cannot. That’s why RBF is the default kernel type in Scikit if you don’t
specify otherwise.

A logical question to ask is, did the RBF kernel add a z to every x and y? The short
answer is no. It effectively projected the data points into a space with an infinite num‐
ber of dimensions. The key word is effectively. Kernels use mathematical shortcuts
called kernel tricks to measure the effect of adding new dimensions without actually
computing values for them. This is where the math for SVMs gets hairy. Kernels are
carefully designed to compute the dot product between two n-dimensional vectors in
m-dimensional space (where m is greater than n and can even be infinite) without
generating all those new dimensions, and ultimately, the dot products are all an SVM
needs to compute a decision boundary. It’s the mathematical equivalent of having
your cake and eating it too, and it’s the secret sauce that makes SVMs awesome. SVMs
can take a long time to train on large datasets, but one of the benefits of an SVM is
that it tends to do better on smaller datasets with fewer rows or samples than other
learning algorithms.
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Figure 5-4. Linear kernel versus RBF kernel

Kernel Tricks
Want to see an example of how kernel tricks are used to compute dot products in
high-dimensional spaces without computing values for the new dimensions? The fol‐
lowing explanation is completely optional. But if you, like me, learn better from con‐
crete examples, then you might find this section helpful.

Let’s start with the two-dimensional circular dataset presented earlier, but this time
let’s project it into three-dimensional space with the following equations:

x′ = x2

y′ = y2

z = x · y · 2

In other words, we’ll compute x and y in three-dimensional space (x′ and y′ ) by
squaring x and y in two-dimensional space, and we’ll add a z that’s the product of the
original x and y and the square root of 2. Projecting the data this way produces a
clean separation between purples and reds, as shown in Figure 5-5.
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Figure 5-5. Projecting 2D points to 3D to separate two classes

The efficacy of SVMs depends on their ability to compute the dot product of two vec‐
tors (or points, which can be treated as vectors) in higher-dimensional space without
projecting them into that space—that is, using only the values in the original space.
Let’s manufacture a couple of points to work with:

a = 3, 7
b = 2, 4

We can compute the dot product of these two points this way:

3 · 2 + 7 · 4 = 34

Of course, the dot product in two dimensions isn’t very helpful. An SVM needs the
dot product of these points in 3D space. Let’s use the preceding equations to project a
and b to 3D, and then compute the dot product of the result:

a = 32, 72, 3 · 7 · 2 = 9, 49, 29.6984
b = 22, 42, 2 · 4 · 2 = 4, 16, 11.3137
9 · 4 + 49 · 16 + 29.6984 · 11.3137 = 1,156
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We now have the dot product of a pair of 2D points in 3D space, but we had to gener‐
ate coordinates in 3D space to get it. Here’s where it gets interesting. The following
function, or kernel trick, produces the same result using only the values in the original
2D space:

K a, b = a, b 2

⟨a, b⟩ is simply the dot product of a and b, so ⟨a, b⟩2 is the square of the dot product of
a and b. We already know how to compute the dot product of a and b. Therefore:

K 3, 7 , 2, 4 = 3 · 2 + 7 · 4 2 = 342 = 1,156

This agrees with the result computed by explicitly projecting the points, but with no
projection required. That’s the kernel trick in a nutshell. It saves time and memory
when going from two dimensions to three. Just imagine the savings when projecting
to an infinite number of dimensions—which, you’ll recall, is exactly what the RBF
kernel does.

The kernel trick used here wasn’t manufactured from thin air. It happens to be the
one used by a degree-2 polynomial kernel. With Scikit, you can fit an SVM classifier
with a degree-2 polynomial kernel to a dataset this way:

model = SVC(kernel='poly', degree=2)
model.fit(x, y)

If you apply this to the preceding circular dataset and plot the decision boundary
(Figure 5-6, right), the result is almost identical to the one generated by the RBF ker‐
nel. Interestingly, a degree-1 polynomial kernel (Figure 5-6, left) produces the same
decision boundary as the linear kernel since a line is just a first-degree polynomial.

Kernel tricks are special. Each one is designed to simulate a specific projection into
higher dimensions. Scikit gives you a handful of kernels to work with, but there are
others that Scikit doesn’t build in. You can extend Scikit with kernels of your own, but
the ones that it provides are sufficient for the vast majority of use cases.
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Figure 5-6. Degree-1 versus degree-2 polynomial kernel

Hyperparameter Tuning
At the outset, it’s difficult to know which of the built-in kernels will produce the most
accurate model. It’s also difficult to know what the right value of C is—that is, the
value that provides the best balance between underfitting and overfitting the training
data and yields the best results when the model is run with test data. For the RBF and
polynomial kernels, there’s a third value called gamma that affects accuracy. And for
polynomial kernels, the degree parameter impacts the model’s ability to learn from
the training data.

The C parameter controls how aggressively the model fits to the training data. The
higher the value, the tighter the fit and the higher the risk of overfitting. Figure 5-7
shows how the RBF kernel fits a model to a set of training data containing three
classes with different values of C. The default is C=1 in Scikit, but you can specify a
different value to adjust the fit. You can see the danger of overfitting in the lower-
right diagram. A point that lies to the extreme right would be classified as a blue, even
though it probably belongs to the yellow or brown class. Underfitting is a problem
too. In the upper-left example, virtually any data point that isn’t a brown will be clas‐
sified as a blue.
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Figure 5-7. Effect of C on the RBF kernel

An SVM that uses the RBF kernel isn’t properly tuned until you have the right value
for gamma too. gamma controls how far the influence of a single data point reaches in
computing decision boundaries. Lower values use more points and produce
smoother decision boundaries; higher values involve fewer points and fit more tightly
to the training data. This is illustrated in Figure 5-8, where increasing gamma while
holding C constant closes the decision boundary more tightly around clusters of
classes. gamma can be any nonzero positive value, but values between 0 and 1 are the
most common. Rather than hardcode a default value for gamma, Scikit picks a default
value algorithmically if you don’t specify one.

In practice, data scientists experiment with different kernels and different parameter
values to find the combination that produces the most accurate model, a process
known as hyperparameter tuning. The usefulness of hyperparameter tuning isn’t
unique to SVMs, but you can almost always make an SVM more accurate by finding
the optimum combination of kernel type, C, and gamma (and for polynomial kernels,
degree).
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Figure 5-8. Effect of gamma on the RBF kernel

To aid in the process of hyperparameter tuning, Scikit provides a family of optimizers
that includes GridSearchCV, which tries all combinations of a specified set of parame‐
ter values with built-in cross-validation to determine which combination produces
the most accurate model. These optimizers prevent you from having to write code to
do a brute-force search using all the unique combinations of parameter values. To be
clear, they do brute-force searches themselves by training the model multiple times,
each time with a different combination of values. At the end, you can retrieve the
most accurate model from the best_estimator_ attribute, the parameter values that
produced the most accurate model from the best_params_ attribute, and the best
score from the best_score_ attribute.

Here’s an example that uses Scikit’s SVC class to implement an SVM classifier. For
starters, you can create an SVM classifier that uses default parameter values and fit it
to a dataset with two lines of code:

model = SVC()
model.fit(x, y)
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This uses the RBF kernel with C=1. You can specify the kernel type and values for C
and gamma this way:

model = SVC(kernel='poly', C=10, gamma=0.1)
model.fit(x, y)

Suppose you wanted to try two different kernels and five values each for C and gamma
to see which combination produces the best results. Rather than write a nested for
loop, you could do this:

model = SVC()
 
grid = {
    'C': [0.01, 0.1, 1, 10, 100],
    'gamma': [0.01, 0.25, 0.5, 0.75, 1.0],
    'kernel': ['rbf', 'poly']
}
 
grid_search = GridSearchCV(estimator=model, param_grid=grid, cv=5, verbose=2)
grid_search.fit(x, y) # Train the model with different parameter combinations

The call to fit won’t return for a while. It trains the model 250 times since there are
50 different combinations of kernel, C, and gamma, and cv=5 says to use fivefold
cross-validation to assess the results. Once training is complete, you retrieve the best
model this way:

best_model = grid_search.best_estimator_

It is not uncommon to run a search regimen such as this one multiple times—the first
time with course parameter values, and each time thereafter with narrower ranges of
values centered on the values obtained from best_params_. More training time up
front is the price you pay for an accurate model. To reiterate, you can almost always
make an SVM more accurate by finding the optimum combination of parameters.
And for better or worse, brute force is the most effective way to identify the best
combination.

One nuance to be aware of regarding the SVC class is that it doesn’t
compute probabilities by default. If you want to call predict_proba
on an SVC instance, you must set probability to True when creat‐
ing the instance:

model = SVC(probability=True)

The model will train more slowly, but you’ll be able to retrieve
probabilities as well as predictions. Furthermore, the Scikit docu‐
mentation warns that “predict_proba may be inconsistent with
predict.” For more information, see Section 1.4.1.2 in the
documentation.
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Data Normalization
In Chapter 2, I noted that some learning algorithms work better with normalized
data. Unnormalized data contains columns of numbers with vastly different ranges—
for example, values from 0 to 1 in one column and from 0 to 1,000,000 in another.
SVM is a parametric learning algorithm. Training with normalized data is important
because SVMs use distances to compute margins. If one dimension spans much larger
distances than another, the internal algorithm used to find the maximum margins
might have trouble converging on a solution.

The importance of training machine learning models with normalized data isn’t limi‐
ted to SVMs. Decision trees and learning algorithms such as random forests and
gradient-boosted decision trees that rely on decision trees are nonparametric, so they
work equally well with normalized and unnormalized data. They are the exception,
however. Most other learning algorithms benefit to one degree or another from nor‐
malized data. That includes k-nearest neighbors, which although nonparametric uses
distance-based calculations internally to discriminate between classes.

Scikit offers several classes for normalizing data. The most commonly used are
MinMaxScaler and StandardScaler. The former normalizes data by proportionally
reducing the values in each column to values from 0.0 to 1.0. Mathematically, it’s sim‐
ple. For each column in a dataset, MinMaxScaler subtracts the minimum value in that
column from all the column’s values, then it divides each value by the difference
between the minimum and maximum values. In the resulting column, the minimum
value is 0.0 and the maximum is 1.0.

To demonstrate, I extracted subsets of two columns with vastly different ranges from
the breast cancer dataset built into Scikit. Each column contains 100 values. Here are
the first 10 rows:

[[1.001e+03 3.001e-01]
 [1.326e+03 8.690e-02]
 [1.203e+03 1.974e-01]
 [3.861e+02 2.414e-01]
 [1.297e+03 1.980e-01]
 [4.771e+02 1.578e-01]
 [1.040e+03 1.127e-01]
 [5.779e+02 9.366e-02]
 [5.198e+02 1.859e-01]
 [4.759e+02 2.273e-01]]

The values in the first column range from 201.9 to 1,878.0; the values in the second
column range from 0.000692 to 0.3754. Figure 5-9 shows how the data looks if plot‐
ted with the x- and y-axis equally scaled. Because the values in the first column are
much larger than the values in the second, the data points appear to form a line. If
you adjust the scale of the axes to match the ranges of values in each column, you get
a completely different picture (Figure 5-10).
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Figure 5-9. Unnormalized data plotted with equally scaled axes

Figure 5-10. Unnormalized data plotted with proportionally scaled axes
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Data that is this highly unnormalized can pose a problem for parametric learning
algorithms. One way to address that is to apply MinMaxScaler to the data:

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()
normalized_data = scaler.fit_transform(data)

Here are the first 10 rows after min-max normalization:

[[0.47676153 0.79904352]
 [0.67066404 0.23006715]
 [0.5972794  0.52496344]
 [0.10989798 0.64238821]
 [0.65336197 0.52656469]
 [0.16419068 0.41928115]
 [0.50002983 0.29892076]
 [0.22433029 0.24810786]
 [0.18966649 0.49427287]
 [0.16347473 0.60475891]]

Figure 5-11 shows a plot of the normalized data with equal axes. The shape of the
data didn’t change. What did change is that both columns now contain values ranging
from 0.0 to 1.0.

Figure 5-11. Data normalized with MinMaxScaler
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SVMs almost always train better with normalized data, but the simple normalization
performed by MinMaxScaler sometimes isn’t enough. SVMs tend to respond better to
data that is normalized to unit variance using a technique called standardization or
Z-score normalization. Unit variance is achieved by doing the following to each col‐
umn in a dataset:

• Computing the mean and standard deviations of all the values in the column
• Subtracting the mean from each value in the column
• Dividing each value in the column by the standard deviation

This is precisely the transform that Scikit’s StandardScaler class performs on a data‐
set. Applying unit variance to a dataset is as simple as this:

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
normalized_data = scaler.fit_transform(data)

The values in the original dataset may vary wildly from one column to the next, but
the transformed dataset will contain columns of numbers anchored around 0 with
ranges that are proportional to each column’s standard deviation. Applying
StandardScaler to the dataset produces the following values in the first 10 rows:

[[ 0.93457642  2.36212718]
 [ 1.95483237 -0.35495682]
 [ 1.56870474  1.05328794]
 [-0.99574783  1.61403698]
 [ 1.86379415  1.06093451]
 [-0.71007617  0.5486138 ]
 [ 1.05700714 -0.02615397]
 [-0.39363986 -0.26880538]
 [-0.57603023  0.90672853]
 [-0.71384326  1.4343424 ]]

And it produces the distribution shown in Figure 5-12. Once more, the shape of the
data didn’t change, but the values that define that shape changed substantially.

SVMs typically perform best when trained with standardized data, even if all the col‐
umns have similar ranges. (The same is true of neural networks, by the way.) The
classic case in which columns have similar ranges but benefit from normalization
anyway is image data, where each column holds pixel values from 0 to 255. There are
exceptions, but it is usually a mistake to throw a bunch of data at an SVM without
understanding the distribution of the data—specifically, whether it has unit variance.
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Figure 5-12. Data normalized with StandardScaler

Pipelining
If you normalize or standardize the values used to train a machine learning model,
you must apply the same transform to values input to the model’s predict method.
In other words, if you train a model this way:

model = SVC()
scaler = StandardScaler()
x = scaler.fit_transform(x)
model.fit(x, y)

you make predictions with it this way:

input = [0, 1, 2, 3, 4]
model.predict([scaler.transform([input])

Otherwise, you’ll get nonsensical predictions.

To simplify your code and make it harder to forget to transform training data and
prediction data the same way, Scikit offers the make_pipeline function. make_pipe
line lets you combine predictive models—what Scikit calls estimators, or instances of
classes such as SVC—with transforms applied to data input to those models. Here’s
how you use make_pipeline to ensure that any data input to the model is trans‐
formed with StandardScaler:
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# Train the model
pipe = make_pipeline(StandardScaler(), SVC())
pipe.fit(x, y)
 
# Make a prediction with the model
input = [0, 1, 2, 3, 4]
pipe.predict([input])

Now data used to train the model has StandardScaler applied to it, and data input to
make predictions is transformed the same way.

What if you wanted to use GridSearchCV to find the optimum set of parameters for a
pipeline that combines a data transform and estimator? It’s not hard, but there’s a
trick you need to know about. It involves using class names prefaced with double
underscores in the param_grid dictionary passed to GridSearchCV. Here’s an
example:

pipe = make_pipeline(StandardScaler(), SVC())
 
grid = {
    'svc__C': [0.01, 0.1, 1, 10, 100],
    'svc__gamma': [0.01, 0.25, 0.5, 0.75, 1.0],
    'svc__kernel': ['rbf', 'poly']
}
 
grid_search = GridSearchCV(estimator=pipe, param_grid=grid, cv=5, verbose=2)
grid_search.fit(x, y) # Train the model with different parameter combinations

This example trains the model 250 times to find the best combination of kernel, C,
and gamma for the SVC instance in the pipeline. Note the “svc__” nomenclature, which
maps to the SVC instance passed to the make_pipeline function.

Using SVMs for Facial Recognition
Modern facial recognition is often accomplished with neural networks, but support
vector machines can do a credible job too. Let’s demonstrate by building a model that
recognizes faces. The dataset we’ll use is the Labeled Faces in the Wild (LFW) dataset,
which contains more than 13,000 facial images of famous people collected from
around the web and is built into Scikit as a sample dataset. Of the more than 5,000
people represented in the dataset, 1,680 have two or more facial images, while only
five have 100 or more. We’ll set the minimum number of faces per person to 100,
which means that five sets of faces corresponding to five famous people will be
imported. Each facial image is labeled with the name of the person the face
belongs to.
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Start by creating a new Jupyter notebook and using the following statements to load
the dataset and crop the facial images:

import numpy as np
import pandas as pd
from sklearn.datasets import fetch_lfw_people
 
faces = fetch_lfw_people(min_faces_per_person=100, slice_=None)
faces.images = faces.images[:, 35:97, 39:86]
faces.data = faces.images.reshape(faces.images.shape[0], faces.images.shape[1] *
                                  faces.images.shape[2])
print(faces.target_names)
print(faces.images.shape)

In total, 1,140 facial images were loaded. Each image measures 47 × 62 pixels for a
total of 2,914 pixels per image. That means the dataset contains 2,914 features. Use
the following code to show the first 24 images in the dataset and the people to whom
the faces belong:

%matplotlib inline
import matplotlib.pyplot as plt
 
fig, ax = plt.subplots(3, 8, figsize=(18, 10))
for i, axi in enumerate(ax.flat):
    axi.imshow(faces.images[i], cmap='gist_gray')
    axi.set(xticks=[], yticks=[], xlabel=faces.target_names[faces.target[i]])

Here is the output:
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Check the balance in the dataset by generating a histogram showing how many facial
images were imported for each person:

import seaborn as sns
sns.set()

from collections import Counter
counts = Counter(faces.target)
names = {}
 
for key in counts.keys():
    names[faces.target_names[key]] = counts[key]
 
df = pd.DataFrame.from_dict(names, orient='index')
df.plot(kind='bar')

The output reveals that there are far more images of George W. Bush than of anyone
else in the dataset:

Classification models are best trained with balanced datasets. Use the following code
to reduce the dataset to 100 images of each person:

mask = np.zeros(faces.target.shape, dtype=bool)
 
for target in np.unique(faces.target):
    mask[np.where(faces.target == target)[0][:100]] = 1
     
x = faces.data[mask]
y = faces.target[mask]
x.shape
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Note that x contains 500 facial images and y contains the labels that go with them: 0
for Colin Powell, 1 for Donald Rumsfeld, and so on. Now let’s see if an SVM can
make sense of the data. We’ll train three different models: one that uses a linear ker‐
nel, one that uses a polynomial kernel, and one that uses an RBF kernel. In each case,
we’ll use GridSearchCV to optimize hyperparameters. Start with a linear model and
four different values of C:

from sklearn.svm import SVC
from sklearn.model_selection import GridSearchCV
 
svc = SVC(kernel='linear')
 
grid = {
    'C': [0.1, 1, 10, 100]
}
 
grid_search = GridSearchCV(estimator=svc, param_grid=grid, cv=5, verbose=2)
grid_search.fit(x, y) # Train the model with different parameters
grid_search.best_score_

This model achieves a cross-validated accuracy of 84.2%. It’s possible that accuracy
can be improved by standardizing the image data. Run the same grid search again,
but this time use StandardScaler to apply unit variance to all the pixel values:

from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
 
scaler = StandardScaler()
svc = SVC(kernel='linear')
pipe = make_pipeline(scaler, svc)
 
grid = {
    'svc__C': [0.1, 1, 10, 100]
}
 
grid_search = GridSearchCV(estimator=pipe, param_grid=grid, cv=5, verbose=2)
grid_search.fit(x, y)
grid_search.best_score_

Standardizing the data produced an incremental improvement in accuracy. What
value of C produced that accuracy?

grid_search.best_params_
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Is it possible that a polynomial kernel could outperform a linear kernel? There’s an
easy way to find out. Note the introduction of the gamma and degree parameters to
the parameter grid. These parameters, along with C, can greatly influence a polyno‐
mial kernel’s ability to fit to the training data:

scaler = StandardScaler()
svc = SVC(kernel='poly')
pipe = make_pipeline(scaler, svc)
 
grid = {
    'svc__C': [0.1, 1, 10, 100],
    'svc__gamma': [0.01, 0.25, 0.5, 0.75, 1],
    'svc__degree': [1, 2, 3, 4, 5]
}
 
grid_search = GridSearchCV(estimator=pipe, param_grid=grid, cv=5, verbose=2)
grid_search.fit(x, y) # Train the model with different parameter combinations
grid_search.best_score_

The polynomial kernel achieved the same accuracy as the linear kernel. What param‐
eter values led to this result?

grid_search.best_params_

The best_params_ attribute reveals that the optimum value of degree was 1, which
means the polynomial kernel acted like a linear kernel. It’s not surprising, then, that it
achieved the same accuracy. Could an RBF kernel do better?

scaler = StandardScaler()
svc = SVC(kernel='rbf')
pipe = make_pipeline(scaler, svc)
 
grid = {
    'svc__C': [0.1, 1, 10, 100],
    'svc__gamma': [0.01, 0.25, 0.5, 0.75, 1.0]
}
 
grid_search = GridSearchCV(estimator=pipe, param_grid=grid, cv=5, verbose=2)
grid_search.fit(x, y)
grid_search.best_score_

The RBF kernel didn’t perform as well as the linear and polynomial kernels. There’s a
lesson here. The RBF kernel often fits to nonlinear data better than other kernels, but
it doesn’t always fit better. That’s why the best strategy with an SVM is to try different
kernels with different parameter values. The best combination will vary from dataset
to dataset. For the LFW dataset, it seems that a linear kernel is best. That’s convenient,
because the linear kernel is the fastest of all the kernels Scikit provides.
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In addition to the SVC class, Scikit-Learn includes SVM classifiers
named LinearSVC and NuSVC. The latter supports the same assort‐
ment of kernels as the SVC class, but it replaces C with a regulariza‐
tion parameter called nu that controls tightness of fit differently.
NuSVC doesn’t scale as well as SVC to large datasets, and in my expe‐
rience it is rarely used. LinearSVC implements the linear kernel
only, but it uses a different optimization algorithm that trains
faster. If training is slow with SVC and you determine that a linear
kernel yields the best model, consider swapping SVC for LinearSVC.
Faster training times make a difference even for modestly sized
datasets if you’re using GridSearchCV to train a model hundreds of
times. For a great summary of the functional differences between
the two classes, see the article “SVM with Scikit-Learn: What You
Should Know” by Angela Shi.

Confusion matrices are a great way to visualize a model’s accuracy. Let’s split the data‐
set, train an optimized linear model with 80% of the images, test it with the remain‐
ing 20%, and show the results in a confusion matrix.

The first step is to split the dataset. Note the stratify=y parameter, which ensures
that the training dataset and the test dataset have the same proportion of samples of
each class as the original dataset. In this example, the training dataset will contain 20
samples of each of the five people:

from sklearn.model_selection import train_test_split
 
x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.8,
                                                    stratify=y, random_state=0)

Now train a linear SVM with the optimum C value revealed by the grid search:

scaler = StandardScaler()
svc = SVC(kernel='linear', C=0.1)
pipe = make_pipeline(scaler, svc)
pipe.fit(x_train, y_train)

Cross-validate the model to confirm its accuracy:

from sklearn.model_selection import cross_val_score
 
cross_val_score(pipe, x, y, cv=5).mean()

Use a confusion matrix to see how the model performs against the test data:

from sklearn.metrics import ConfusionMatrixDisplay as cmd

fig, ax = plt.subplots(figsize=(6, 6))
ax.grid(False)
cmd.from_estimator(pipe, x_test, y_test, display_labels=faces.target_names,
                   cmap='Blues', xticks_rotation='vertical', ax=ax)
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Here is the output:

The model correctly identified Colin Powell 16 times out of 20, Donald Rumsfeld 19
times out of 20, and so on. That’s not bad. And it’s a great example of support vector
machines at work.

Summary
Support vector machines, or SVMs, frequently fit to datasets better than other learn‐
ing algorithms. SVMs are maximum-margin classifiers that use kernel tricks to simu‐
late adding dimensions to data. The theory is that data that isn’t linearly separable in
m dimensions might be separable in n dimensions if n is higher than m. SVMs are
most often used for classification, but they can perform regression too. As an experi‐
ment, try replacing GradientBoostingRegressor in the taxi-fare example in Chap‐
ter 2 with SVR and using GridSearchCV to optimize the model’s hyperparameters.
Which model produces the highest cross-validated coefficient of determination?

SVMs usually train better with data that is normalized to unit variance. That’s true
even if the values in all the columns have similar ranges, but it’s especially true if they
don’t have similar ranges. Scikit’s StandardScaler class applies unit variance to data.
Unit variance is achieved by dividing the values in a column by the mean of all the
values in the column and dividing by the standard deviation. Scikit’s make_pipeline
function enables you to combine transformers such as StandardScaler and classifi‐
ers such as SVC into one logical unit to ensure that data passed to fit, predict, and
predict_proba undergoes the same transformations.
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SVMs require tuning in order to achieve optimum accuracy. Tuning means finding
the right values for parameters such as C, gamma, and kernel, and it entails trying dif‐
ferent parameter combinations and assessing the results. Scikit provides classes such
as GridSearchCV to help, but they increase training time by training the model once
for each unique combination of parameter values.

SVMs can seem magical in their ability to fit mathematical models to complex data‐
sets. But in my view, that magic takes a back seat to the numerical gymnastics per‐
formed by principal component analysis (PCA), which solves a variety of problems
routinely encountered in machine learning. I often introduce PCA by telling audien‐
ces that it’s the best-kept secret in machine learning. After Chapter 6, it will be a
secret no longer.
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CHAPTER 6

Principal Component Analysis

Principal component analysis, or PCA, is one of the minor miracles of machine
learning. It’s a dimensionality reduction technique that reduces the number of dimen‐
sions in a dataset without sacrificing a commensurate amount of information. While
that might seem underwhelming on the face of it, it has profound implications for
engineers and software developers working to build predictive models from their
data.

What if I told you that you could take a dataset with 1,000 columns, use PCA to
reduce it to 100 columns, and retain 90% or more of the information in the original
dataset? That’s relatively common, believe it or not. And it lends itself to a variety of
practical uses, including:

• Reducing high-dimensional data to two or three dimensions so that it can be
plotted and explored

• Reducing the number of dimensions in a dataset and then restoring the original
number of dimensions, which finds application in anomaly detection and noise
filtering

• Anonymizing datasets so that they can be shared with others without revealing
the nature or meaning of the data

And that’s not all. A side effect of applying PCA to a dataset is that less important
features—columns of data that have less relevance to the outcome of a predictive
model—are removed, while dependencies between columns is eliminated. And in
datasets with a low ratio of samples (rows) to features (columns), PCA can be used to
increase that ratio. As a rule of thumb, you typically want a dataset used for machine
learning to have at least five times as many rows as it has columns. If you can’t add
rows, an alternative is to use PCA to shave columns.
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Once you learn about PCA, you’ll wonder how you lived without it. Let’s take a few
moments to understand what it is and how it works. Then we’ll look at some exam‐
ples demonstrating why it’s such an indispensable tool.

Understanding Principal Component Analysis
One way to wrap your head around PCA is to see how it reduces a two-dimensional
dataset to one dimension. Figure 6-1 depicts a 2D dataset comprising a somewhat
random collection of x and y values. If you reduced this dataset to a single dimension
by simply dropping the x column or the y column, you’d be left with a horizontal or
vertical line that bears little resemblance to the original dataset.

Figure 6-1. Two-dimensional dataset

Figure 6-2 adds arrows representing the dataset’s two principal components. Essen‐
tially, the coordinate system has been transformed so that one axis (the longer of the
two arrows) captures most of the variance in the dataset. This is the dataset’s primary
principal component. The other axis contains a narrower range of values and repre‐
sents the secondary principal component. The number of principal components
equals the number of dimensions in a dataset, so in this example, there are two prin‐
cipal components.
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Figure 6-2. Arrows depicting the principal components of a two-dimensional dataset

To reduce a two-dimensional dataset to one dimension, PCA finds the two principal
components and eliminates the one with less variance. This effectively projects the
data points onto the primary principal component axis, as shown in Figure 6-3. The
red data points don’t retain all of the information in the original dataset, but they con‐
tain most of it. In this example, the PCAed dataset retains more than 95% of the
information in the original. PCA reduced the number of dimensions by 50%, but it
sacrificed less than 5% of the meaningful information in the dataset. That’s the gist of
PCA: reducing the number of dimensions without incurring a commensurate loss of
information.

Under the hood, PCA works its magic by building a covariance matrix that quantifies
the variance of each dimension with respect to the others, and from the matrix com‐
puting eigenvectors and eigenvalues that identify the dataset’s principal components.
If you’d like to dig deeper, I suggest reading “A Step-by-Step Explanation of Principal
Component Analysis (PCA)” by Zakaria Jaadi. The good news is that you don’t have
to understand the math to make PCA work, because Scikit-Learn’s PCA class does the
math for you. The following statements reduce the dataset x to five dimensions,
regardless of the number of dimensions it originally contains:

pca = PCA(n_components=5)
x = pca.fit_transform(x)
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Figure 6-3. Two-dimensional dataset (blue) reduced to one dimension (red) with PCA

You can also invert a PCA transform to restore the original number of dimensions:

x = pca.inverse_transform(x)

The inverse_transform method restores the dataset to its original number of dimen‐
sions, but it doesn’t restore the original dataset. The information that was discarded
when the PCA transform was applied will be missing from the restored dataset.

You can visualize the loss of information when a PCA transform is applied and then
inverted using the Labeled Faces in the Wild (LFW) dataset introduced in Chapter 5.
To demonstrate, fire up a Jupyter notebook and run the following code:

%matplotlib inline
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_lfw_people

faces = fetch_lfw_people(min_faces_per_person=100, slice_=None)
faces.images = faces.images[:, 35:97, 39:86]
faces.data = faces.images.reshape(faces.images.shape[0], faces.images.shape[1] *
                                  faces.images.shape[2])
fig, ax = plt.subplots(3, 8, figsize=(18, 10))

for i, axi in enumerate(ax.flat):
    axi.imshow(faces.images[i], cmap='gist_gray')
    axi.set(xticks=[], yticks=[], xlabel=faces.target_names[faces.target[i]])
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The output shows the first 24 images in the dataset:

Each image measures 47 × 62 pixels, for a total of 2,914 pixels per image. That means
the dataset has 2,914 dimensions. Now use the following code to reduce the number
of dimensions to 150 (roughly 5% of the original number), restore the original 2,914
dimensions, and plot the restored images:

from sklearn.decomposition import PCA

pca = PCA(n_components=150, random_state=0)
pca_faces = pca.fit_transform(faces.data)
unpca_faces = pca.inverse_transform(pca_faces).reshape(1140, 62, 47)

fig, ax = plt.subplots(3, 8, figsize=(18, 10))

for i, axi in enumerate(ax.flat):
    axi.imshow(unpca_faces[i], cmap='gist_gray')
    axi.set(xticks=[], yticks=[], xlabel=faces.target_names[faces.target[i]])
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Even though you removed almost 95% of the dimensions in the dataset, little mean‐
ingful information was discarded. The restored images are slightly blurrier than the
originals, but the faces are still recognizable:

To reiterate, you reduced the number of dimensions from 2,914 to 150, but because
PCA found 2,914 principal components and removed the ones that are least impor‐
tant (the ones with the least variance), you retained the bulk of the information in the
original dataset. Which begs a question: precisely how much of the original informa‐
tion was retained?

After a PCA object is fit to a dataset, you can find out how much variance is encoded
in each principal component from the explained_variance_ratio_ attribute. It’s an
array with one element for each principal component in the transformed dataset.
Here’s how it looks after the LFW dataset is reduced to 150 dimensions:

array([0.20098166, 0.1436709 , 0.0694095 , 0.0554688 , 0.04888214,
       0.02838693, 0.02344352, 0.02056908, 0.01904505, 0.01790946,
       0.01446775, 0.0141357 , 0.01173403, 0.01033751, 0.00927581,
       0.00900304, 0.00895557, 0.00830898, 0.00770731, 0.00712525,
       0.0064077 , 0.00619189, 0.00582111, 0.00557892, 0.00535471,
       0.00494034, 0.00482188, 0.00446195, 0.00443723, 0.00404091,
       0.00382839, 0.00370596, 0.00363874, 0.00352478, 0.00335927,
       0.00328615, 0.00315452, 0.00309412, 0.00290268, 0.00284517,
       0.00278296, 0.00267253, 0.00258336, 0.00249151, 0.00243766,
       0.00239778, 0.00237984, 0.00231506, 0.00223432, 0.00220306,
       0.00208555, 0.00207567, 0.00204288, 0.00196099, 0.00192303,
       0.00189352, 0.0018381 , 0.00180081, 0.00178862, 0.00174389,
       0.00168321, 0.00165759, 0.00162565, 0.00159976, 0.00153559,
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       0.00152782, 0.00150262, 0.0014841 , 0.00147757, 0.00144323,
       0.00140246, 0.00138122, 0.00136053, 0.00132581, 0.00130121,
       0.00128062, 0.00126851, 0.00123904, 0.00123427, 0.00120644,
       0.00118998, 0.00117278, 0.00116551, 0.00115161, 0.00111428,
       0.00108951, 0.00107443, 0.00105793, 0.00104903, 0.00104119,
       0.00099986, 0.00098006, 0.00097077, 0.00095622, 0.00093874,
       0.00092516, 0.00091716, 0.00091061, 0.00090051, 0.00087887,
       0.00086778, 0.0008543 , 0.00084502, 0.00082587, 0.00081203,
       0.00080346, 0.00079375, 0.00077893, 0.00077295, 0.00077045,
       0.00075456, 0.00073704, 0.00073038, 0.00072013, 0.0007093 ,
       0.00070115, 0.00069389, 0.00067964, 0.00067382, 0.00065503,
       0.0006506 , 0.00063969, 0.00063328, 0.00062684, 0.00062352,
       0.0006103 , 0.00060463, 0.00059769, 0.00058182, 0.00057901,
       0.00056648, 0.00056551, 0.00054979, 0.00054543, 0.00053753,
       0.0005361 , 0.00053067, 0.00051841, 0.00051382, 0.00050711,
       0.00049933, 0.0004919 , 0.00048888, 0.00047992, 0.00047919,
       0.00046916, 0.00046408, 0.00046142, 0.00045397, 0.0004432 ],
      dtype=float32)

This reveals that 20% of the variance in the dataset is explained by the primary prin‐
cipal component, 14% is explained by the secondary principal component, and so on.
Observe that the numbers decrease as the index increases. By definition, each princi‐
pal component in a PCAed dataset contains more information than the principal
component after it. In this example, the 2,764 principal components that were dis‐
carded contained so little information that their loss was barely noticeable when the
transform was inverted. In fact, the sum of the 150 numbers in the preceding example
is 0.938. This means reducing the dataset from 2,914 dimensions to 150 retained
93.8% of the information in the original dataset. In other words, you reduced the
number of dimensions by almost 95%, and yet you retained almost 94% of the infor‐
mation in the dataset. If that’s not awesome, I don’t know what is.

A logical question to ask is, what is the “right” number of components? In other
words, what number of components strikes the best balance between reducing the
number of dimensions in the dataset and retaining most of the information? One way
to find that number is with a scree plot, which charts the proportion of explained var‐
iance for each dimension. The following code produces a scree plot for the PCA
transform used on the facial images:

import seaborn as sns
sns.set()

plt.plot(pca.explained_variance_ratio_)
plt.xlabel('Principal Component')
plt.ylabel('Explained Variance')
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Here is the output:

Another way to look at it is to plot the cumulative sum of the variances as a function
of component count:

import numpy as np

plt.plot(np.cumsum(pca.explained_variance_ratio_))
plt.xlabel('Number of Components')
plt.ylabel('Cumulative Explained Variance');

Here is the output:
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Either way you look at it, the bulk of the information is contained in the first 50 to
100 dimensions. Based on these plots, if you reduced the number of dimensions to 50
instead of 150, would you expect the restored facial images to look substantially dif‐
ferent? If you’re not sure, try it and see.

Filtering Noise
One very practical use for PCA is to filter noise from data. Noise is data that is ran‐
dom, corrupt, or otherwise meaningless, and it’s particularly likely to occur when the
data comes from physical devices such as pressure sensors or accelerometers. The
basic approach to using PCA for noise reduction is to PCA-transform the data and
then invert the transform, reducing the dataset from m dimensions to n and then
restoring it to m. Because PCA discards the least important information when reduc‐
ing dimensions and noise tends to have little or no informational value, this ideally
eliminates much of the noise while retaining most of the meaningful data.

You can test this supposition with the LFW dataset. Use the following statements to
add noise to the facial images using a random-number generator and plot the first 24
images:

%matplotlib inline
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_lfw_people
import numpy as np

faces = fetch_lfw_people(min_faces_per_person=100, slice_=None)
faces.images = faces.images[:, 35:97, 39:86]
faces.data = faces.images.reshape(faces.images.shape[0], faces.images.shape[1] *
                                  faces.images.shape[2])
 
np.random.seed(0)
noisy_faces = np.random.normal(faces.data, 0.0765)

fig, ax = plt.subplots(3, 8, figsize=(18, 10))

for i, axi in enumerate(ax.flat):
    axi.imshow(noisy_faces[i].reshape(62, 47), cmap='gist_gray')
    axi.set(xticks=[], yticks=[], xlabel=faces.target_names[faces.target[i]])
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The resulting facial images resemble a staticky 1960s TV screen:

Now use PCA to reduce the number of dimensions. Rather than specify the number
of dimensions (components), we’ll specify that we want to reduce the amount of
information in the dataset to 80%. We’ll let Scikit decide how many dimensions will
remain, and then show the count:

from sklearn.decomposition import PCA

pca = PCA(0.8, random_state=0)
pca_faces = pca.fit_transform(noisy_faces)
pca.n_components_

PCA reduced the number of dimensions from 2,914 to 179, but the remaining
dimensions contain 80% of the information in the original 2,914. Now reconstruct
the facial images from the PCAed faces and show the results:

unpca_faces = pca.inverse_transform(pca_faces)

fig, ax = plt.subplots(3, 8, figsize=(18, 10))

for i, axi in enumerate(ax.flat):
    axi.imshow(unpca_faces[i].reshape(62, 47), cmap='gist_gray')
    axi.set(xticks=[], yticks=[], xlabel=faces.target_names[faces.target[i]])

Here is the output:

134 | Chapter 6: Principal Component Analysis



The reconstructed dataset isn’t quite as clean as the original, but it’s clean enough that
you can make out the faces in the photos.

Anonymizing Data
Chapter 3 demonstrated how to use various learning algorithms to build a binary
classification model that detects credit card fraud. The dataset used in the example
contained real credit card data that had been anonymized to protect the card holders
(and the credit card company’s intellectual property). The first 10 rows of that dataset
are pictured in Figure 6-4.

Figure 6-4. Anonymized fraud detection dataset
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Another practical use for PCA is to anonymize data in this manner. It’s generally a
two-step process:

1. Use PCA to “reduce” the dataset from m dimensions to m, where m is the origi‐
nal number of dimensions (as well as the number of dimensions after
“reduction”).

2. Normalize the data so that it has unit variance.

The second step isn’t required, but it does make the ranges of values more uniform.
Data anonymized this way can still be used to train a machine learning model, but its
original meaning can’t be inferred.

Try it with a dataset of your own. First, use the following code to load Scikit’s breast
cancer dataset and display the first five rows:

import pandas as pd
from sklearn.datasets import load_breast_cancer

data = load_breast_cancer()
df = pd.DataFrame(data=data.data, columns=data.feature_names)
pd.set_option('display.max_columns', 6)
df.head()

The output is as follows:

The dataset contains 30 columns, not counting the label column. Now use the follow‐
ing statements to find the 30 principal components and apply StandardScaler to the
transformed data:

from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler

pca = PCA(n_components=30, random_state=0)
pca_data = pca.fit_transform(df)

scaler = StandardScaler()
anon_df = pd.DataFrame(scaler.fit_transform(pca_data))
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pd.set_option('display.max_columns', 8)
anon_df.head()

The result is as follows:

The dataset is unrecognizable after the PCA transform. Without the transform, it’s
impossible to work backward and reconstruct the original data. Yet the sum of the
explained_variance_ratio_ values is 1.0, which means no information was lost.
You can prove it this way:

import numpy as np

np.sum(pca.explained_variance_ratio_)

The PCAed dataset is just as useful for machine learning as the original. Furthermore,
if you want to share the dataset with others so that they can train models of their own,
there is no risk of divulging sensitive or proprietary information.

Visualizing High-Dimensional Data
Yet another use for PCA is to reduce a dataset to two or three dimensions so that it
can be plotted with libraries such as Matplotlib. You can’t plot a dataset that has 1,000
columns. You can plot a dataset that has two or three columns. The fact that PCA can
reduce high-dimensional data to two or three dimensions while retaining much of
the original information makes it a great tool for exploring data and visualizing rela‐
tionships between classes.

Suppose you’re building a classification model and want to assess up front whether
there is sufficient separation between classes to support such a model. Take the Opti‐
cal Recognition of Handwritten Digits dataset built into Scikit, for example. Each
digit in the dataset is represented by an 8 × 8 array of pixel values, meaning the data‐
set has 64 dimensions. If you could plot a 64-dimensional diagram, you might be able
to inspect the dataset and look for separation between classes. But 64 dimensions is
61 too many for most humans.
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Enter PCA. The following code loads the dataset, uses PCA to reduce it to two
dimensions, and plots the result, with different colors representing different classes
(digits):

from sklearn.decomposition import PCA
from sklearn.datasets import load_digits
import matplotlib.pyplot as plt
%matplotlib inline

digits = load_digits()
pca = PCA(n_components=2, random_state=0)
pca_digits = pca.fit_transform(digits.data)

plt.figure(figsize=(12, 8))
plt.scatter(pca_digits[:, 0], pca_digits[:, 1], c=digits.target,
            cmap=plt.cm.get_cmap('Paired', 10))
plt.colorbar(ticks=range(10))
plt.clim(-0.5, 9.5)

The resulting plot provides an encouraging sign that you might be able to train a clas‐
sifier with the data. While there is clearly some overlap between classes, the different
classes form rather distinct clusters. There is significant overlap between red (the
digit 4) and light purple (the digit 6), indicating that a model might have some diffi‐
culty distinguishing between 4s and 6s. However, 0s and 1s lie at the top and bottom,
while 3s and 4s fall on the far left and far right. A model would presumably be profi‐
cient at telling these digits apart:

You can better visualize relationships between classes with a 3D plot. The following
code uses PCA to reduce the dataset to three dimensions and Mplot3D to produce an
interactive plot. Note that if you run this code in Jupyter Lab, you’ll probably have to
change the first line to %matplotlib widget:
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%matplotlib notebook
from mpl_toolkits.mplot3d import Axes3D

digits = load_digits()
pca = PCA(n_components=3, random_state=0)
pca_digits = pca.fit_transform(digits.data)

ax = plt.figure(figsize=(12, 8)).add_subplot(111, projection='3d')
ax.scatter(xs = pca_digits[:, 0], ys = pca_digits[:, 1], zs = pca_digits[:, 2],
           c=digits.target, cmap=plt.cm.get_cmap('Paired', 10))

You can rotate the resulting plot in 3D and look at it from different angles. Here we
can see that there is more separation between 4s and 6s than was evident in two
dimensions:

PCA isn’t the only way to reduce a dataset to two or three dimensions for plotting.
You can also use Scikit’s Isomap class or its TSNE class. TSNE implements t-distributed
stochastic neighbor embedding, or t-SNE for short. t-SNE is a dimensionality reduc‐
tion algorithm that is used almost exclusively for visualizing high-dimensional data.
Whereas PCA uses a linear function to transform data, t-SNE uses a nonlinear trans‐
form that tends to heighten the separation between classes by keeping similar data
points close together in low-dimensional space. (PCA, by contrast, focuses on keep‐
ing dissimilar points far apart.) Here’s an example that plots the Digits dataset in two
dimensions after reducing it with t-SNE:
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%matplotlib inline
from sklearn.manifold import TSNE

digits = load_digits()
tsne = TSNE(n_components=2, init='pca', learning_rate='auto',
            random_state=0)
tsne_digits = tsne.fit_transform(digits.data)

plt.figure(figsize=(12, 8))
plt.scatter(tsne_digits[:, 0], tsne_digits[:, 1], c=digits.target,
            cmap=plt.cm.get_cmap('Paired', 10))
plt.colorbar(ticks=range(10))
plt.clim(-0.5, 9.5)

And here is the output:

t-SNE does a better job of separating groups of digits into clusters, indicating there
are patterns in the data that machine learning can exploit. The chief drawback is that
t-SNE is compute intensive, which means it can take a prohibitively long time to run
on large datasets. One way to mitigate that is to run t-SNE on a subset of rows rather
than the entire dataset. Another strategy is to use PCA to reduce the number of
dimensions, and then subject the PCAed dataset to t-SNE.

Anomaly Detection
Anomaly detection is a branch of machine learning that seeks to identify anomalies in
datasets or data streams. Airbus uses it to predict failures in jet engines and detect
anomalies in telemetry data beamed down from the International Space Station.
Credit card companies use it to detect credit card fraud. The goal of anomaly detec‐
tion is to identify outliers in data—samples that aren’t “normal” when compared to
others. In the case of credit card fraud, the assumption is that if transactions are
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subjected to an anomaly detection algorithm, fraudulent transactions will show up as
anomalous, while legitimate transactions will not.

There are many ways to perform anomaly detection. They go by names such as isola‐
tion forests, one-class SVMs, and local outlier factor (LOF). Most rely on unsuper‐
vised learning methods and therefore do not require labeled data. They simply look at
a collection of samples and determine which ones are anomalous. Unsupervised
anomaly detection is particularly interesting because it doesn’t require a priori knowl‐
edge of what constitutes an anomaly, nor does it require an unlabeled dataset to be
meticulously labeled.

One of the most popular forms of anomaly detection relies on principal component
analysis. You already know that PCA can be used to reduce data from m dimensions
to n, and that a PCA transform can be inverted to restore the original m dimensions.
You also know that inverting the transform doesn’t recover the data that was lost
when the transform was applied. The gist of PCA-based anomaly detection is that an
anomalous sample should exhibit more loss or reconstruction error (the difference
between the original data and the same data after a PCA transform is applied and
inverted) than a normal one. In other words, the loss incurred when an anomalous
sample is PCAed and un-PCAed should be higher than the loss incurred when the
same operation is applied to a normal sample. Let’s see if this assumption holds up in
the real world.

Using PCA to Detect Credit Card Fraud
Supervised learning isn’t the only option for detecting credit card fraud. Here’s an
alternative approach that uses PCA-based anomaly detection to identify fraudulent
transactions. Begin by loading the dataset, separating the samples by class into one
dataset representing legitimate transactions and another representing fraudulent
transactions, and dropping the Time and Class columns. If you didn’t download the
dataset in Chapter 3, you can get it now from the ZIP file.

import pandas as pd

df = pd.read_csv('Data/creditcard.csv')
df.head()

# Separate the samples by class
legit = df[df['Class'] == 0]
fraud = df[df['Class'] == 1]

# Drop the "Time" and "Class" columns
legit = legit.drop(['Time', 'Class'], axis=1)
fraud = fraud.drop(['Time', 'Class'], axis=1)
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Use PCA to reduce the two datasets from 29 to 26 dimensions, and then invert the
transform to restore each dataset to 29 dimensions. The transform is fitted to legiti‐
mate transactions only because we need a baseline value for reconstruction error that
allows us to discriminate between legitimate and fraudulent transactions. It is applied,
however, to both datasets:

from sklearn.decomposition import PCA

pca = PCA(n_components=26, random_state=0)
legit_pca = pd.DataFrame(pca.fit_transform(legit), index=legit.index)
fraud_pca = pd.DataFrame(pca.transform(fraud), index=fraud.index)

legit_restored = pd.DataFrame(pca.inverse_transform(legit_pca),
                              index=legit_pca.index)

fraud_restored = pd.DataFrame(pca.inverse_transform(fraud_pca),
                              index=fraud_pca.index)

Some information was lost in the transition. Hopefully, the fraudulent transactions
incurred more loss than the legitimate ones, and we can use that to differentiate
between them. The next step is to compute the loss for each row in the two datasets
by summing the squares of the differences between the values in the original rows
and the restored rows:

import numpy as np

def get_anomaly_scores(df_original, df_restored):
    loss = np.sum((np.array(df_original) - np.array(df_restored)) ** 2, axis=1)
    loss = pd.Series(data=loss, index=df_original.index)
    return loss

legit_scores = get_anomaly_scores(legit, legit_restored)
fraud_scores = get_anomaly_scores(fraud, fraud_restored)

Now plot the losses incurred when the legitimate transactions were transformed and
restored:

%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()

legit_scores.plot(figsize = (12, 6))
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Here is the result:

Next, plot the losses for the fraudulent transactions:

fraud_scores.plot(figsize = (12, 6))

Here is the result:
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The plots reveal that most of the rows in the dataset representing legitimate transac‐
tions incurred a loss of less than 200, while many of the rows in the dataset represent‐
ing fraudulent transactions incurred a loss greater than 200. Separate the rows on this
basis—classifying transactions with a loss of less than 200 as legitimate and transac‐
tions with a higher loss as fraudulent—and use a confusion matrix to visualize the
results:

threshold = 200

true_neg = legit_scores[legit_scores < threshold].count()
false_pos = legit_scores[legit_scores >= threshold].count()
true_pos = fraud_scores[fraud_scores >= threshold].count()
false_neg = fraud_scores[fraud_scores < threshold].count()

labels = ['Legitimate', 'Fraudulent']
mat = [[true_neg, false_pos], [false_neg, true_pos]]

sns.heatmap(mat, square=True, annot=True, fmt='d', cbar=False, cmap='Blues',
            xticklabels=labels, yticklabels=labels)

plt.xlabel('Predicted label')
plt.ylabel('True label')

Here is the result:

The results aren’t quite as good as they were with the random forest, but the model
still caught about 50% of the fraudulent transactions while mislabeling just 76 out of
284,315 legitimate transactions. That’s an error rate of less than 0.03% for legitimate
transactions, compared to 0.007% for the supervised learning model.

Two parameters in this model drive the error rate: the number of dimensions the
datasets were reduced to (26), and the threshold chosen to distinguish between legiti‐
mate and fraudulent transactions (200). You can tweak the accuracy by experiment‐
ing with different values. I did some informal testing and concluded that this was a
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reasonable combination. Picking a lower threshold improves the model’s ability to
identify fraudulent transactions, but at the cost of misclassifying more legitimate
transactions. In the end, you have to decide what error rate you’re willing to live with,
keeping in mind that declining a legitimate credit card purchase is likely to anger a
customer.

Using PCA to Predict Bearing Failure
One of the classic uses for anomaly detection is to predict failures in rotating machi‐
nery. Let’s apply PCA-based anomaly detection to a subset of a dataset published by
NASA to predict failures in bearings. The dataset contains vibration data for four
bearings supporting a rotating shaft with a radial load of 6,000 pounds applied to it.
The bearings were run to failure, and vibration data was captured by high-sensitivity
quartz accelerometers at regular intervals until failure occurred.

First, download the CSV file containing the subset that I culled from the larger NASA
dataset. Then create a Jupyter notebook and load the data:

import pandas as pd

df = pd.read_csv('Data/bearings.csv', index_col=0, parse_dates=[0])
df.head()

Here are the first five rows in the dataset:

The dataset contains 984 samples. Each sample contains vibration data for four bear‐
ings, and the samples were taken 10 minutes apart. Plot the vibration data for all four
bearings as a time series:

%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()

df.plot(figsize = (12, 6))
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Here is the output:

About four days into the test, vibrations in bearing 1 began increasing. They spiked a
day later, and about two days after that, bearing 1 suffered a catastrophic failure. Our
goal is to build a model that recognizes increased vibration in any bearing as a sign of
impending failure, and to do it without a labeled dataset.

The next step is to extract samples representing “normal” operation from the dataset
(x_train in the following code) and reduce four dimensions to one using PCA—
essentially combining the data from all four bearings. Then apply the same PCA
transform to the remainder of the dataset (x_test), combine the two partial datasets,
and plot the result:

from sklearn.decomposition import PCA

x_train = df['2004-02-12 10:32:39':'2004-02-13 23:42:39']
x_test = df['2004-02-13 23:52:39':]

pca = PCA(n_components=1, random_state=0)
x_train_pca = pd.DataFrame(pca.fit_transform(x_train))
x_train_pca.index = x_train.index

x_test_pca = pd.DataFrame(pca.transform(x_test))
x_test_pca.index = x_test.index

df_pca = pd.concat([x_train_pca, x_test_pca])
df_pca.plot(figsize = (12, 6))
plt.legend().remove()
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The output is shown here:

Now invert the PCA transform and plot the “restored” dataset:

df_restored = pd.DataFrame(pca.inverse_transform(df_pca), index=df_pca.index)
df_restored.plot(figsize = (12, 6))

The results are as follows:
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It is obvious that a loss was incurred by applying and inverting the transform. Let’s
define a function that computes the loss in a range of samples, then apply that func‐
tion to all of the samples in the original dataset and the restored dataset and plot the
differences over time:

import numpy as np

def get_anomaly_scores(df_original, df_restored):
    loss = np.sum((np.array(df_original) - np.array(df_restored)) ** 2, axis=1)
    loss = pd.Series(data=loss, index=df_original.index)
    return loss

scores = get_anomaly_scores(df, df_restored)
scores.plot(figsize = (12, 6))

Here is the output:

The loss is very small when all four bearings are operating normally, but it begins to
rise when one or more bearings exhibit greater-than-normal vibration. From the
chart, it’s apparent that when the loss rises above a threshold value of approximately
0.002, that’s an indication a bearing might fail.

Now that you’ve selected a tentative loss threshold, you can use it to detect anomalous
behavior in the bearings. Begin by defining a function that takes a sample and returns
True or False indicating whether the sample is anomalous by applying and inverting
a PCA transform, measuring the loss for each bearing, and comparing it to a specified
loss threshold:

def is_anomaly(row, pca, threshold):
    pca_row = pca.transform(row)
    restored_row = pca.inverse_transform(pca_row)
    losses = np.sum((row - restored_row) ** 2)
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    for loss in losses:
        if loss > threshold:
            return True;

    return False

Apply the function to a row early in the time series that represents normal behavior
and confirm that it returns False:

x = df.loc[['2004-02-16 22:52:39']]
is_anomaly(x, pca, 0.002)

Apply the function to a row later in the time series that represents anomalous behav‐
ior and confirm that it returns True:

x = df.loc[['2004-02-18 22:52:39']]
is_anomaly(x, pca, 0.002)

Now apply the function to all the samples in the dataset and shade anomalous sam‐
ples red in order to visualize when anomalous behavior is detected:

df.plot(figsize = (12, 6))

for index, row in df.iterrows():
    if is_anomaly(pd.DataFrame([row]), pca, 0.002):
        plt.axvline(row.name, color='r', alpha=0.2)

Here is the output:

Repeat this procedure, but this time use a loss threshold of 0.0002 rather than 0.002:

df.plot(figsize = (12, 6))

for index, row in df.iterrows():
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    if is_anomaly(pd.DataFrame([row]), pca, 0.0002):
        plt.axvline(row.name, color='r', alpha=0.2)

Here is the output:

You can adjust the sensitivity of the model by adjusting the threshold value used to
detect anomalies. Using a loss threshold of 0.002 predicts bearing failure about two
days before it occurs, while a loss threshold of 0.0002 predicts the failure about three
days before. You typically want to choose a loss threshold that predicts failure as early
as possible without raising false alarms.

Multivariate Anomaly Detection
Could we have predicted failure in the preceding example by simply monitoring indi‐
vidual bearings? Perhaps. But what if impending failure is indicated by marginally
elevated vibrations in two bearings rather than just one? Engineers frequently find
that it isn’t individual sensors but a combination of readings from several sensors that
signal impending trouble. These readings may come from sensors of different types:
temperature sensors and pressure gauges in automotive and aerospace applications,
for example, or heart monitors and blood pressure monitors in health-care applica‐
tions. Reducing the number of dimensions to one with PCA is an attempt to capture
relationships between data emanating from individual sensors and treat the readings
systemically, a technique known as multivariate anomaly detection.

One limitation of using PCA to detect anomalies in multivariate systems is that
because it uses linear transforms, PCA is better at modeling linear relationships
between variables than nonlinear relationships. Neural networks, by contrast, excel at
modeling nonlinear data. That’s the primary reason why state-of-the-art multivariate
anomaly detection today commonly relies on deep learning.
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As the number of variables increases, so too does the challenge of modeling the inter‐
dependencies between them. It is not uncommon for overall system health to be
determined by dozens of otherwise independent variables. In September 2020, a team
of researchers at Microsoft and Peking University published a paper titled “Multivari‐
ate Time-series Anomaly Detection via Graph Attention Network” that proposed a
novel architecture for multivariate anomaly detection. It combines two deep-learning
models: one that relies on prediction error and another that relies on reconstruction
error. Microsoft uses this architecture in its Azure Multivariate Anomaly Detector
service, which can model dependencies between up to 300 independent data sources
and is used by companies such as Airbus and Siemens to detect irregularities in
space-station telemetry and to test medical devices before they’re sent to market. The
Azure Multivariate Anomaly Detector service is part of Azure Cognitive Services,
which is covered in Chapter 14.

Summary
Principal component analysis is a technique for reducing the number of dimensions
in a dataset without incurring a commensurate loss of information. It enjoys a num‐
ber of uses in machine learning, including visualizing high-dimensional data, ano‐
nymizing data, reducing noise, and increasing the ratio of rows to columns by
reducing the number of dimensions. It can also be used to perform anomaly detec‐
tion by measuring the loss incurred when a PCA transform is applied and then inver‐
ted. Anomalous samples tend to incur more loss.

When I teach classes, I often introduce PCA as “the best-kept secret in machine
learning.” It shouldn’t remain a secret, because it’s an indispensable tool in the hands
of machine learning engineers. Now that you know about it, I can just about guaran‐
tee that you’ll find ways to put it to work.
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CHAPTER 7

Operationalizing Machine Learning Models

All of the machine learning models presented so far in this book are written in
Python. Models don’t have to be written in Python, but many are, thanks in part to
the numerous world-class Python libraries available, including Pandas and Scikit-
Learn. ML models written in Python are easily consumed in Python apps. Calling
them from other languages such as C++, Java, and C# requires a little more work. You
can’t simply call a Python function from C++ as if it were a C++ function. So how do
you invoke models written in Python from apps written in other languages? Put
another way, how do you operationalize Python models such that they are usable in
any app on any platform written in any programming language?

The diagram on the left in Figure 7-1 shows one strategy: wrap the model in a web
service and expose its functionality through a REST API. Then any client that can
generate an HTTP(S) request can invoke the model. It’s relatively easy to do the wrap‐
ping with help from Python frameworks such as Flask. The web service can be hosted
locally or in the cloud, and it can be containerized for easy deployment using tools
such as Docker.

Figure 7-1. Architectures for consuming Python models in other languages
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The diagram on the right shows another strategy—one that’s relatively new but rap‐
idly growing in popularity. It involves exporting a Python model to a platform-
agnostic format called ONNX, short for Open Neural Network Exchange, and then
using an ONNX runtime to load the model in Java, C++, C#, and other programming
languages. Once loaded, the model can be called via the ONNX runtime.

Of course, if the client app and the model are written in the same language, you need
neither a web service nor ONNX. In this chapter, I’ll walk you through several
scenarios:

• How to save a trained Python model and invoke it from a Python client
• How to invoke a Python model from a non-Python client using a web service
• How to containerize a Python model (and web service) for easy deployment
• How to use ONNX to invoke a Python model from other programming

languages
• How to write machine learning models in C# rather than Python

I’ll finish up by demonstrating a novel way to operationalize a machine learning
model by exposing its functionality through Microsoft Excel. There’s a lot to cover, so
let’s get started.

Consuming a Python Model from a Python Client
Ostensibly, invoking a Python model from a Python client is simple: just call predict
(or, for a classifier, predict_proba) on the model. Of course, you don’t want to have
to retrain the model every time you use it. You want to train it once, and then
empower a client app to re-create the model in its trained state. For that, Python pro‐
grammers use the Python pickle module.

To demonstrate, the following code builds and trains the Titanic model featured in
Chapter 3. Rather than use the model to make predictions, however, it saves the
model to a .pkl file (it “pickles” the model) with a call to pickle.dump on the final
line:

import pickle
import pandas as pd
from sklearn.linear_model import LogisticRegression

df = pd.read_csv('Data/titanic.csv')
df = df[['Survived', 'Age', 'Sex', 'Pclass']]
df = pd.get_dummies(df, columns=['Sex', 'Pclass'])
df.dropna(inplace=True)

x = df.drop('Survived', axis=1)
y = df['Survived']
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model = LogisticRegression(random_state=0)
model.fit(x, y)

pickle.dump(model, open('titanic.pkl', 'wb'))

To invoke the model, a Python client uses pickle.load to deserialize the model from
the .pkl file, re-creating the model in its trained state, and calls predict_proba to com‐
pute the odds of a passenger’s survival:

import pickle
import pandas as pd

model = pickle.load(open('titanic.pkl', 'rb'))

female = pd.DataFrame({ 'Age': [30], 'Sex_female': [1], 'Sex_male': [0],
                        'Pclass_1': [1], 'Pclass_2': [0], 'Pclass_3': [0] })

probability = model.predict_proba(female)[0][1]
print(f'Probability of survival: {probability:.1%}')

Now the client can use the model to make a prediction without retraining it. And
once the model is loaded, it can persist for the lifetime of the client and be called
upon for predictions whenever needed.

Chapter 5 introduced Scikit’s make_pipeline function, which allows estimators
(objects that make predictions) and transformers (objects that transform data input
to a model) to be combined into a single unit, or pipeline. The pickle module can be
used to serialize and deserialize pipelines too. Example 7-1 recasts the sentiment
analysis model featured in Chapter 4 to use make_pipeline to combine a
CountVectorizer for vectorizing text with a LogisticRegression object for classify‐
ing text. The call to pickle.dump saves the model, CountVectorizer and all.

Example 7-1. Training and saving a sentiment analysis pipeline

import pickle
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline

df = pd.read_csv('Data/reviews.csv', encoding="ISO-8859-1")
df = df.drop_duplicates()

x = df['Text']
y = df['Sentiment']

vectorizer = CountVectorizer(ngram_range=(1, 2), stop_words='english',
                             min_df=20)
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model = LogisticRegression(max_iter=1000, random_state=0)
pipe = make_pipeline(vectorizer, model)
pipe.fit(x, y)

pickle.dump(pipe, open('sentiment.pkl', 'wb'))

A Python client can deserialize the pipeline and call predict_proba to score a line of
text for sentiment with a few simple lines of code:

import pickle

pipe = pickle.load(open('sentiment.pkl', 'rb'))
score = pipe.predict_proba(['Great food and excellent service!'])[0][1]
print(score)

Pickling in this manner works not just with CountVectorizer but with other trans‐
formers as well, such as StandardScaler.

Pickling a pipeline containing a CountVectorizer can produce a
large .pkl file. In this example, sentiment.pkl is 50 MB in length
because it contains the entire vocabulary built by CountVectorizer
from the training text. Remove the min_df=20 parameter and the
file swells to nearly 90 MB.
The solution is to replace CountVectorizer with Hashing

Vectorizer, which doesn’t create a vocabulary but instead uses
word hashes to index a table of word frequencies. That reduces
sentiment.pkl to 8 MB—without the min_df parameter, which
HashingVectorizer doesn’t support anyway.

If you’d like to write a standalone Python client that performs sentiment analysis, run
the code in Example 7-1 in a Jupyter notebook to generate sentiment.pkl. Optionally,
you can change CountVectorizer to HashingVectorizer and remove the min_df
parameter to reduce the size of the .pkl file. Then create a Python script named
sentiment.py containing the following code:

import pickle, sys

# Get the text to analyze
if len(sys.argv) > 1:
    text = sys.argv[1]
else:
    text = input('Text to analyze: ')

# Load the pipeline containing the model and the vectorizer
pipe = pickle.load(open('sentiment.pkl', 'rb'))

# Pass the input text to the pipeline and print the result
score = pipe.predict_proba([text])[0][1]
print(score)
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Copy sentiment.pkl into the same directory as sentiment.py, and then pop out to the
command line and run the script:

python sentiment.py "Great food and excellent service!"

The output should look something like this, which is proof that you succeeded in re-
creating the model in its trained state and invoking it to analyze the input text for
sentiment:

Note that the sentiment score will differ slightly if you replaced CountVectorizer
with HashingVectorizer, in part due to the omission of the min_df parameter.

Versioning Pickle Files
Generally speaking, a model pickled (saved) with one version of Scikit can’t be
unpickled with another version. Sometimes the result is warning messages; other
times, it doesn’t work at all. Be sure to save models with the same version of Scikit
that you use to consume them. This requires a bit of planning from an engineering
perspective, because if you store serialized models in a centralized repository and
update the version of Scikit used in your apps, you’ll need to update the saved
models too.

Which prompts some interesting questions: How do you set up a repository for
machine learning models? How do you deploy models from the repository to the
devices that host them? For that matter, how do you version those models as well as
the datasets you train them with?
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The answers come from a nascent field known as MLOps, which is short for ML oper‐
ations. I don’t cover MLOps in this book because it’s a rich subject that is a book unto
itself. If you want to learn more, I recommend reading Practical MLOps: Operational‐
izing Machine Learning Models by Noah Gift and Alfredo Deza (O’Reilly).

Consuming a Python Model from a C# Client
Suppose you wanted to invoke the sentiment analysis model in the previous section
from an app written in another language—say, C#. You can’t directly call a Python
function from C#, but you can wrap a Python model in a web service and expose its
predict (or predict_proba) method using a REST API. One way to code the web
service is to use Flask, a popular framework for building websites and web services in
Python.

To see for yourself, make sure Flask is installed on your computer. Then create a file
named app.py and paste in the following code. This code uses Flask to implement a
Python web service that listens on port 5000:

import pickle
from flask import Flask, request

app = Flask(__name__)
pipe = pickle.load(open('sentiment.pkl', 'rb'))

@app.route('/analyze', methods=['GET'])
def analyze():
    if 'text' in request.args:
        text = request.args.get('text')
    else:
        return 'No string to analyze'

    score = pipe.predict_proba([text])[0][1]
    return str(score)

if __name__ == '__main__':
    app.run(debug=True, port=5000, host='0.0.0.0')

At startup, the service deserializes the pipeline comprising the sentiment analysis
model in sentiment.pkl. The @app.route statement decorating the analyze function
tells Flask to call the function when the service’s analyze method is called. If the ser‐
vice is hosted locally, the following request invokes analyze and returns a string con‐
taining a sentiment score for the text in the query string:

http://localhost:5000/analyze?text=Great food and excellent service!

To demonstrate, go to the directory where app.py is located (make sure sentiment.pkl
is there too) and start Flask by typing:

flask run
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Then go to a separate command prompt and use a curl command to fire off a
request to the URL:

curl -G -w "\n" http://localhost:5000/analyze --data-urlencode "text=Great food 
and excellent service!"

Here’s the output:

If you have Visual Studio or Visual Studio Code installed on your computer and are
set up to compile and run C# apps, you can use the following code in a C# console
app to invoke the web service and score a text string for sentiment. Of course, you’re
not limited to invoking the web service (and by extension, the model) from C#. Any
language will do, because virtually all modern programming languages provide a
means for sending HTTP requests.

using System;
using System.Net.Http;
using System.Threading.Tasks;

class Program
{
    static async Task Main(string[] args)
    {
        string text;

        // Get the text to analyze
        if (args.Length > 0)
        {
            text = args[0];
        }
        else
        {
            Console.Write("Text to analyze: ");
            text = Console.ReadLine();
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        }

        // Pass the text to the web service
        var client = new HttpClient();
        var url = $"http://localhost:5000/analyze?text={text}";
        var response = await client.GetAsync(url);
        var score = await response.Content.ReadAsStringAsync();

        // Show the sentiment score
        Console.WriteLine(score);
    }
}

This web service is a simple one that reads input from a query string and returns a
string. For more complex input and output, you can serialize the input into JSON and
transmit it in the body of an HTTP POST, and you can return a JSON payload in the
response. For a tutorial demonstrating how to do it in Python, see the article “Python
Post JSON Using Requests Library”.

Containerizing a Machine Learning Model
One downside to wrapping a machine learning model in a web service and running it
locally is that the client computer must have Python installed, as well as all the pack‐
ages that the model and web service require. An alternative is to host the web service
in the cloud where it can be called via the internet. It’s not hard to go out to Azure or
AWS, spin up a virtual machine (VM), and install the software there. But there’s a
better way. That better way is containers.

Containers have revolutionized the way software is built and deployed. A container
includes an app and everything the app needs to run, including a runtime (for exam‐
ple, Python), the packages the app relies on, and even a virtual filesystem. If you’re
not familiar with containers, think of them as lightweight VMs that start quickly and
consume far less memory. Docker is the world’s most popular container platform,
although it is rapidly being supplanted by Kubernetes.

Containers are created from container images, which serve as blueprints for contain‐
ers in the same way that classes in object-oriented programming languages constitute
blueprints for objects. The first step in creating a Docker container image containing
the sentiment analysis model and web service is to create a file named Dockerfile (no
filename extension) in the same directory as app.py and sentiment.pkl and then paste
the following statements into it:

FROM python:3.8
RUN pip install flask numpy scipy scikit-learn && \
    mkdir /app
COPY app.py /app
COPY sentiment.pkl /app
WORKDIR /app
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EXPOSE 5000
ENTRYPOINT ["python"]
CMD ["app.py"]

A Dockerfile contains instructions for building a container image. This one creates a
container image that includes a Python runtime, several Python packages such as
Flask and Scikit-Learn, and app.py and sentiment.pkl. It also instructs the Docker run‐
time that hosts the container to open port 5000 for HTTP requests and to execute
app.py when the container starts.

There are several ways to build a container image from a Dockerfile. If Docker is
installed on your computer, you can use a docker build command:

docker build -t sentiment-server .

Alternatively, you can upload the Dockerfile to a cloud platform such as Microsoft
Azure and build it there. This prevents you from having to have Docker installed on
the local machine, and it makes it easy to store the resulting container image in the
cloud. Container images are stored in container registries, and modern cloud plat‐
forms host container registries as well as containers. If you launch a container
instance in Azure, the web service in the container can be invoked with a URL similar
to this one:

http://wintellect.northcentralus.azurecontainer.io:5000/analyze?text=Great food 
and excellent service!

One of the benefits of hosting the container instance in the cloud is that it can be
reached from any client app running on any machine and any operating system, and
the computer that hosts the app needs nothing special installed. Containers can be
beneficial even if you host the web service locally rather than in the cloud. As long as
you deploy a container stack such as the Docker runtime to the local machine, you
don’t have to install Python and all the packages that the web service requires. You
just launch a container instance and direct HTTP requests to it via localhost.

Using ONNX to Bridge the Language Gap
Is it possible to bridge the gap between a C# client and a Python ML model without
using a web service as a middleman? In a word, yes! The solution lies in a four-letter
acronym: ONNX. As mentioned earlier, ONNX stands for Open Neural Network
Exchange, and it was originally devised to allow deep-learning models written with
one framework—for example, TensorFlow—to be used with other frameworks such
as PyTorch. But today it can be used with Scikit models too. I’ll say more about
ONNX in Chapter 12, but for now, let’s use it to call a Python model directly from an
app written in C#—no web service required.
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The first step in using ONNX to bridge the language gap is to install Skl2onnx in
your Python environment. Then use that package’s convert_sklearn method to save
a trained Scikit model to a .onnx file. Here’s a short code snippet that saves the senti‐
ment analysis model in Example 7-1 to a file named sentiment.onnx. The
initial_types parameter specifies that the model expects one input value: a string
containing the text to score for sentiment:

from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import StringTensorType

initial_type = [('string_input', StringTensorType([None, 1]))]
onnx = convert_sklearn(pipe, initial_types=initial_type)

with open('sentiment.onnx', 'wb') as f:
    f.write(onnx.SerializeToString())

If you wish to consume the model from Python, you first install a Python package
named Onnxruntime containing the ONNX runtime, also known as the ORT. This
provides support for loading and running ONNX models. Then you call the runtime’s
InferenceSession method with a path to a .onnx file to deserialize the model, and
call run on the returned session object to call the model’s predict or predict_proba
method. Here’s how it looks in code:

import numpy as np
import onnxruntime as rt

session = rt.InferenceSession('sentiment.onnx')
input_name = session.get_inputs()[0].name
label_name = session.get_outputs()[1].name # 0 = predict, 1 = predict_proba

input = np.array('Great food and excellent service!').reshape(1, -1)
score = session.run([label_name], { input_name: input })[0][0][1]
print(score)

Note that the string input to the model is passed as a NumPy array. The value
returned from the run method reveals the sentiment score returned by
predict_proba. If you’d rather call predict to predict a class, change session
.get_outputs()[1].name to session.get_outputs()[0].name.

In real life, you wouldn’t load the model every time you call it.
You’d load it once, allow it to persist for the lifetime of the client,
and call it whenever you want to make a prediction.

Of course, the whole point of this discussion is to call the model from C# instead of
Python. That’s not difficult either, thanks to a NuGet package from Microsoft called
Microsoft.ML.OnnxRuntime. You can install it from the command line or using an
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integrated development environment such as Visual Studio. Then it’s a relatively sim‐
ple matter to write a C# console app that re-creates the trained sentiment analysis
model from the .onnx file and calls it to score a text string:

using System;
using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using System.Collections.Generic;
using System.Linq;

class Program
{
    static void Main(string[] args)
    {
        string text;

        // Get the text to analyze
        if (args.Length > 0)
        {
            text = args[0];
        }
        else
        {
            Console.Write("Text to analyze: ");
            text = Console.ReadLine();
        }

        // Create the model and pass the text to it
        var tensor = new DenseTensor<string>(new string[]
            { text }, new int[] { 1, 1 });

        var input = new List<NamedOnnxValue>
        {
            NamedOnnxValue.CreateFromTensor<string>("string_input", tensor)
        };

        var session = new InferenceSession("sentiment.onnx");
        var output = session.Run(input)
            .ToList().Last().AsEnumerable<NamedOnnxValue>();

        var score = output.First().AsDictionary<Int64, float>()[1];
        
        // Show the sentiment score
        Console.WriteLine(score);
    }
}

This code assumes that sentiment.onnx is present in the current directory. Instantiat‐
ing the InferenceSession object creates the model, and calling Run on the object
invokes the model. Under the hood, Run calls the model’s predict and
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predict_proba methods and makes the results of both available. There’s a little work
required to convert C# types into ONNX types and vice versa, but once you get the
hang of it, it’s pretty remarkable that you can call a machine learning model written in
Python directly from C#.

Here’s another example. Suppose you wanted to consume Chapter 2’s taxi-fare regres‐
sion model in C#. Recall that the model accepts three floating-point values as input—
the day of the week (0–6), the hour of day (0–23), and the distance to travel in
miles—and returns a predicted taxi fare. The following Python code saves the trained
model in an ONNX file:

from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType

initial_type = [('float_input', FloatTensorType([None, 3]))]
onnx = convert_sklearn(model, initial_types=initial_type)

with open('taxi.onnx', 'wb') as f:
    f.write(onnx.SerializeToString())

The following C# code loads the model and makes a prediction. The big difference
between this and the previous example is that you pass the model an array of three
floating-point values rather than a string:

// Package the input
var input = new float[] {
    4.0f,  // Day of week
    17.0f, // Pickup time (hour of day)
    2.0f   // Distance to travel
};

var tensor = new DenseTensor<float>(input, new int[] { 1, 3 });

// Create the model and pass the input to it
var session = new InferenceSession("taxi.onnx");

var output = session.Run(new List<NamedOnnxValue>
{
    NamedOnnxValue.CreateFromTensor("float_input", tensor)
});

var score = output.First().AsTensor<float>().First();

// Show the predicted fare
Console.WriteLine($"{score:#.00}");

So which is faster? Calling a machine learning model wrapped in a web service, or
calling the same model using ONNX? I wrote a simple test harness to answer that
question. On my computer, calling the sentiment analysis model in a Flask web ser‐
vice running locally required slightly more than 2 seconds per round trip. Calling the
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same model through the Python ONNX runtime took 0.001 seconds on average.
That’s a difference of more than three orders of magnitude. And you would incur
additional latency if the web service was hosted on a remote server.

Significantly, ONNX isn’t limited to C# and Python. ONNX runtimes are available
for Python, C, C++, C#, Java, JavaScript, and Objective-C, and they run on
Windows, Linux, macOS, Android, and iOS. When it comes to projecting machine
learning models written in Python to other platforms and languages, ONNX
is a game changer. For more information, check out the ONNX runtime website.

Building ML Models in C# with ML.NET
Scikit-Learn is arguably the world’s most popular machine learning framework. The
efficacy of the library, the documentation that accompanies it, and the mindshare that
surrounds it are the primary reasons more ML models are written in Python than any
other language. But Scikit isn’t the only machine learning framework. Others exist for
other languages, and if you can code an ML model in the same programming lan‐
guage as the client that consumes it, you can avoid jumping through hoops to opera‐
tionalize the model.

ML.NET is Microsoft’s free, open source, cross-platform machine learning library
for .NET developers. It does most of what Scikit does and a few things that Scikit
doesn’t do. And when it comes to writing ML/AI solutions in C#, there is no better
tool for the job.

ML.NET derives from an internal library that was developed by Microsoft—and has
been used in Microsoft products—for more than a decade. The ML algorithms that it
implements have been tried and tested in the real world and tuned to optimize per‐
formance and accuracy. Because ML.NET is consumed from C#, you get all the bene‐
fits of a compiled programming language, including type safety and fast execution.

A paper published by the ML.NET team at Microsoft in 2019 discusses the motiva‐
tions and design goals behind ML.NET. It also compares ML.NET’s accuracy and per‐
formance to that of Scikit-Learn and another machine learning framework named
H2O. Using a 9 GB Amazon review dataset, ML.NET trained a sentiment analysis
model to 95% accuracy. Neither Scikit nor H2O could process the dataset due to its
size. When all three frameworks were trained on 10% of the dataset, ML.NET
achieved the highest accuracy, and trained six times faster than Scikit and almost 10
times faster than H2O.

ML.NET is compatible with Windows, Linux, and macOS. Thanks to an innovation
called IDataView, it can handle datasets of virtually unlimited size. While it can’t be
used to build neural networks from scratch, it does have the ability to load existing
neural networks and use a technique called transfer learning to repurpose those
networks to solve domain-specific problems. (Transfer learning will be covered in
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Chapter 10.) It also builds in ONNX support that allows it to load sophisticated mod‐
els, including deep-learning models, stored in ONNX format. Finally, it can be con‐
sumed in Python and even combined with Scikit-Learn using a set of Python
bindings called NimbusML.

If you’re a .NET developer who is interested in machine learning, there has never
been a better time to get acquainted with ML.NET. This section isn’t meant to provide
an exhaustive treatment of ML.NET but to introduce it, show the basics of building
ML models with it, and hopefully whet your appetite enough to motivate you to learn
more. There are plenty of great resources available online, including the official
ML.NET documentation, a GitHub repo containing ML.NET samples, and the
ML.NET cookbook.

Sentiment Analysis with ML.NET
The following C# code uses ML.NET to build and train a sentiment analysis model.
It’s equivalent to the Python implementation in Example 7-1:

var context = new MLContext(seed: 0);

// Load the data
var data = context.Data.LoadFromTextFile<Input>("reviews.csv",
    hasHeader: true, separatorChar: ',', allowQuoting: true);

// Split the data into a training set and a test set
var trainTestData = context.Data.TrainTestSplit(data,
    testFraction: 0.2, seed: 0);
var trainData = trainTestData.TrainSet;
var testData = trainTestData.TestSet;

// Build and train the model
var pipeline = context.Transforms.Text.FeaturizeText
    (outputColumnName: "Features", inputColumnName: "Text")
    .Append(context.BinaryClassification.Trainers.SdcaLogisticRegression());

var model = pipeline.Fit(trainData);

// Evaluate the model
var predictions = model.Transform(testData);
var metrics = context.BinaryClassification.Evaluate(predictions);
Console.WriteLine($"AUC: {metrics.AreaUnderPrecisionRecallCurve:P2}");

// Score a line of text for sentiment
var predictor = context.Model.CreatePredictionEngine<Input, Output>(model);
var input = new Input { Text = "Among the best movies I have ever seen"};
var prediction = predictor.Predict(input);

// Show the score
Console.WriteLine($"Sentiment score: {prediction.Probability}");
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Every ML.NET app begins by creating an instance of the MLContext class. The
optional seed parameter initializes the random-number generator used by ML.NET
so that you get repeatable results from one run to the next. MLContext exposes a num‐
ber of properties through which large parts of the ML.NET API are accessed. One
example of this is the call to LoadFromTextFile, which is a DataOperationsCatalog
method accessed through MLContext’s Data property.

LoadFromTextFile is one of several methods ML.NET provides for loading data from
text files, databases, and other data sources. It returns a data view, which is an object
that implements the IDataView interface. Data views in ML.NET are similar to Data
Frames in Pandas, with one important difference: whereas DataFrames have to fit in
memory, data views do not. Internally, data views use a SQL-like cursor to access
data. This means they can wrap a theoretically unlimited amount of data. That’s why
ML.NET was able to process the entire 9 GB Amazon dataset, while Scikit and H2O
were not.

After loading the data and splitting it for training and testing, the preceding code
creates a pipeline containing a TextFeaturizingEstimator object—created with the
FeaturizeText method—and an SdcaLogisticRegressionBinaryTrainer object—
created with the SdcaLogisticRegression method. This is analogous in Scikit to cre‐
ating a pipeline containing a CountVectorizer object for vectorizing input text and a
LogisticRegression object for fitting a model to the data. Calling Fit on the pipe‐
line trains the model, just like calling fit in Scikit. It’s no coincidence that ML.NET
employs some of the same patterns as Scikit. This was done intentionally to impart a
sense of familiarity to programmers who use Scikit.

After evaluating the model’s accuracy by computing the area under the precision-
recall curve, a call to ModelOperationsCatalog.CreatePredictionEngine creates a
prediction engine whose Predict method makes predictions. Unlike Scikit, which
has you call predict on the estimator itself, ML.NET encapsulates prediction capabil‐
ity in a separate object, in part so that multiple prediction engines can be created to
achieve scalability in high-traffic scenarios.

In this example, Predict accepts an Input object as input and returns an Output
object. One of the benefits of building models with ML.NET is strong typing. Load
FromTextFile is a generic method that accepts a class name as a type parameter—in
this case, Input. Similarly, CreatePredictionEngine uses type parameters to specify
schemas for input and output. The Input and Output classes are application specific
and in this instance are defined as follows:
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public class Input
{
    [LoadColumn(0)]
    public string Text;

    [LoadColumn(1), ColumnName("Label")]
    public bool Sentiment;
}

public class Output
{
    [ColumnName("PredictedLabel")]
    public bool Prediction { get; set; }

    public float Probability { get; set; }
}

The LoadColumn attributes map columns in the data file to properties in the Input
class. Here, they tell ML.NET that values for the Text field come from column 0 in
the input file, and values for Sentiment (the 1s and 0s indicating whether the senti‐
ment expressed in the text is positive or negative) come from column 1. The Column
Name("Label") attribute identifies the second column as the label column—the one
containing the values that the model will attempt to predict.

The Output class defines the output schema. In this example, it contains properties
named Prediction and Probability, which, following a prediction, hold the predic‐
ted label (0 or 1) and the probability that the sample belongs to the positive class,
which doubles as a sentiment score. The ColumnName("PredictedLabel") attribute
maps the value returned by Predict to the Output object’s Prediction property.

There is nothing magic about the class names Input and Output.
You could name them SentimentData and SentimentPrediction
and the code would work just the same.

Saving and Loading ML.NET Models
Earlier, you learned how to use Python’s pickle module to save and load trained
models. You do the same in ML.NET by calling ModelOperationsCatalog.Save and
ModelOperationsCatalog.Load through the MLContext object’s Model property:

// Save a trained model to a zip file
context.Model.Save(model, data.Schema, "model.zip");

// Load a trained model from a zip file
var model = context.Model.Load("model.zip", out DataViewSchema schema);
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This enables clients to re-create a model in its trained state and use it to make predic‐
tions without having to train the model repeatedly.

Adding Machine Learning Capabilities to Excel
Want to see a novel way to operationalize a machine learning model? Imagine that
you’re a software developer at an internet vacation rentals firm. The company’s com‐
munications department has asked you to create a spreadsheet that lets them analyze
text for sentiment. The idea is that if sentiment toward the company turns negative
on social media, the communications team can get out in front of it.

You already know how to build, train, and save a sentiment analysis model in Python
using Scikit. Excel supports user-defined functions (UDFs), which enable users to
write custom functions that are called just like SUM(), AVG(), and other functions
built into Excel. But UDFs are written in Visual Basic for Applications (VBA), not
Python. To marry Scikit with Excel, you need to write UDFs in Python.

Fortunately, there are libraries that let you do just that. One of them is Xlwings, an
open source library that combines the power of Excel with the versatility of Python.
With it, you can write Python code that loads or creates Excel spreadsheets and
manipulates their content, write Python macros triggered by button clicks in Excel,
access Excel spreadsheets from Jupyter notebooks, and more. You can also use
Xlwings to write Python UDFs for Excel for Windows.

The first step in building the spreadsheet the communications team wants is to con‐
figure Excel to trust VBA add-ins. Launch Microsoft Excel and use the File →
Options command to open the Excel Options dialog. Click Trust Center in the menu
on the left, and then click the Trust Center Settings button. Click Macro Settings on
the left, and check the “Trust access to the VBA project object model” box, as shown
in Figure 7-2. Then click OK to dismiss the Trust Center dialog, followed by OK to
dismiss the Excel Options dialog.

The next step is to install Xlwings on your computer using a pip install xlwings
command or equivalent for your Python environment. Afterward, go to the com‐
mand line and use the following command to install the Xlwings add-in in Excel:

xlwings addin install

Now create a project directory on your computer and cd to it. Then execute the fol‐
lowing command:

xlwings quickstart sentiment

Adding Machine Learning Capabilities to Excel | 169

https://oreil.ly/8Pv4R
https://oreil.ly/cJt6d
https://oreil.ly/uSmSL


Figure 7-2. Configuring Excel to trust VBA add-ins

This command creates a subdirectory named sentiment in the current directory and
initializes it with a pair of files: a spreadsheet named sentiment.xlsm and a Python file
named sentiment.py. It is the latter of these in which you will write a UDF that ana‐
lyzes text for sentiment.

Next, copy sentiment.pkl into the sentiment directory. (If you didn’t generate that file
earlier, run the code in Example 7-1 in a Jupyter notebook to generate it now.) Then
open sentiment.py in your favorite text editor and replace its contents with the follow‐
ing code. This code loads the sentiment analysis model from the .pkl file and stores a
reference to the model in the variable named model. Then it defines a UDF named
analyze_text that can be called from Excel. analyze_text vectorizes the text passed
to it and inputs it to the model’s predict_proba method. That method returns a
number from 0.0 to 1.0, with 0.0 representing negative sentiment and 1.0 represent‐
ing positive sentiment. When you’re done, save your changes to sentiment.py. The
UDF is written. Now it’s time to call it from Excel.

import pickle, os
import xlwings as xw

# Load the model and the vocabulary and create a CountVectorizer
model_path = os.path.abspath(os.path.join(os.path.dirname(__file__),
                             'sentiment.pkl'))

model = pickle.load(open(model_path, 'rb'))
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@xw.func
def analyze_text(text):
    score = model.predict_proba([text])[0][1]
    return score

The elegance of Xlwings is that once you’ve written a UDF such as analyze_text,
you can call it the same way you call functions built into Excel. But first you must
import the UDF. To do that, open sentiment.xlsm in Excel. Go to the “xlwings” tab
and click Import Functions to import the analyze_text function, as shown in
Figure 7-3. Excel doesn’t tell you if the import was successful, but it does let you know
if the import failed—if, for example, you forgot to copy sentiment.pkl into the direc‐
tory where sentiment.py is stored.

Figure 7-3. Importing the analyze_text function

Type Great food and excellent service into cell A1 (Figure 7-4).

Figure 7-4. Entering a string of text to analyze
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Type the following expression into cell B1 to pass the text in cell A1 to the
analyze_text function imported from sentiment.py:

=analyze_text(A1)

Confirm that a number from 0.0 to 1.0 appears in cell B1, as shown in Figure 7-5.
This is the score that the machine learning model assigned to the text “Great food and
excellent service.” Do you agree with the score? Finish up by entering some text
strings of your own to see how they score for sentiment.

Figure 7-5. Sentiment analysis in Excel

UDFs written in Python present Excel users with a new whole new world of possibili‐
ties thanks to the rich ecosystem of Python libraries available for machine learning,
statistical analysis, and other tasks. And they provide a valuable opportunity for Excel
users to operationalize machine learning models written in Python.

Summary
Writing a Python client that invokes a Python machine learning model requires little
more than an extra line of code to deserialize the model from a .pkl file. One way for a
non-Python client to invoke a Python model is to wrap the model in a Python web
service and invoke the model using REST APIs. The web service can be hosted locally
or in the cloud, and containerizing the web service (and the model) simplifies deploy‐
ment and makes the software more portable.

An alternative approach is to use ONNX to bridge the language gap. With ONNX,
you can save a Scikit model to a .onnx file and load the model from a variety of
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programming languages, including C, C++, C#, Java, and JavaScript. Once loaded,
the model can be invoked just as if it were called from Python.

Another option for invoking machine learning models from non-Python clients is to
write the model in the same language as the client. Microsoft’s ML.NET, which is free,
cross-platform, and open source, is a great option for C# developers. Other libraries
include Java-ML for Java developers and Caret and Tidymodels for R developers. The
APIs supported by these libraries are different from the APIs in Scikit, but the princi‐
ples embodied in them are the same.

Summary | 173

https://oreil.ly/7NDrq
https://oreil.ly/SB6Hn
https://oreil.ly/KcMVW




PART II

Deep Learning with Keras
and TensorFlow





CHAPTER 8

Deep Learning

Every model in Part I of this book employed classic machine learning algorithms that
form the core of ML itself: logistic regression, random forests, and so on. Such mod‐
els are often referred to as traditional machine learning models to differentiate them
from deep-learning models. Recall from Chapter 1 that deep learning is a subset of
machine learning that relies primarily on neural networks, and that most of what’s
considered AI today is accomplished with deep learning. From recognizing objects in
photos to real-time speech translation to using computers to generate art, music,
poetry, and photorealistic faces, deep learning allows computers to perform feats that
traditional machine learning does not.

I frequently introduce deep learning to software developers by challenging them to
devise an algorithmic means for determining whether a photo contains a dog. If they
offer a solution, I’ll counter with a dog picture that foils the algorithm. Traditional
ML models can partially solve the problem, but when it comes to recognizing objects
in images, deep learning represents the state of the art. It’s not terribly difficult to
train a neural network to recognize dog pictures, sometimes more accurately than
humans. Once you learn how to do that, it’s a small step forward to recognizing
defective parts coming off an assembly line or bicycles passing in front of a self-
driving car.

Neural networks have been around for decades, but it’s only in the past 10 years or so
that sufficient compute power has been available to train sophisticated networks.
Cutting-edge neural networks are trained on graphics processing units (GPUs) and
tensor processing units (TPUs), often attached to high-performance computing clus‐
ters. GPUs are great for gaming because they deliver high-performance graphics.
They are also efficient parallel processing machines that allow data scientists to train
neural networks in a fraction of the time required on ordinary CPUs. Today, any
researcher with a credit card can purchase an NVIDIA GPU or spin up GPUs in

177

https://oreil.ly/2cDLY
https://oreil.ly/25jZk
https://oreil.ly/f9pV6


Azure or AWS and have access to compute power that researchers 20 years ago could
only have dreamed of. This, more than anything else, has driven AI’s resurgence and
precipitated continual advances in the state of the art.

This chapter is the first of several focused on deep learning. In it, you’ll learn:

• What a neural network is and where the “deep” in deep learning comes from
• How a neural network transforms input into output using simple mathematical

operations
• What happens when a neural network is trained, as well as the challenges that

training entails

You won’t start building and training neural networks just yet; that begins in Chap‐
ter 9. Before you build a house, you need a foundation to build upon. That founda‐
tion begins right now.

Understanding Neural Networks
Neural networks come in many varieties. Convolutional neural networks (CNNs), for
example, excel at computer-vision tasks such as classifying images. Recurrent neural
networks (RNNs) find application in handwriting recognition and natural language
processing (NLP), while generative adversarial networks, or GANs, enable computers
to create art, music, and other content. But the first step in wrapping your head
around deep learning is to understand what a neural network is and how it works.

The simplest type of neural network is the multilayer perceptron. It consists of nodes
or neurons arranged in layers. The depth of the network is the number of layers; the
width is the number of neurons in each layer, which can be different for every layer.
State-of-the-art neural networks sometimes contain 100 or more layers and thou‐
sands of neurons in individual layers. A deep neural network is one that contains
many layers, and it’s where the term deep learning is derived from.

The multilayer perceptron in Figure 8-1 contains three layers: an input layer with two
neurons, a middle layer (also known as a hidden layer) with three neurons, and an
output layer with one neuron. Because the input layer is often ignored when counting
layers, some would argue that this network contains two layers, not three. Regardless,
the network’s job is to take two floating-point values as input and produce a single
floating-point number as output. Neural networks work with floating-point numbers.
They only work with floating-point numbers. As with traditional machine learning
models, a neural network can only process non-numeric data—for example, text
strings—if the data is first converted to numbers.
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Figure 8-1. Multilayer perceptron

The orange arrows in Figure 8-1 represent connections between neurons. Each neu‐
ron in each layer is connected to each neuron in the next layer, giving rise to the term
fully connected layers. Each connection is assigned a weight, which is typically a small
floating-point number. In addition, each neuron outside the input layer is assigned a
bias, which is also a small floating-point number. Figure 8-2 shows a set of weights
and biases that enable the network to sum two inputs (for example, to add 2 and 2).
The blocks labeled “ReLU” represent activation functions, which apply simple nonlin‐
ear transforms to values propagated through the network. The most commonly used
activation function is the rectified linear units (ReLU) function, which passes positive
numbers through unchanged while converting negative numbers to 0s. Without acti‐
vation functions, neural networks would struggle to model nonlinear data. And it’s no
secret that real-world data tends to be nonlinear.

Figure 8-2. Weights and biases

Neurons perform simple linear transformations on data input to them. For a neuron
with a single input x, the neuron’s value y is computed by multiplying x by the weight
m assigned to the input and adding b, the neuron’s bias:
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Look familiar? That’s the equation for linear regression. Scikit-Learn has a
Perceptron class that models this behavior and can be used to build neural linear
regression models. It even offers classes named MLPRegressor and MLPClassifier for
building simple multilayer perceptrons. Scikit is not, however, a deep-learning
library. Real deep-learning libraries do more to support advanced neural networks.

The combination of neurons that perform linear transformations
and activation functions that apply nonlinear transforms is an
embodiment of the universal approximation theorem, which states
that you can approximate any function f by summing the output
from linear functions and transforming it with a nonlinear func‐
tion. Textbooks often say that activation functions “add nonlinear‐
ity” to neural networks. Now you know why.

To turn inputs into outputs, a neural network assigns the input values to the neurons
in the input layer. Then it multiplies the values of the input neurons by the weights
connecting them to the neurons in the next layer, sums the inputs for each neuron,
and adds the biases. It repeats this process to propagate values from left to right all the
way to the output layer. Figure 8-3 shows what happens in the first two layers when
the network in Figure 8-2 adds 2 and 2.

Figure 8-3. Flow of data from the input layer to the hidden layer when adding 2 and 2
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Values propagate from the hidden layer to the output layer the same way, with one
exception: they are transformed by an activation function before they’re multiplied by
weights. Remember that the ReLU activation function turns negative numbers into
0s. In Figure 8-4, the –1.83 calculated for the middle neuron in the hidden layer is
converted to 0 when forwarded to the output layer, effectively eliminating that neu‐
ron’s contribution to the output.

Figure 8-4. Flow of data from the hidden layer to the output layer when adding 2 and 2

Given a set of weights and biases, it isn’t difficult to code a neural network by hand.
The following Python code models the network in Figure 8-2:

# Weights
w0 = 0.9907079
w1 = 1.0264927
w2 = 0.01417504
w3 = -0.8950311
w4 = 0.88046944
w5 = 0.7524377
w6 = 0.794296
w7 = 1.1687347
w8 = 0.2406084
 
# Biases
b0 = -0.00070612
b1 = -0.06846002
b2 = -0.00055442
b3 = -0.00000929
 
def relu(x):
    return max(0, x)
 
def predict(x1, x2):
    h1 = (x1 * w0) + (x2 * w1) + b0

Understanding Neural Networks | 181



    h2 = (x1 * w2) + (x2 * w3) + b1
    h3 = (x1 * w4) + (x2 * w5) + b2
    y = (relu(h1) * w6) + (relu(h2) * w7) + (relu(h3) * w8) + b3
    return y

If you’d like to see for yourself, paste the code into a Jupyter notebook and call the
predict function with the inputs 2 and 2. The answer should be very close to the
actual sum of 2 and 2.

For a given problem, there is an infinite combination of weights and biases that pro‐
duces the desired outcome. Figure 8-5 shows the same network with a completely dif‐
ferent set of weights and biases. Yet, if you plug the values into the preceding code (or
propagate values through the network by hand), you’ll find that the network is
equally capable of adding 2 and 2—or other small values, for that matter.

Figure 8-5. Adding 2 and 2 with a different set of weights and biases

Given a set of weights and biases, using a neural network to make predictions is sim‐
plicity itself. It’s little more than multiplication and addition. But coming up with a
set of weights and biases to begin with is a challenge. It’s why neural networks must
be trained.

Training Neural Networks
Training a traditional machine learning model fits it to a dataset. Neural networks
require training too, and it is during training that weights and biases are calculated.
Weights are typically initialized with small random numbers. Biases are usually ini‐
tialized with 0s. In its untrained state, a neural network can do little more than gener‐
ate random outputs. Once training is complete, the weights and biases enable the
network to distinguish dogs from cats, translate a book review to another language,
or do whatever else it was designed to do.
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What happens when a neural network is trained? At a high level, training samples are
fed through the network, the error (the difference between the computed output and
the correct output) is computed using a loss function, and a backpropagation algo‐
rithm goes backward through the network adjusting the weights and biases
(Figure 8-6). This is done repeatedly until the error is sufficiently small. With each
iteration, the weights and biases become incrementally more refined and the error
commensurately smaller.

Figure 8-6. Adjusting weights and biases during training

The most critical component of the backpropagation regimen is the optimizer, which
on each backward pass decides how much and in which direction, positive or nega‐
tive, to adjust the weights and biases. Data scientists work constantly to find better
and more efficient optimizers to train networks more accurately and in less time.

Do a search on “neural networks” and you’ll turn up lots of articles with lots of com‐
plex math. Most of the math is related to optimization. An optimizer can’t just guess
how to adjust the weights and biases due to their sheer numbers. A neural network
containing two hidden layers with 1,000 neurons each has 1,000,000 connections
between layers, and therefore 1,000,000 weights to adjust. Training would take for‐
ever if the optimization strategy were simply randomly guessing. An optimizer must
be intelligent enough to make adjustments that reduce the error in each successive
iteration.

Data scientists use plots like the one in Figure 8-7 to visualize what optimizers do.
The plot is called a loss landscape. It has been reduced to three dimensions for visuali‐
zation purposes, but in reality, it contains many dimensions—sometimes millions of
them. The multicolored contour charts the error for different combinations of

Training Neural Networks | 183

https://oreil.ly/ScACh
https://oreil.ly/ScACh


weights and biases. The optimizer’s goal is to navigate the contour and find the com‐
bination that produces the least error, which corresponds to the lowest point, or
global minimum, in the loss landscape.

Figure 8-7. Loss landscape (Source: Alexander Amini, Ava Soleimany, Sertac Karaman,
and Daniela Rus, “Spatial Uncertainty Sampling for End-to-End Control,” NeurIPS
Bayesian Deep Learning [2017], https://arxiv.org/pdf/1805.04829)

The optimizer’s job isn’t an easy one. It involves partial derivatives (calculating the
slope of the contour with respect to each weight and bias), gradient descent (adjusting
the weights and biases to go down the slope rather than up it or sideways), and learn‐
ing rates, which drive the fractional adjustments made to the weights and biases in
each backpropagation pass. If the learning rate is too great, the optimizer might miss
the global minimum. If it’s too small, the network will take a long time to train.
Modern optimizers use adaptive learning rates that take smaller steps as they
approach a minimum, where the slope of the contour is 0. To complicate matters, the
optimizer must avoid getting trapped in local minima so that it can continue travers‐
ing the contour toward the global minimum where the error is the smallest. It also
has to be wary of “saddle points” where the slope increases in one direction but falls
off in a perpendicular direction.
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If you research gradient descent, you’ll encounter terms such as
stochastic gradient descent (SGD) and mini-batch gradient descent
(MBGD). Optimization via gradient descent is an iterative process
in which samples are fed forward through the network, gradients
are computed, and the gradients are combined with the learning
rate to update weights and biases. Updating the weights and biases
after every sample is fed forward through the network is computa‐
tionally expensive, so training typically involves running batches of
perhaps 30 to 40 samples through the network, averaging the error,
and then performing a backpropagation pass. That’s MBGD. It
speeds training and helps the optimizer bypass local minima. For
more information, and for a very readable introduction to the chal‐
lenges inherent to training neural networks, see the article “How
Neural Networks Are Trained”.

Neural networks are fundamentally simple. Training them is mathematically com‐
plex. Fortunately, you don’t have to understand everything that happens during train‐
ing in order to build them. Deep-learning libraries such as Keras and TensorFlow
insulate you from the math and provide cutting-edge optimizers to do the heavy lift‐
ing. But now when you use one of these libraries and it asks you to pick a loss func‐
tion and an optimizer, you’ll understand what it’s asking for and why.

Summary
Deep learning is a subset of machine learning that relies on deep neural networks,
and it is the root of modern AI. It’s how computers identify objects in images, trans‐
late text and speech into other languages, generate artwork and music, and perform
other tasks that were virtually impossible a few years ago.

The multilayer perceptron is a simple neural network comprising layers of neurons.
Each neuron turns input into output using a simple mathematical formula. Activation
functions further transform the data as it passes between layers by introducing non‐
linearities, enabling neural networks to fit to a variety of datasets. Hidden layers
between the input layer and the output layer perform the bulk of the computational
work, and a multilayer perceptron with many hidden layers is referred to as a deep
neural network.

Training a neural network fits it to a dataset by iteratively adjusting weights and bia‐
ses—the weights connecting neurons in adjacent layers and the biases assigned to the
neurons themselves—to produce the desired outcome. The backpropagation passes
that adjust the weights and biases are the heart of the training regimen. The compo‐
nent responsible for making adjustments is the optimizer; its ultimate goal is to find
the optimum combination of weights and biases with as few backpropagation passes
as possible.
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Now that you understand how neural networks work, the next step is to learn how to
build and train them. For that, data scientists rely on frameworks such as Keras and
TensorFlow. Chapter 9 begins a deep dive into both.
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CHAPTER 9

Neural Networks

Machine learning isn’t hard when you have a properly engineered dataset to work
with. The reason it’s not hard is libraries such as Scikit-Learn and ML.NET, which
reduce complex learning algorithms to a few lines of code. Deep learning isn’t diffi‐
cult either, thanks to libraries such as the Microsoft Cognitive Toolkit (CNTK), The‐
ano, and PyTorch. But the library  that most of the world has settled on for building
neural networks is TensorFlow, an open source framework created by Google that
was released under the Apache License 2.0 in 2015.

TensorFlow isn’t limited to building neural networks. It is a framework for perform‐
ing fast mathematical operations at scale using tensors, which are generalized arrays.
Tensors can represent scalar values (0-dimensional tensors), vectors (1D tensors),
matrices (2D tensors), and so on. A neural network is basically a workflow for trans‐
forming tensors. The three-layer perceptron featured in Chapter 8 takes a 1D tensor
containing two values as input, transforms it into a 1D tensor containing three values,
and produces a 0D tensor as output. TensorFlow lets you define directed graphs that
in turn define how tensors are computed. And unlike Scikit, it supports GPUs.

The learning curve for TensorFlow is rather steep. Another library, named Keras,
provides a simplified Python interface to TensorFlow and has emerged as the Scikit of
deep learning. Keras is all about neural networks. It began life as a standalone project
in 2015 but was integrated into TensorFlow in 2019. Any code that you write using
TensorFlow’s built-in Keras module ultimately executes in (and is optimized for)
TensorFlow. Even Google recommends using the Keras API.

Keras offers two APIs for building neural networks: a sequential API and a functional
API. The former is simpler and is sufficient for most neural networks. The latter is
useful in more advanced scenarios such as networks with multiple inputs or outputs
—for example, a classification output and a regression output, which is common in
neural networks that perform object detection—or shared layers. Most of the
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examples in this book use the sequential API. If curiosity compels you to learn more
about the functional API, see “How to Use the Keras Functional API for Deep Learn‐
ing” by Jason Brownlee for a very readable introduction.

Building Neural Networks with Keras and TensorFlow
Creating a neural network using Keras’s sequential API is simple. You first create an
instance of the Sequential class. Then you call add on the Sequential object to add
layers. The layers are instances of classes such as Dense, which represents a fully con‐
nected layer with a specified number of neurons. The following statements create the
three-layer network featured in Chapter 8:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

model = Sequential()
model.add(Dense(3, activation='relu', input_dim=2))
model.add(Dense(1))

This network contains an input layer with two neurons, a hidden layer with three
neurons, and an output layer with one neuron. Values passed from the hidden layer
to the output layer are transformed by the rectified linear units (ReLU) activation
function, which, you’ll recall, turns negative numbers into 0s and helps the model fit
to nonlinear datasets. Observe that you don’t have to add the input layer explicitly.
The input_dim=2 parameter in the first hidden layer implicitly creates an input layer
with two neurons.

relu is one of several activation functions included in Keras. Oth‐
ers include tanh, sigmoid, and softmax. You will rarely if ever use
anything other than relu in the hidden layers. Later in this chapter,
you’ll see why functions such as sigmoid and softmax are useful in
the output layers of networks that perform classification rather
than regression.

Once all the layers are added, the next step is to call compile and specify important
attributes such as which optimizer and loss function to use during training. Here’s an
example:

model.compile(optimizer='adam', loss='mae', metrics=['mae'])
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Let’s walk through the parameters one at a time:

optimizer='adam'

Tells Keras to use the Adam optimizer to adjust weights and biases in each back‐
propagation pass during training. Adam is one of eight optimizers built into Keras,
and it is among the most advanced. It employs an adaptive learning rate and is
always the one I start with in the absence of a compelling reason to do otherwise.

loss='mae'

Tells Keras to use mean absolute error (MAE) to measure loss. This is common
for neural networks intended to solve regression problems. Another frequently
used option for regression models is loss='mse' for mean squared error (MSE).

metrics=['mae']

Tells Keras to capture MAE values as the network is trained. This information is
used after training is complete to judge the efficacy of the training.

String values such as 'adam' and 'mae' are shortcuts for functions built into Keras.
For example, optimizer='adam' is equivalent to optimizer=Adam(). The longhand
form is useful for calling the function with nondefault parameter values—for exam‐
ple, optimizer=Adam(learning_rate=2e-5) to create an Adam optimizer with a cus‐
tom learning rate. You’ll see an example of this in Chapter 13 when we fine-tune a
model by training it with a low learning rate.

Inside the compile method, Keras creates a TensorFlow object graph to speed execu‐
tion. Once the network is compiled, you train it by calling fit:

hist = model.fit(x, y, epochs=100, batch_size=100, validation_split=0.2)

The fit method accepts many parameters. Here are the ones used in this example:

x

The dataset’s feature columns.

y

The dataset’s label column—the one containing the values the network will
attempt to predict.

epochs=100

Tells Keras to train the network for 100 iterations, or epochs. In each epoch, all of
the training data passes through the network one time.
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batch_size=100

Tells Keras to pass 100 training samples through the network before making a
backpropagation pass to adjust the weights and biases. Training takes less time if
the batch size is large, but accuracy could suffer. You typically experiment with
different batch sizes to find the right balance between training time and accuracy.
Do not assume that lowering the batch size will improve accuracy. It frequently
does, but sometimes does not.

validation_split=0.2

Tells Keras that in each epoch, it should train with 80% of the rows in the dataset
and validate the network’s accuracy with the remaining 20%. If you prefer, you
can split the dataset yourself and use the validation_data parameter to pass the
validation data to fit. Keras doesn’t offer an explicit function for splitting a data‐
set, but you can use Scikit’s train_test_split function to do it. One difference
between train_test_split and validation_split is that the former splits the
data randomly and includes an option for performing a stratified split.
validation_split, by contrast, simply divides the dataset into two partitions
and does not attempt to shuffle or stratify. Don’t use validation_split on
ordered data without shuffling the data first.

It might surprise you to learn that if you train the same network on the same dataset
several times, the results will be different each time. By default, weights are initialized
with random values, and different starting points produce different outcomes. Addi‐
tional randomness baked into the training process means the network will train dif‐
ferently even if it’s initialized with the same random weights. Rather than fight it, data
scientists learn to “embrace the randomness.” If you work the tutorial in the next sec‐
tion, your results will differ from mine. They shouldn’t differ by a lot, but they will
differ.

The random weights assigned to the connections between neurons
aren’t perfectly random. Keras includes about a dozen initializers,
each of which initializes parameters in a different way. By default,
Dense layers use the Zeroes initializer to initialize biases and the
GlorotUniform initializer to initialize weights. The latter generates
random numbers that fall within a uniform distribution whose lim‐
its are computed from the network topology.
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You judge the efficacy of training by examining information returned by the fit
method. fit returns a history object containing the training and validation metrics
specified in the metrics parameter passed to the compile method. For example,
metrics=['mae'] captures MAE at the end of each epoch. Charting these metrics lets
you determine whether you trained for the right number of epochs. It also lets you
know if the network is underfitting or overfitting. Figure 9-1 plots MAE over the
course of 30 training epochs.

Figure 9-1. Training and validation accuracy during training

The blue curve in Figure 9-1 reveals how the network fit to the training data. The
orange curve shows how it tested against the validation data. Most of the learning was
done in the first 20 epochs, but MAE continued to drop as training progressed. The
validation MAE nearly matched the training MAE at the end, which is an indication
that the network isn’t overfitting. You typically don’t care how well the network fits to
the training data. You care about the fit to the validation data because that indicates
how the network performs with data it hasn’t seen before. The greater the gap
between the training and validation accuracy, the greater the likelihood that the net‐
work is overfitting.

Once a neural network is trained, you call its predict method to make a prediction:

prediction = model.predict(np.array([[2, 2]]))

In this example, the network accepts two floating-point values as input and returns a
single floating-point value as output. The value returned by predict is that output.
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Sizing a Neural Network
A neural network is characterized by the number of layers (the depth of the network),
the number of neurons in each layer (the widths of the layers), the types of layers (in
this example, Dense layers of fully connected neurons), and the activation functions
used. There are other layer types, many of which I will introduce in later chapters.
Dropout layers, for example, can increase a network’s ability to generalize by ran‐
domly dropping connections between layers during weight updates, while Conv2D lay‐
ers enable us to build convolutional neural networks (CNNs) that excel at image
processing.

When designing a network, how do you pick the right number of layers and the right
number of neurons for each layer? The short answer is that the “right” width and
depth depends on the problem you’re trying to solve, the dataset you’re training with,
and the accuracy you desire. As a rule, you want the minimum width and depth
required to achieve that accuracy, and you get there using a combination of intuition
and experimentation. That said, here are a few guidelines to keep in mind:

• Greater widths and depths give the network more capacity to “learn” by fitting
more tightly to the training data. They also increase the likelihood of overfitting.
It’s the validation results that matter, and sometimes loosening the fit to the train‐
ing data allows the network to generalize better. The simplest way to loosen the
fit is to reduce the number of neurons.

• Generally speaking, you prefer greater width to greater depth in part to avoid the
vanishing gradient problem, which diminishes the impact of added layers. The
ReLU activation function provides some protection against vanishing gradients,
but that protection isn’t absolute. For an explanation, see “How to Fix the Vanish‐
ing Gradients Problem Using the ReLU”. In addition, a network with, say, 100
neurons in one layer trains faster than a network with five layers of 20 neurons
each because the former has fewer weights. Think about it: there are no connec‐
tions between neurons in one layer, but there are 1,600 connections (202 × 4)
between five layers containing 20 neurons each.

• Fewer neurons means less training time. State-of-the-art neural networks trained
with large datasets sometimes take days or weeks to train on high-end GPUs, so
training time is important.

In real life, data scientists experiment with various widths and depths to find the right
balance between training time, accuracy, and the network’s ability to generalize. For a
multilayer perceptron, you rarely ever need more than two hidden layers, and one is
often sufficient. A network with one or two hidden layers has the capacity to solve
even complex nonlinear problems. Two layers with 128 neurons each, for example,
gives you 16,384 (1282) weights that can be adjusted, plus 256 biases. That’s a lot of
fitting power. I frequently start with one or, at most, two layers of 512 neurons each
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and halve the width or depth until the validation accuracy drops below an acceptable
threshold.

Using a Neural Network to Predict Taxi Fares
Let’s put this knowledge to work building and training a neural network. The prob‐
lem that we’ll solve is the same one presented in Chapter 2: using data from the New
York City Taxi and Limousine Commission to predict taxi fares. We’ll use a neural
network as a regression model to make the predictions.

Download the CSV file containing the dataset if you didn’t download it in Chapter 2
and copy it into the Data directory where your Jupyter notebooks are hosted. Then
use the following code to load the dataset and show the first five rows. It contains
about 55,000 rows and is a subset of a much larger dataset that was recently used in
Kaggle’s New York City Taxi Fare Prediction competition:

import pandas as pd

df = pd.read_csv('Data/taxi-fares.csv', parse_dates=['pickup_datetime'])
df.head()

The data requires a fair amount of prep work before it’s useful—something that’s
quite common in machine learning and in deep learning too. Use the following state‐
ments to transform the raw dataset into one suitable for training, and refer to the
taxi-fare example in Chapter 2 for a step-by-step explanation of the transformations
applied:

from math import sqrt

df = df[df['passenger_count'] == 1]
df = df.drop(['key', 'passenger_count'], axis=1)

for i, row in df.iterrows():
    dt = row['pickup_datetime']
    df.at[i, 'day_of_week'] = dt.weekday()
    df.at[i, 'pickup_time'] = dt.hour
    x = (row['dropoff_longitude'] - row['pickup_longitude']) * 54.6
    y = (row['dropoff_latitude'] - row['pickup_latitude']) * 69.0
    distance = sqrt(x**2 + y**2)
    df.at[i, 'distance'] = distance

df.drop(['pickup_datetime', 'pickup_longitude', 'pickup_latitude',
         'dropoff_longitude', 'dropoff_latitude'], axis=1, inplace=True)

df = df[(df['distance'] > 1.0) & (df['distance'] < 10.0)]
df = df[(df['fare_amount'] > 0.0) & (df['fare_amount'] < 50.0)]
df.head()
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The resulting dataset contains columns for the day of the week (0–6, where 0 corre‐
sponds to Monday), the hour of the day (0–23), and the distance traveled in miles,
and from which outliers have been removed:

The next step is to create the neural network. Use the following statements to create a
network with an input layer that accepts three values (day, time, and distance), two
hidden layers with 512 neurons each, and an output layer with a single neuron (the
predicted fare amount):

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

model = Sequential()
model.add(Dense(512, activation='relu', input_dim=3))
model.add(Dense(512, activation='relu'))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mae', metrics=['mae'])
model.summary()

The call to summary in the last statement produces a concise summary of the network
topology, including the number of trainable parameters—weights and biases that can
be adjusted to fit the network to a dataset (Figure 9-2). For a given layer, the parame‐
ter count is the product of the number of neurons in that layer and the previous layer
(the number of weights connecting the neurons in the two layers) plus the number of
neurons in the layer (the biases associated with those neurons). This network is a rel‐
atively simple one, and yet it features more than a quarter million knobs and dials
that can be adjusted to fit it to a dataset.

Now separate the feature columns from the label column and use them to train the
network. Set validation_split to 0.2 to validate the network using 20% of the train‐
ing data. Train for 100 epochs and use a batch size of 100. Given that the dataset con‐
tains more than 38,000 samples, this means that about 380 backpropagation passes
will be performed in each epoch:

x = df.drop('fare_amount', axis=1)
y = df['fare_amount']

hist = model.fit(x, y, validation_split=0.2, epochs=100, batch_size=100)
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Figure 9-2. Trainable parameters in a simple neural network

Use the history object returned by fit to plot the training and validation accuracy for
each epoch:

%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()

err = hist.history['mae']
val_err = hist.history['val_mae']
epochs = range(1, len(err) + 1)

plt.plot(epochs, err, '-', label='Training MAE')
plt.plot(epochs, val_err, ':', label='Validation MAE')
plt.title('Training and Validation Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Mean Absolute Error')
plt.legend(loc='upper right')
plt.plot()
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Your results will be slightly different from mine, but they should look something like
this:

The final validation MAE was about 2.25, which means that on average, a taxi fare
predicted by this network should be accurate to within about $2.25.

Recall from Chapter 2 that a common accuracy measure for regression models is the
coefficient of determination, or R2 score. Keras doesn’t have a function for computing
R2 scores, but Scikit does. To that end, use the following statements to compute R2 for
the network:

from sklearn.metrics import r2_score

r2_score(y, model.predict(x))

Again, your results will differ from mine but will probably land at around 0.75.

Finish up by using the model to predict what it will cost to hire a taxi for a 2-mile trip
at 5:00 p.m. on Friday:

import numpy as np

model.predict(np.array([[4, 17, 2.0]]))

Now predict the fare amount for a 2-mile trip taken at 5:00 p.m. one day later (on
Saturday):

model.predict(np.array([[5, 17, 2.0]]))

Does the model predict a higher or lower fare amount for the same trip on Saturday
afternoon? Do the results make sense given that the data comes from New York City
cabs?
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Before you close out this notebook, use it as a basis for further experimentation. Here
are a few things you can try in order to gain further insights into neural networks:

• Run the notebook from start to finish a few times and note the differences in R2

scores as well as the MAE curves. Remember that neural networks are initialized
with random weights each time they’re created, and additional randomness dur‐
ing the training process further ensures that the results will vary from run to run.

• Vary the width of the hidden layers. I used 512 neurons in each layer and found
that doing so produced acceptable results. Would 128, 256, or 1,024 neurons per
layer improve the accuracy? Try it and find out. Since the results will vary slightly
from one run to the next, it might be useful to train the network several times in
each configuration and average the results.

• Vary the batch size. What effect does that have on training time, and why? How
about the effect on accuracy?

Finally, try reducing the network to one hidden layer containing just 16 neurons.
Train it again and check the R2 score. Does the result surprise you? How many train‐
able parameters does this network contain?

Binary Classification with Neural Networks
One of the common uses for machine learning is binary classification, which looks at
an input and predicts which of two possible classes it belongs to. Practical uses
include sentiment analysis, spam filtering, and fraud detection. Such models are
trained with datasets labeled with 1s and 0s representing the two classes, employ pop‐
ular learning algorithms such as logistic regression and Naive Bayes, and are fre‐
quently built with libraries such as Scikit-Learn.

Deep learning can be used for binary classification too. In fact, building a neural net‐
work that acts as a binary classifier is not much different than building one that acts
as a regressor. In the previous section, you built a neural network that solved a regres‐
sion problem. That network had an input layer that accepted three values—distance
to travel, hour of the day, and day of the week—and output a predicted taxi fare.
Building a neural network that performs binary classification involves making two
simple changes:

• Add an activation function—specifically, the sigmoid activation function—to the
output layer. sigmoid produces a value from 0.0 to 1.0 representing the probabil‐
ity that the input belongs to the positive class. For a reminder of what a sigmoid
function does, refer to the discussion of logistic regression in Chapter 3.
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• Change the loss function to binary_crossentropy, which is purpose-built for
binary classifiers. Accordingly, change metrics to '[accuracy]' so that accura‐
cies computed by the loss function are captured in the history object returned by
fit.

Here’s a network designed to perform binary classification rather than regression:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

model = Sequential()
model.add(Dense(512, activation='relu', input_dim=3))
model.add(Dense(512, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

That’s it. That’s all it takes to create a neural network that serves as a binary classifier.
You still call fit to train the network, and you use the returned history object to plot
the training and validation accuracy to determine whether you trained for a sufficient
number of epochs and see how well the network fit to the data.

What is binary cross-entropy, and what does it do to help a binary
classifier converge on a solution? During training, the cross-
entropy loss function exponentially increases the penalty for wrong
outputs to drive the weights and biases more aggressively in the
right direction.
Let’s say a sample belongs to the positive class (its label is 1), and
the network predicts that the probability it’s a 1 is 0.9. The cross-
entropy loss, also known as log loss, is –log(0.9), which is 0.04.
But if the network outputs a probability of 0.1 for the same sample,
the error is –log(0.1), which equals 1. What’s significant is that if
the predicted probability is really wrong, the penalty is much
higher. If the sample is a 1 and the network says the probability it’s
a 1 is a mere 0.0001, the cross-entropy loss is –log(0.0001), or 4.
Cross-entropy loss basically pats the optimizer on the back when
it’s close to the right answer and slaps it on the hand when it’s not.
The worse the prediction, the harder the slap.

To sum up, you build a neural network that performs binary classification by includ‐
ing a single neuron with sigmoid activation in the output layer and specifying
binary_crossentropy as the loss function. The output from the network is a proba‐
bility from 0.0 to 1.0 that the input belongs to the positive class. Doesn’t get much
simpler than that!
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Making Predictions
One of the benefits of a neural network is that it can easily fit nonlinear datasets. You
don’t have to worry about trying different learning algorithms as you do with conven‐
tional machine learning models; the network is the learning algorithm. As an exam‐
ple, consider the dataset in Figure 9-3, in which each data point consists of an x–y
coordinate pair and belongs to one of two classes.

Figure 9-3. Nonlinear dataset containing two classes

The following code trains a neural network to predict a class based on a point’s x and
y coordinates:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

model = Sequential()
model.add(Dense(128, activation='relu', input_dim=2))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
hist = model.fit(x, y, epochs=40, batch_size=10, validation_split=0.2)
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This network contains just one hidden layer with 128 neurons, and yet a plot of the
training and validation accuracy reveals that it is remarkably successful in separating
the classes:

Once a binary classifier is trained, you make predictions by calling its predict
method. Thanks to the sigmoid activation function, predict returns a number from
0.0 to 1.0 representing the probability that the input belongs to the positive class. In
this example, purple data points represent the negative class (0), while red data points
represent the positive class (1). Here the network is asked to predict the probability
that a data point at (–0.5, 0.0) belongs to the red class:

model.predict(np.array([[-0.5, 0.0]]))

The answer is 0.57, which indicates that (–0.5, 0.0) is more likely to be red than pur‐
ple. If you simply want to know which class the point belongs to, do it this way:

(model.predict(np.array([[-0.5, 0.0]])) > 0.5).astype('int32')

The answer is 1, which corresponds to red. Older versions of Keras included a
predict_classes method that did the same without the astype cast, but that method
was recently deprecated and removed.

Training a Neural Network to Detect Credit Card Fraud
Let’s train a neural network to detect credit card fraud. Begin by downloading a ZIP
file containing the dataset if you haven’t already and copying creditcard.csv from the
ZIP file into your notebooks’ Data subdirectory. It’s the same one used in Chapters 3
and 6. It contains information about 284,808 credit card transactions, including the
amount of each transaction and a label: 0 for legitimate transactions and 1 for fraudu‐
lent transactions. It also contains 28 columns named V1 through V28 whose meaning
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has been obfuscated with principal component analysis. The dataset is highly imbal‐
anced, containing fewer than 500 examples of fraudulent transactions.

Now load the dataset:

import pandas as pd

df = pd.read_csv('Data/creditcard.csv')
df.head(10)

Use the following statements to drop the Time column, divide the dataset into features
x and labels y, and split the dataset into two datasets: one for training and one for
testing. Rather than allow Keras to do the split for us, we’ll do it ourselves so that we
can later run the test data through the network and use a confusion matrix to analyze
the results:

from sklearn.model_selection import train_test_split

x = df.drop(['Time', 'Class'], axis=1)
y = df['Class']

x_train, x_test, y_train, y_test = train_test_split(
    x, y, test_size=0.2, stratify=y, random_state=0)

Create a neural network for binary classification:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

model = Sequential() 
model.add(Dense(128, activation='relu', input_dim=29))
model.add(Dense(1, activation='sigmoid')) 
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) 
model.summary()

The next step is to train the model. Notice the validation_data parameter passed to
fit, which uses the test data split off from the larger dataset to assess the model’s
accuracy as training takes place:

hist = model.fit(x_train, y_train, validation_data=(x_test, y_test),
                 epochs=10, batch_size=100)

Now plot the training and validation accuracy using the per-epoch values in the his‐
tory object:

%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()

acc = hist.history['accuracy']
val = hist.history['val_accuracy']
epochs = range(1, len(acc) + 1)
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plt.plot(epochs, acc, '-', label='Training accuracy')
plt.plot(epochs, val, ':', label='Validation accuracy')
plt.title('Training and Validation Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.plot()

The result looked like this for me. Remember that your results will be different thanks
to the randomness inherent to training neural networks:

On the surface, the validation accuracy (around 0.9994) appears to be very high. But
remember that the dataset is imbalanced. Fraudulent transactions represent less than
0.2% of all the samples, which means that the model could simply guess that every
transaction is legitimate and get it right about 99.8% of the time. Use a confusion
matrix to visualize how the model performs during testing with data it wasn’t trained
with:

from sklearn.metrics import ConfusionMatrixDisplay as cmd

sns.reset_orig()
y_predicted = model.predict(x_test) > 0.5
labels = ['Legitimate', 'Fraudulent']

cmd.from_predictions(y_test, y_predicted, display_labels=labels,
                     cmap='Blues', xticks_rotation='vertical')
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Here’s how it turned out for me:

Your results will probably vary. Indeed, train the model several times and you’ll get
different results each time. In this run, the model correctly identified 56,858 transac‐
tions as legitimate while misclassifying legitimate transactions just six times. This
means legitimate transactions are classified correctly about 99.99% of the time.
Meanwhile, the model caught more than 73% of the fraudulent transactions. That’s
acceptable, because credit card companies would rather allow 100 fraudulent transac‐
tions to go through than decline one legitimate transaction.

Data scientists often use three datasets, not two, to train and assess
the accuracy of a neural network: a training dataset for training, a
validation dataset for validating the network (and scoring its pro‐
gress) as training takes place, and a test dataset for evaluating the
network’s accuracy once training is complete.
The preceding example used the same dataset for validation and
testing—the 20% split off from the original dataset with
train_test_split. That’s ostensibly fine because validation data is
not used to adjust the network’s weights and biases during training.
However, if you really want to have confidence in the network’s
accuracy, it is never a bad idea to test it with a third dataset not
used for training or validation. In the real world, the ultimate test
of a deep-learning model’s accuracy is how it performs against data
that it has never seen before.
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A final note regarding this example has to do with an extra parameter you can pass to
the fit method that is particularly useful when dealing with imbalanced datasets. As
an experiment, try replacing the call to fit with the following statement:

hist = model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=10,
                 batch_size=100, class_weight={ 0: 1.0, 1: 0.01 })

Then run the notebook again from start to finish. In all likelihood, the resulting con‐
fusion matrix will show zero (or at most, one or two) misclassified legitimate transac‐
tions, but the percentage of correctly identified fraudulent transactions will decrease
too. The class_weight parameter in this example tells the model that you care a lot
more about classifying legitimate samples correctly than correctly identifying fraudu‐
lent samples. You can experiment with different weights for the two classes and find
the balance that best suits the business requirements that prompted you to build the
model in the first place.

Multiclass Classification with Neural Networks
Here again is a simple binary classifier that accepts two inputs, has a hidden layer
with 128 neurons, and outputs a value from 0.0 to 1.0 representing the probability
that the input belongs to the positive class:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

model = Sequential()
model.add(Dense(128, activation='relu', input_dim=2))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='adam', loss=' binary_crossentropy',
              metrics=['accuracy'])

Key elements include an output layer with one neuron assigned the sigmoid activa‐
tion function, and binary_crossentropy as the loss function. Three simple modifica‐
tions repurpose this network to do multiclass classification:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

model = Sequential()
model.add(Dense(128, activation='relu', input_dim=2))
model.add(Dense(4, activation='softmax'))
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
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The changes are as follows:

• The output layer contains one neuron per class rather than just one neuron. If the
dataset contains four classes, then the output layer has four neurons. If the data‐
set contains 10 classes, then the output layer has 10 neurons. Each neuron corre‐
sponds to one class.

• The output layer uses the softmax activation function rather than the sigmoid
activation function. Each neuron in the output layer yields a probability for the
corresponding class, and thanks to the softmax function, the sum of all the prob‐
abilities is 1.0.

• The loss function is sparse_categorical_crossentropy. During training, this
loss function exponentially penalizes error in the probabilities predicted by a
multiclass classifier, just as binary_crossentropy does for binary classifiers.

After defining the network, you call fit to train it and predict to make predictions.
Since an example is worth a thousand words, let’s fit a neural network to a two-
dimensional dataset comprising four classes (Figure 9-4).

Figure 9-4. Nonlinear dataset containing four classes

The following code trains a neural network to predict a class based on a point’s x and
y coordinates:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

model = Sequential()
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model.add(Dense(128, activation='relu', input_dim=2))
model.add(Dense(4, activation='softmax'))
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

hist = model.fit(x, y, epochs=40, batch_size=10, validation_split=0.2)

A plot of the training and validation accuracy reveals that the network had little trou‐
ble separating the classes:

You make predictions by calling the classifier’s predict method. For each input,
predict returns an array of probabilities—one per class. The predicted class is the
one assigned the highest probability. In this example, purple data points represent
class 0, light blue represent class 1, taupe represent class 2, and red represent class 3.
Here the network is asked to classify a point that lies at (0.2, 0.8):

model.predict(np.array([[0.2, 0.8]]))

The answer is an array of four probabilities corresponding to classes 0, 1, 2, and 3, in
that order:

[2.1877741e-02, 5.3804164e-05, 5.0240371e-02, 9.2782807e-01]

The network predicted there’s a 2% chance that (0.2, 0.8) corresponds to class 0, a 0%
chance that it corresponds to class 1, a 5% chance that it corresponds to class 2, and a
93% chance that it corresponds to class 3. Looking at the plot, that seems like a rea‐
sonable answer.

If you simply want to know which class the point belongs to, you can do it this way:

np.argmax(model.predict(np.array([[0.2, 0.8]])), axis=1)
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The answer is 3, which corresponds to red. Older versions of Keras included a
predict_classes method that did the same without the call to argmax, but that
method has since been deprecated and removed.

Keras also includes a loss function named categorical_cross
entropy that is frequently used for multiclass classification. It
works like sparse_categorical_cross entropy, but it requires
labels to be one-hot-encoded. Rather than pass fit a label column
containing values from 0 to 3, for example, you pass it four
columns containing 0s and 1s. Keras provides a utility function
named to_categorical to do the encoding. If you use
sparse_categorical_crossentropy, however, you can use the
label column as is.

Training a Neural Network to Recognize Faces
Chapter 5 documented the steps for training a support vector machine to recognize
faces. Let’s train a neural network to do the same. We’ll use the same dataset as before:
the Labeled Faces in the Wild (LFW) dataset, which contains more than 13,000 facial
images of famous people and is built into Scikit as a sample dataset. Recall that of the
more than 5,000 people represented in the dataset, 1,680 have two or more facial
images, while only 5 have 100 or more. We’ll set the minimum number of faces per
person to 100, which means that five sets of faces corresponding to five famous peo‐
ple will be imported.

Start by creating a new Jupyter notebook and using the following statements to load
the dataset:

import pandas as pd
from sklearn.datasets import fetch_lfw_people

faces = fetch_lfw_people(min_faces_per_person=100, slice_=None)
faces.images = faces.images[:, 35:97, 39:86]
faces.data = faces.images.reshape(faces.images.shape[0], faces.images.shape[1] *
                                  faces.images.shape[2])
image_count = faces.images.shape[0]
image_height = faces.images.shape[1]
image_width = faces.images.shape[2]
class_count = len(faces.target_names)

In total, 1,140 facial images were loaded. After cropping, each measures 47 × 62 pix‐
els. Use the following code to show the first 24 images in the dataset and the people to
whom the faces belong:

%matplotlib inline
import matplotlib.pyplot as plt
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fig, ax = plt.subplots(3, 8, figsize=(18, 10))
for i, axi in enumerate(ax.flat):
    axi.imshow(faces.images[i], cmap='gist_gray')
    axi.set(xticks=[], yticks=[], xlabel=faces.target_names[faces.target[i]])

Check the balance in the dataset by generating a histogram showing how many facial
images were imported for each person:

from collections import Counter
import seaborn as sns
sns.set()

counts = Counter(faces.target)
names = {}

for key in counts.keys():
    names[faces.target_names[key]] = counts[key]

df = pd.DataFrame.from_dict(names, orient='index')
df.plot(kind='bar')

There are far more images of George W. Bush than of anyone else in the dataset. Clas‐
sification models are best trained with balanced datasets. Use the following code to
reduce the dataset to 100 images of each person:

import numpy as np

mask = np.zeros(faces.target.shape, dtype=bool)

for target in np.unique(faces.target):
    mask[np.where(faces.target == target)[0][:100]] = 1

x_faces = faces.data[mask]
y_faces = faces.target[mask]
x_faces.shape

x_faces contains 500 facial images, and y_faces contains the labels that go with
them: 0 for Colin Powell, 1 for Donald Rumsfeld, and so on.

The next step is to split the data for training and testing. We’ll set aside 20% of the
data for testing, let Keras use it to validate the model during training, and later use it
to assess the results with a confusion matrix:

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(
    face_images, y_faces, train_size=0.8, stratify=y_faces, random_state=0)
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Normally you’d divide all the pixel values by 255 because neural
networks frequently train better with normalized data, and divid‐
ing by 255 is a simple way to normalize pixel values. It’s not
uncommon to use Scikit’s StandardScaler class to apply unit var‐
iance instead. Dividing by 255 is unnecessary in this example
because the pixels in the LFW dataset have already been normal‐
ized that way.

Create a neural network containing one hidden layer with 512 neurons. Use
sparse_categorical_crossentropy as the loss function and softmax as the activa‐
tion function in the output layer since this is a multiclass classification task:

from tensorflow.keras.layers import Dense
from tensorflow.keras.models import Sequential

model = Sequential()
model.add(Dense(512, activation='relu',
                input_shape=(image_width * image_height,)))
model.add(Dense(class_count, activation='softmax'))
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
model.summary()

Now train the network:

hist = model.fit(x_train, y_train, validation_data=(x_test, y_test),
                 epochs=100, batch_size=20)

Plot the training and validation accuracy:

acc = hist.history['accuracy']
val_acc = hist.history['val_accuracy']
epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, '-', label='Training Accuracy')
plt.plot(epochs, val_acc, ':', label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.plot()

Finally, use a confusion matrix to visualize how the network performs against test
data:

from sklearn.metrics import ConfusionMatrixDisplay as cmd

sns.reset_orig()
y_pred = model.predict(x_test)
fig, ax = plt.subplots(figsize=(5, 5))
ax.grid(False)
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cmd.from_predictions(y_test, y_pred.argmax(axis=1),
                     display_labels=faces.target_names, colorbar=False,
                     cmap='Blues', xticks_rotation='vertical', ax=ax)

How many times did the model correctly identify George W. Bush? How many times
did it identify him as someone else? Would the network be just as accurate with 128
neurons in the hidden layer as it is with 512?

Dropout
The goal of any machine learning model is to make accurate predictions. In a perfect
world, the gap between training accuracy and validation accuracy would be close to 0
in the later stages of training a neural network. In the real world, it rarely happens
that way. Training accuracy for the model in the previous section approached 100%,
but validation accuracy probably peaked between 80% and 85%. This means the
model isn’t generalizing as well as you’d like. It learned the training data very well, but
when presented with data it hadn’t seen before (the validation data), it underper‐
formed. This may be a sign that the model is overfitting. In the end, it’s not training
accuracy that matters; it’s how accurately the model responds to new data.

One way to combat overfitting is to reduce the depth of the network, the width of
individual layers, or both. Fewer neurons means fewer trainable parameters, and
fewer parameters makes it harder for the network to fit too tightly to the training
data.

Another way to guard against overfitting is to introduce dropout to the network.
Dropout randomly drops connections between layers during training to prevent the
network from learning the training data too well. It’s like reading a book but skipping
every other page in hopes that you’ll learn high-level concepts without getting bogged
down in the details. Dropout was introduced in a 2014 paper titled “Dropout: A Sim‐
ple Way to Prevent Neural Networks from Overfitting”.

Keras’s Dropout class makes adding dropout to a network dead-simple. To demon‐
strate, go back to the example in the previous section and redefine the network this
way:

from tensorflow.keras.layers import Dense, Dropout
from tensorflow.keras.models import Sequential

model = Sequential()
model.add(Dense(512, activation='relu',
                input_shape=(image_width * image_height,)))
model.add(Dropout(0.2))
model.add(Dense(class_count, activation='softmax'))
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
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Now train the network again and plot the training and validation accuracy. Here’s
how it turned out for me:

The gap didn’t close much (if at all), but sometimes adding dropout in this manner
will increase the validation accuracy. The key statement in this example is
model.add(Dropout(0.2)), which adds a Dropout layer that randomly drops
(ignores) 20% of the connections between the neurons in the hidden layer and the
neurons in the output layer in each backpropagation pass. You can be more aggres‐
sive by dropping more connections—increasing 0.2 to 0.4, for example—but you can
also reach a point of diminishing returns. Note that if you’re super-aggressive with
the dropout rate (for example, 0.5), you’ll probably need to train the model for more
epochs. Making it harder to learn means taking longer to learn too.

In practice, the only way to know whether dropout will improve a model’s ability to
generalize is to try it. In addition to trying different dropout percentages, you can try
introducing dropout between two or more layers in hopes of finding a combination
that works.

Saving and Loading Models
In Chapter 7, you learned how to serialize (save) a trained Scikit model and load it in
a client app. The same requirement applies to neural networks: you need a way to
save a trained network and load it later in order to operationalize it.

You can get the weights and biases from a model with Keras’s get_weights method,
and you can restore them with set_weights. But saving a trained model so that you
can re-create it later requires an additional step. Specifically, you must save the net‐
work architecture: the number of and types of layers, the number of neurons in each
layer, the activation functions used in each layer, and so on. Fortunately, all that
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requires just one line of code. That line of code differs depending on which of two
formats you want the model saved in:

model.save('my_model.h5') # Save the model in Keras's H5 format
model.save('my_model')    # Save the model in TensorFlow's native format

Loading a saved model is equally simple:

from tensorflow.keras.models import load_model

model = load_model('my_model.h5') # Load model saved in H5 format
model = load_model('my_model') # Load model saved in TensorFlow format

Saving the model in H5 format produces a single .h5 file that encapsulates the entire
model. Saving it in TensorFlow’s native format, also known as the SavedModel format,
produces a series of files and subdirectories containing the serialized model. Google
recommends using the latter, although it’s still common to see Keras’s H5 format
used. There is no functional difference between the two, but .h5 files can only be read
by Keras apps written in Python, while models saved in SavedModel format can be
loaded by other frameworks. Apps written in C# with Microsoft’s ML.NET, for exam‐
ple, can load models saved in SavedModel format regardless of the programming lan‐
guage in which the model was crafted.

The H5 format was originally devised so that Keras models could
be saved in a manner independent of the deep-learning framework
used as the backend. Keras is still available in a standalone version
that supports backends other than TensorFlow (specifically, CNTK
and Theano), but those frameworks have been deprecated—they
are no longer being developed—and are rarely used today other
than in legacy models. The version of Keras built into TensorFlow
supports only TensorFlow backends.

Once a saved model is loaded, it acts identically to the original. The predictions that it
makes, for example, are identical to the predictions made by the original model. You
can even further train the model by running additional training samples through it.
This highlights one of the major differences between neural networks and traditional
machine learning models built with Scikit. Since the state of a network is defined by
its weights and biases and loading a model restores the weights and biases, neural
networks inherently support incremental training, also known as continual learning,
so that they can become smarter over time. Most Scikit models do not because serial‐
izing the models doesn’t save the internal state accumulated as training takes place.

To recap: you can run a million training samples through a neural network, save it,
load it, and run another million training samples through it and the network picks up
right where it left off. The results are identical to running 2 million training samples
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through the network to begin with save for minor differences that result from the
randomness that is always inherent to training.

Keras Callbacks
As you train a neural network and it achieves peak validation accuracy, the peak is
hard to capture. Rather than nicely level out in later epochs, the validation accuracy
may go down or oscillate between peaks and valleys. Given the stochastic (random)
nature of neural networks, if you mark the epoch that achieved maximum validation
accuracy and train again for exactly that number of epochs, you won’t get the same
results the second time. How do you train for exactly the right number of epochs to
produce the best (most accurate) network possible?

An elegant solution is Keras’s callbacks API, which lets you write callback functions
that are called at various points during training—for example, at the end of each
epoch—and that have the ability to alter and even stop the training process. Here’s an
example that creates a child class named StopCallback that inherits from Keras’s
Callback class. The child class implements the on_epoch_end function that’s called at
the end of each training epoch and stops training if the validation accuracy
reaches 95%:

from tensorflow.keras.callbacks import Callback

class StopCallback(Callback):
    accuracy_threshold = None
    
    def __init__(self, threshold):
        self.accuracy_threshold = threshold
        
    def on_epoch_end(self, epoch, logs=None):
        if (logs.get('val_accuracy') >= self.accuracy_threshold):
            self.model.stop_training = True

callback = StopCallback(0.95)
model.fit(x, y, validation_split=0.2, epochs=100, batch_size=20,
          callbacks=[callback])
model.save('best_model.h5')

Note the validation accuracy threshold (0.95) passed to StopCallback’s constructor.
The call to fit ostensibly trains the network for 100 epochs, but if the validation
accuracy reaches 0.95 before that, training stops in its tracks. The final statement
saves the model that achieved that accuracy.

on_epoch_end is one of several functions you can implement in classes that inherit
from Callback to receive a callback when a predetermined checkpoint is reached
in the training process. Others include on_epoch_begin, on_train_begin,
on_train_end, on_train_batch_begin, and on_train_batch_end. You’ll find a
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complete list, along with examples, in “Writing Your Own Callbacks” in the Keras
documentation.

In addition to providing a base Callback class from which you can create your own
callback classes, Keras provides several callback classes of its own. One of them is the
EarlyStopping class, which lets you stop training based on a specified criterion such
as decreasing validation accuracy or increasing training loss without writing a lot of
code. In the following example, training stops early if the validation accuracy fails to
improve for five consecutive epochs (patience=5). When training is halted, the net‐
work’s weights and biases are automatically restored to what they were when valida‐
tion accuracy peaked in the final five epochs (restore_best_weights=True):

from tensorflow.keras.callbacks import EarlyStopping

callback = EarlyStopping(monitor='val_accuracy', patience=5,
                         restore_best_weights=True)
model.fit(x, y, validation_split=0.2, epochs=100, batch_size=20,
          callbacks=[callback])

Stopping the training process based on rising training loss rather than decreasing val‐
idation accuracy at the end of each epoch requires a minor code change:

from tensorflow.keras.callbacks import EarlyStopping

callback = EarlyStopping(monitor='loss', patience=5, restore_best_weights=True)
model.fit(x, y, validation_split=0.2, epochs=100, batch_size=20,
          callbacks=[callback])

The callback that is used perhaps more than any other is ModelCheckpoint, which
saves a model at specified intervals during training or, if you set save_best_only to
True, saves the most accurate model. The next example trains a model for 100 epochs
and saves the one that exhibits the highest validation accuracy in best_model.h5:

from tensorflow.keras.callbacks import ModelCheckpoint

callback = ModelCheckpoint(filepath='best_model.h5', monitor='val_accuracy',
                           save_best_only=True)
model.fit(x, y, validation_split=0.2, epochs=100, batch_size=20,
          callbacks=[callback])

Another frequently used callback is TensorBoard, which logs a variety of information
to a specified location in the filesystem as a model is trained. The following example
logs to the logs subdirectory of the current directory:

from tensorflow.keras.callbacks import TensorBoard

callback = TensorBoard(log_dir='logs', histogram_freq=1)
model.fit(x_train, y_train, validation_split=0.2, epochs=100, batch_size=20,
          callbacks=[callback])
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You can use a tool called TensorBoard to monitor accuracy and loss, changes in the
model’s weights and biases, and more while training takes place or after it has com‐
pleted. You can launch TensorBoard from a Jupyter notebook and point it to the logs
subdirectory with a command like this one:

%tensorboard --logdir logs

Or you can launch it from a command prompt by executing the same command
without the percent sign. Then point your browser to http://localhost:6006 to open
the TensorBoard console (Figure 9-5). “Get Started with TensorBoard” in the Tensor‐
Flow documentation contains a helpful tutorial on the basics of TensorBoard. It’s an
indispensable tool in the hands of professionals, especially when training complex
models that require hours, days, or even weeks to fully train.

Figure 9-5. TensorBoard showing the results of training a neural network
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Other Keras callback classes include LearningRateScheduler for adjusting the learn‐
ing rate at the beginning of each epoch and CSVLogger for capturing the results of
each training epoch in a CSV file. Refer to the callbacks API documentation for a
complete list. In addition, observe that the fit method’s callbacks parameter is a
Python list, which means you can specify multiple callbacks when you train a model.
You could use one callback to stop training if certain conditions are met, for example,
and another callback to log training metrics in a CSV file.

Summary
Keras and TensorFlow are widely used open source frameworks that facilitate build‐
ing, training, saving, loading, and consuming (making predictions with) neural net‐
works. You can build neural networks in a variety of programming languages using
native TensorFlow APIs, but Keras abstracts those APIs and makes deep learning
much more approachable. Keras apps are written in Python.

Neural networks, like traditional machine learning models, can be used to solve
regression problems and classification problems. A network that performs regression
has one neuron in the output layer with no activation function; the output from the
network is a floating-point number. A network that performs binary classification
also has one neuron in the output layer, but the sigmoid activation function ensures
that the output is a value from 0.0 to 1.0 representing the probability that the input
represents the positive class. For multiclass classification, the number of neurons in
the output layer equals the number of classes the network can predict. The softmax
activation function transforms the raw values assigned to the output neurons into an
array of probabilities for each class.

When you find that a neural network is fitting too tightly to the training data, one
way to combat overfitting and increase the network’s ability to generalize is to reduce
the complexity of the network: reduce the number of layers, the number of neurons
in individual layers, or both. Another approach is to add dropout to the network.
Dropout purposely impedes a network’s ability to learn the training data by randomly
ignoring a subset of the connections between layers when updating weights and
biases.

Keras’s callbacks API lets you customize the training process. By processing the call‐
backs that occur at the end of each training epoch, for example, you can check the
model’s accuracy and halt training if it has reached an acceptable level. Keras also
includes a simple and easy-to-use API for saving and loading trained models. This is
essential for operationalizing the models that you train—deploying them to produc‐
tion and using the predictive powers developed during training.

The facial recognition model in this chapter exceeded 80% in validation accuracy, but
modern deep-learning models often achieve 99% accuracy on the same dataset. It
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won’t surprise you to learn that there is more to deep learning than multilayer percep‐
trons. We’ll take a deep dive into facial recognition in Chapter 11, but first we’ll
explore a different type of neural network—one that’s particularly adept at solving
computer-vision problems. It’s called the convolutional neural network, and it is the
subject of Chapter 10.
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CHAPTER 10

Image Classification with Convolutional
Neural Networks

Computer vision is a branch of deep learning in which computers discern informa‐
tion from images. Real-world uses include identifying objects in photos, removing
inappropriate images from social media sites, counting the cars in line at a tollbooth,
and recognizing faces in photos. Computer-vision models can even be combined with
natural language processing (NLP) models to caption photos. I snapped a photo
while on vacation and asked Azure’s Computer Vision service to caption it. The result
is shown in Figure 10-1. It’s somewhat remarkable given that no human intervention
was required.

Figure 10-1. “A body of water with a dock and a building in the background”—Azure AI
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The field of computer vision has advanced rapidly in recent years, mostly due to con‐
volutional neural networks, also known as CNNs or ConvNets. In 2012, an eight-layer
CNN called AlexNet outperformed traditional machine learning models entered in
the annual ImageNet Large Scale Visual Recognition Challenge (ILSVRC) by achiev‐
ing an error rate of 15.3% when identifying objects in photos. In 2015, ResNet-152
featuring a whopping 152 layers won the challenge with an error rate of just 3.5%,
which exceeds a human’s ability to classify images featured in the competition.

CNNs are magical because they treat images as images rather than just arrays of pixel
values. They use a decades-old technology called convolution kernels to extract “fea‐
tures” from images, allowing them to recognize the shape of a cat’s head or the outline
of a dog’s tail. Moreover, they are easy to build with Keras and TensorFlow.

State-of-the-art CNNs such as ResNet-152 are trained at great expense with millions
of images on GPUs, but there’s a lot you can do with an ordinary CPU. In this chap‐
ter, you’ll learn what CNNs are and how they work, and you’ll build and train a few
CNNs of your own. You’ll also learn how to leverage advanced CNNs published for
public consumption by companies such as Google and Microsoft, and how to use a
technique called transfer learning to repurpose those CNNs to solve domain-specific
problems.

Understanding CNNs
Figure 10-2 shows the topology of a basic CNN. It begins with one or more sets of
convolution layers and pooling layers. Convolution layers extract features from images,
generating transformed images that are commonly referred to as feature maps
because they highlight distinguishing features such as shapes and contours. Pooling
layers reduce the feature maps’ size by half so that features can be extracted at various
resolutions and are less sensitive to small changes in position. Output from the final
pooling layer is flattened to one dimension and input to one or more dense layers for
classification. The convolution and pooling layers are called bottleneck layers since
they reduce the dimensionality of images input to them. They also account for the
bulk of the computation time during training.

Convolution layers extract features from images by passing convolution kernels over
them—the same technique used by image editing tools to blur, sharpen, and emboss
images. A kernel is simply a matrix of values. It usually measures 3 × 3, but it can be
larger. To process an image, you place the kernel in the upper-left corner of the
image, multiply the kernel values by the pixel values underneath, and compute a new
value for the center pixel by summing the products, as shown in Figure 10-3. Then
you move the kernel one pixel to the right and repeat the process, continuing row by
row and column by column until the entire image has been processed.
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Figure 10-2. Convolutional neural network

Figure 10-3. Processing image pixels with a 3 × 3 convolution kernel

Figure 10-4 shows what happens when you apply a 3 × 3 kernel to a hot dog image.
This particular kernel is called a bottom Sobel kernel, and it’s designed to do edge
detection by highlighting edges as if a light were shined from the bottom. The convo‐
lution layers of a CNN use kernels like this one to extract features that help distin‐
guish one class from another.
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Figure 10-4. Processing an image with a bottom Sobel kernel

A convolution layer doesn’t use just one kernel to process images. It uses many—
sometimes 100 or more. The kernel values aren’t determined ahead of time. They are
initialized with random values and then learned (adjusted) as the CNN is trained, just
as the weights connecting neurons in dense layers are learned. Each kernel also has a
bias associated with it, just like a neuron in a dense layer. The images in Figure 10-5
were generated by the first convolution layer in a trained CNN. You can see how the
various convolution kernels allow the network to view the same hot dog image in dif‐
ferent ways, and how certain features such as the shape of the bun and the ribbon of
mustard on top are highlighted.

Figure 10-5. Images generated by convolution kernels in a CNN

Pooling layers downsample images to reduce their size. The most common resizing
technique is max pooling, which divides images into 2 × 2 blocks of pixels and selects
the highest of the four values in each block. An alternative is average pooling, which
averages the values in each block.
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Figure 10-6 shows how an image contracts as it passes through successive pooling
layers. The first row came from the first pooling layer, the second row came from the
second pooling layer, and so on.

Figure 10-6. Images generated by pooling layers in a CNN

Pooling isn’t the only way to downsize an image. While less common, reduction can
be accomplished without pooling layers by setting a convolution layer’s stride to 2.
Stride is the number of pixels a convolution kernel moves as it passes over an image.
It defaults to 1, but setting it to 2 halves the image size by ignoring every other row
and every other column of pixels.

The dense layers at the end of the network classify features extracted from the bottle‐
neck layers and are referred to as the CNN’s classification layers. They are no different
than the multilayer perceptrons featured in Chapter 9. For binary classification, the
output layer contains one neuron and uses the sigmoid activation function. For mul‐
ticlass classification, the output layer contains one neuron per class and uses the soft
max activation function.

There’s no law that says bottleneck layers have to be paired with
classification layers. You could take the feature maps output from
the bottleneck layers and classify them with a support vector
machine rather than a multilayer perceptron. It’s not as far-fetched
as it sounds. In Chapter 12, I’ll introduce one well-known model
that does just that.
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Using Keras and TensorFlow to Build CNNs
To simplify building CNNs that classify images, Keras offers the Conv2D class, which
models convolution layers, and the MaxPooling2D class, which implements max pool‐
ing layers. The following statements create a CNN with two pairs of convolution and
pooling layers, a flatten layer to reshape the output into a 1D array for input to a
dense layer, a dense layer to classify the features extracted from the bottleneck layers,
and a softmax output layer for classification:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense

model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(MaxPooling2D(2, 2))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(2, 2))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(10, activation='softmax'))

The first parameter passed to the Conv2D function is the number of convolution ker‐
nels to include in the layer. More kernels means more fitting power, similar to the
number of neurons in a dense layer. The second parameter is the dimensions of each
kernel. You sometimes get greater accuracy from 5 × 5 kernels, but a kernel that size
increases training time by requiring 25 multiplication operations for each pixel as
opposed to nine for a 3 × 3 kernel. The input_shape parameter in the first layer
specifies the size of the images input to the CNN: in this case, one-channel (grayscale)
28 × 28 images. All the images used to train a CNN must be the same size.

Conv2D processes images, which are two-dimensional. Keras also
offers the Conv1D class for processing 1D data and Conv3D for 3D
data. The former finds use processing text and time-series data.
Canonical use cases for Conv3D include analyzing video and 3D
medical images.

Given a set of images with a relatively high degree of separation between classes, it’s
perfectly feasible to train a CNN to classify those images on a typical laptop or PC. A
great example is the MNIST dataset, which contains 60,000 training images of
scanned, handwritten digits, each measuring 28 × 28 pixels, plus 10,000 test images.
Figure 10-7 shows the first 50 scans in the training set.
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Figure 10-7. The MNIST digits dataset

Let’s train a CNN to recognize digits in the MNIST dataset, which conveniently is one
of several sample datasets built into Keras. Begin by creating a new Jupyter notebook
and using the following statements to load the dataset, reshape the 28 × 28 images
into 28 × 28 × 1 arrays (28 × 28 images containing a single color channel), and divide
the pixel values by 255 as a simple form of normalization:

from tensorflow.keras.datasets import mnist

(train_images, y_train), (test_images, y_test) = mnist.load_data()
x_train = train_images.reshape(60000, 28, 28, 1) / 255
x_test = test_images.reshape(10000, 28, 28, 1) / 255

Next, define a CNN that accepts 28 × 28 × 1 arrays of pixel values as input, contains
two pairs of convolution and pooling layers, and has a softmax output layer with 10
neurons since the dataset contains scans of 10 different digits:

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten
from tensorflow.keras.models import Sequential

model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(MaxPooling2D(2, 2))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(2, 2))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
model.summary(line_length=80)
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Figure 10-8 shows the output from the call to summary on the final line. The summary
reveals a lot about how this CNN processes images. Each pooling layer reduces the
image size by half, while each convolution layer reduces the image’s height and width
by two pixels. Why is that? By default, a convolution kernel doesn’t start with its cen‐
ter cell over the pixel in the upper-left corner of the image; rather, its upper-left cor‐
ner is aligned with the image’s upper-left corner. For a 3 × 3 kernel, there’s a 1-pixel-
wide border around the edges that doesn’t survive the convolution. (For a 5 × 5
kernel, the border that doesn’t survive is 2 pixels wide.) The term for this is padding,
and if you’d like, you can override the default behavior to push the kernel’s center cell
right up to the edges of the image. In Keras, this is accomplished by including a
padding='same' parameter in the call to Conv2D.

Figure 10-8. Output from the summary method

Another takeaway is that each 28 × 28 image exits the first convolution layer as a 3D
array or tensor measuring 26 × 26 × 32: one 26 × 26 feature map for each of the 32
kernels. After max pooling, the tensor is reduced to 13 × 13 × 32 and input to the
second convolution layer, where 64 more kernels filter features from the thirty-two
13 × 13 feature maps and combine them to produce 64 new feature maps (a tensor
measuring 11 × 11 × 64). A final pooling layer reduces that to 5 × 5 × 64. These values
are flattened into a 1D tensor containing 1,600 values and fed into a dense layer for
classification.
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The big picture here is that the CNN transforms each 28 × 28
image comprising 784 pixel values into an array of 1,600 floating-
point numbers that (hopefully) distinguishes the contents of the
image more clearly than ordinary pixel values do. That’s what bot‐
tleneck layers do: they transform matrices of integer pixel values
into tensors of floating-point numbers that better characterize the
images input to them. As you’ll see in Chapter 13, NLP networks
use word embeddings to create dense vector representations of the
words in a document. Dense vector representation is a term you’ll
encounter a lot in deep learning. It’s nothing more than arrays of
floating-point numbers that do more to characterize the input than
the input data itself.

The output from summary would look exactly the same if the images input to the net‐
work were three-channel color images rather than one-channel grayscale images.
Applying a convolution layer with n kernels to an image produces n feature maps
regardless of image depth, just as applying a convolution layer featuring n kernels to
the feature maps output by preceding layers produces n new feature maps regardless
of input depth. Internally, CNNs use tensor dot products to produce 2D feature maps
from 3D feature maps. Python’s NumPy library includes a function named tensordot
for computing tensor dot products quickly.

Now train the network and plot the training and validation accuracy:

%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()

hist = model.fit(x_train, y_train,
                 validation_data=(x_test, y_test),
                 epochs=10, batch_size=50)
acc = hist.history['accuracy']
val_acc = hist.history['val_accuracy']
epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, '-', label='Training Accuracy')
plt.plot(epochs, val_acc, ':', label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')

Once trained, this simple CNN can achieve 99% accuracy classifying handwritten
digits:
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One reason it can attain such accuracy is the number of training samples—roughly
6,000 per class. (As a test, I trained the network with just 100 samples of each class
and got 92% accuracy.) Another factor is that a 2 looks very different from, say, an 8.
If a person can rather easily distinguish between the two, then a CNN can too.

Training a CNN to Recognize Arctic Wildlife
A basic CNN can easily achieve 99% accuracy on the MNIST dataset. But it isn’t as
easy when the problem is more perceptual—for example, when the goal is to deter‐
mine whether a photo contains a dog or a cat. One reason is that most 8s look a lot
alike, while dogs and cats come in many varieties. Another factor is that each digit in
the MNIST dataset is carefully cropped to precisely fill the frame, whereas dogs and
cats can appear anywhere in the frame and can be photographed in different poses
and from an infinite number of angles.

To demonstrate, let’s train a CNN to distinguish between Arctic foxes, polar bears,
and walruses. For context, imagine you’ve been tasked with creating a system that
uses AI to examine pictures snapped by motion-activated cameras deployed in the
Arctic to document polar bear activity.

Start by downloading a ZIP file containing images for training and testing the CNN.
Unpack the ZIP file and place its contents in a subdirectory named Wildlife where
your Jupyter notebooks are hosted. The ZIP file contains folders named train, test,
and samples. Each folder contains subfolders named arctic_fox, polar_bear, and wal‐
rus. The training folders contain 100 images each, while the test folders contain 40
images each. Figure 10-9 shows some of the polar bear training images. These are
public images that were downloaded from the internet and cropped and resized to
224 × 224 pixels.
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Figure 10-9. Polar bear images

Now create a Jupyter notebook and use the following code to define a pair of helper
functions—one to load a batch of images from a specified location in the filesystem
and assign them labels, and another to show the first eight images in a batch of
images:

import os
from tensorflow.keras.preprocessing import image
import matplotlib.pyplot as plt
%matplotlib inline

def load_images_from_path(path, label):
    images, labels = [], []

    for file in os.listdir(path):
        img = image.load_img(os.path.join(path, file), target_size=(224, 224, 3))
        images.append(image.img_to_array(img))
        labels.append((label))

    return images, labels

def show_images(images):
    fig, axes = plt.subplots(1, 8, figsize=(20, 20),
                            subplot_kw={'xticks': [], 'yticks': []})

    for i, ax in enumerate(axes.flat):
        ax.imshow(images[i] / 255)

x_train, y_train, x_test, y_test = [], [], [], []

Use the following statements to load 100 Arctic fox training images and plot a subset
of them:

images, labels = load_images_from_path('Wildlife/train/arctic_fox', 0)
show_images(images)
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x_train += images
y_train += labels

Do the same to load and label the polar bear training images:

images, labels = load_images_from_path('Wildlife/train/polar_bear', 1)
show_images(images)

x_train += images
y_train += labels

And then the walrus training images:

images, labels = load_images_from_path('Wildlife/train/walrus', 2)
show_images(images)

x_train += images
y_train += labels

You also need to load the images used to validate the CNN. Start with 40 Arctic fox
test images:

images, labels = load_images_from_path('Wildlife/test/arctic_fox', 0)
show_images(images)

x_test += images
y_test += labels

Then the polar bear test images:

images, labels = load_images_from_path('Wildlife/test/polar_bear', 1)
show_images(images)

x_test += images
y_test += labels

And finally the walrus test images:

images, labels = load_images_from_path('Wildlife/test/walrus', 2)
show_images(images)

x_test += images
y_test += labels

The next step is to normalize the training and testing images by dividing their pixel
values by 255:

import numpy as np

x_train = np.array(x_train) / 255
x_test = np.array(x_test) / 255

y_train = np.array(y_train)
y_test = np.array(y_test)
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Now it’s time to build a CNN. Since the images measure 224 × 224 and we want the
final feature maps to compress as much information as possible into a small space,
we’ll use five pairs of convolution and pooling layers to extract features from the
training images at five resolutions: 224 × 224, 111 × 111, 54 × 54, 26 × 26, and
12 × 12. We’ll follow those with a dense layer and a softmax output layer containing
three neurons—one for each of the three classes:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense

model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(224, 224, 3)))
model.add(MaxPooling2D(2, 2))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(2, 2))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(2, 2))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D(2, 2))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D(2, 2))
model.add(Flatten())
model.add(Dense(1024, activation='relu'))
model.add(Dense(3, activation='softmax'))
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
model.summary(line_length=80)

Call fit to train the model:

hist = model.fit(x_train, y_train,
                 validation_data=(x_test, y_test),
                 batch_size=10, epochs=20)

If you train the model on a CPU, training will probably require from 10 to 20 seconds
per epoch. (Think of all those pixel calculations taking place on all those images with
all those convolution kernels.) When training is complete, use the following state‐
ments to plot the training and validation accuracy:

import seaborn as sns
sns.set()

acc = hist.history['accuracy']
val_acc = hist.history['val_accuracy']
epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, '-', label='Training Accuracy')
plt.plot(epochs, val_acc, ':', label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
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plt.legend(loc='lower right')
plt.plot()

Here is the output:

Were the results what you expected? The validation accuracy is decent, but it’s not
state of the art. It probably landed between 60% and 70%. Modern CNNs often do
95% or better classifying images such as these. You might be able to squeeze more out
of this model by stacking convolution layers or increasing the number of kernels, and
you might get it to generalize slightly better by introducing a dropout layer. But you
won’t reach 95% with this network and this dataset.

One of the reasons modern CNNs can do image classification so accurately is that
they’re trained with millions of images. You don’t need millions of samples of each
class, but you probably need at least an order of magnitude more—if not two orders
of magnitude more—than the 300 you trained with here. You could scour the
internet for more images, but more images means more training time. If the goal is
to achieve an accuracy of 95% or more, you’ll quickly get to the point
where the CNN takes too long to train—or find yourself shopping for an
NVIDIA GPU.

That doesn’t mean CNNs aren’t practical for solving business problems. It just means
that there’s more to learn. The next section is the first step in understanding how to
attain high levels of accuracy without training a CNN from scratch.

Pretrained CNNs
Microsoft, Google, and other tech companies use a subset of the ImageNet dataset
containing more than 1 million images to train state-of-the-art CNNs to recognize
hundreds of objects, including Arctic foxes and polar bears. Then they make them
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available for public consumption. Called pretrained CNNs, they are more sophistica‐
ted than anything you’re likely to train yourself. And if that’s not awesome enough,
Keras reduces the process of loading a pretrained CNN to one line of code.

Keras provides classes that wrap more than two dozen popular pretrained CNNs. The
full list is documented on the Keras website. Most of these CNNs are documented in
scholarly papers such as “Deep Residual Learning for Image Recognition” and “Effi‐
cientNet: Rethinking Model Scaling for Convolutional Neural Networks”. Some have
won prestigious competitions such as the ImageNet Large Scale Visual Recognition
Challenge and the COCO Detection Challenge. Among the most notable are the
ResNet family of networks from Microsoft and the Inception networks from Google.
Also noteworthy is MobileNet, which trades size for accuracy and is ideal for mobile
devices due to its small memory footprint. You can learn more about it in the Google
AI blog.

Pretrained CNN Architectures
Pretrained CNNs achieve impressive levels of accuracy not just because they’re
trained with millions of images but also because they are deeper and architecturally
more advanced than the CNNs presented thus far. For example, they use consecutive
convolution layers to further refine the features extracted from each image, and many
use batch normalization to normalize (standardize to unit variance) values propagated
between layers during training.

But pretrained CNNs are more sophisticated for other reasons as well. ResNets, for
example, pioneered a concept called residual layers, which add their input to their
output. This simple innovation helped mitigate the vanishing-gradient problem that
causes updates to become increasingly smaller as the optimizer goes backward
through the network updating weights and biases, and it made much deeper networks
possible.

And then there is the Inception family of CNNs, whose chief innovation was the use
of 1 × 1 convolution kernels to minimize the computational overhead of larger con‐
volution kernels by reducing the depth of the feature maps input to them. Recent
versions of Inception have incorporated features of ResNets as well, and a
derivative architecture known as Xception improved on Inception by introducing
depthwise separable convolutions. If you’d like to learn more, check out “A Simple
Guide to the Versions of the Inception Network” and “Xception: Deep Learning with
Depthwise Separable Convolutions”.
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The following statement instantiates Keras’s MobileNetV2 class and initializes it with
the weights, biases, and kernel values arrived at when the network was trained on the
ImageNet dataset:

from tensorflow.keras.applications import MobileNetV2

model = MobileNetV2(weights='imagenet')

The weights='imagenet' parameter tells Keras what parameters to load to re-create
the network in its trained state. You can also pass a path to a file containing custom
weights, but imagenet is the only set of predefined weights that are currently
supported.

Before an image is submitted to a pretrained CNN for classification, it must be sized
to the dimensions the CNN expects—typically 224 × 224—and preprocessed. Differ‐
ent CNNs expect images to be preprocessed in different ways, so Keras provides a
preprocess_input function for each pretrained CNN. It also includes utility func‐
tions for loading and resizing images. The following statements load an image from
the filesystem and preprocess it for input to the MobileNetV2 network:

import numpy as np
from tensorflow.keras.applications.mobilenet import preprocess_input
from tensorflow.keras.preprocessing import image

x = image.load_img('arctic_fox.jpg', target_size=(224, 224))
x = image.img_to_array(x)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)

In most cases, preprocess_input does all the work that’s needed, which often
involves applying unit variance to pixel values and converting RGB images to BGR
format. In some cases, however, you still need to divide the pixel values by 255.
ResNet50V2 is one example:

import numpy as np
from tensorflow.keras.applications.resnet50 import preprocess_input
from tensorflow.keras.preprocessing import image

x = image.load_img('arctic_fox.jpg', target_size=(224, 224))
x = image.img_to_array(x)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x) / 255

Once an image is preprocessed, making a prediction is as simple as calling the net‐
work’s predict method:

y = model.predict(x)
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To help you interpret the output, Keras also provides a network-specific decode
_predictions method. Figure 10-10 shows what that method returned for a photo
submitted to ResNet50V2.

Figure 10-10. Output from decode_predictions

ResNet50V2 is 89% sure the photo contains an Arctic fox—which, it so happens, it
does. MobileNetV2 predicted with 92% certainty that the photo contains an Arctic
fox. Both networks were trained on the same dataset, but different pretrained CNNs
classify images slightly differently.

Using ResNet50V2 to Classify Images
Let’s use Keras to load a pretrained CNN and classify a pair of images. Fire up a note‐
book and use the following statements to load ResNet50V2:

from tensorflow.keras.applications import ResNet50V2

model = ResNet50V2(weights='imagenet')
model.summary()

Next, load an Arctic fox image and show it in the notebook:

%matplotlib inline
import matplotlib.pyplot as plt
from tensorflow.keras.preprocessing import image

x = image.load_img('Wildlife/samples/arctic_fox/arctic_fox_140.jpeg',
                   target_size=(224, 224))
plt.xticks([])
plt.yticks([])
plt.imshow(x)

Now preprocess the image (remember that for ResNet50V2, you also have to divide
all the pixel values by 255 after calling Keras’s preprocess_input method) and pass it
to the CNN for classification:

import numpy as np
from tensorflow.keras.applications.resnet50 import preprocess_input
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from tensorflow.keras.applications.resnet50 import decode_predictions

x = image.img_to_array(x)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x) / 255

y = model.predict(x)
decode_predictions(y)

The output should look like this:

[[('n02120079', 'Arctic_fox', 0.9999944),
  ('n02114548', 'white_wolf', 4.760021e-06),
  ('n02119789', 'kit_fox', 2.3306782e-07),
  ('n02442845', 'mink', 1.2460312e-07),
  ('n02111889', 'Samoyed', 1.1914468e-07)]]

ResNet50V2 is virtually certain that the image contains an Arctic fox. But now load a
walrus image:

x = image.load_img('Wildlife/samples/walrus/walrus_143.png',
                   target_size=(224, 224))
plt.xticks([])
plt.yticks([])
plt.imshow(x)

Ask ResNet50V2 to classify it:

x = image.img_to_array(x)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x) / 255

y = model.predict(x)
decode_predictions(y)

Here’s the output:

[[('n02454379', 'armadillo', 0.63758147),
  ('n01704323', 'triceratops', 0.16057032),
  ('n02113978', 'Mexican_hairless', 0.07795086),
  ('n02398521', 'hippopotamus', 0.022284042),
  ('n01817953', 'African_grey', 0.016944142)]]

ResNet50V2 thinks the image is most likely an armadillo, but it’s not even very sure
about that. Can you guess why?

ResNet50V2 was trained with almost 1.3 million images. None of them, however,
contained a walrus. The ImageNet 1000 Class List shows a complete list of classes it
was trained to recognize. A pretrained CNN is great when you need it to classify
images using the classes it was trained with, but it is powerless to handle domain-
specific tasks that it wasn’t trained for.

But all is not lost. A technique called transfer learning enables pretrained CNNs to be
repurposed to solve domain-specific problems. The repurposing can be done on an
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ordinary CPU; no GPU required. Transfer learning sometimes achieves 95% accuracy
with just a few hundred training images. Once you learn about it, you’ll have a com‐
pletely different perspective on the efficacy of using CNNs to solve business
problems.

Transfer Learning
Earlier, you used a dataset with photos of Arctic foxes, polar bears, and walruses to
train a CNN to recognize Artic wildlife. Trained with 300 images—100 for each of the
three classes—the CNN achieved an accuracy of around 60%. That’s not sufficient for
most purposes.

One solution is to train the CNN with tens of thousands of photos. A better
solution—one that can deliver world-class accuracy with the 300 photos you have
and doesn’t require expensive hardware—is transfer learning. In the hands of soft‐
ware developers and engineers, transfer learning makes CNNs a practical solution for
a variety of computer-vision problems. And it requires orders of magnitude less time
and compute power than CNNs trained from scratch. Let’s take a moment to under‐
stand what transfer learning is and how it works—and then put it to work identifying
Arctic wildlife.

Pretrained CNNs trained on the ImageNet dataset can identify Arctic foxes and polar
bears, but they can’t identify walruses because they weren’t trained with walrus
images. Transfer learning lets you repurpose pretrained CNNs to identify objects they
weren’t originally trained to identify. It leverages the intelligence baked into pre‐
trained CNNs, but it repurposes that intelligence to solve new problems.

Recall that a CNN has two groups of layers: bottleneck layers containing the convolu‐
tion and pooling layers that extract features from images at various resolutions, and
classification layers, which classify features output from the bottleneck layers as
belonging to an Arctic fox, a polar bear, or something else. Convolution layers use
convolution kernels to extract features, and the values in the convolution kernels are
learned during training. This learning accounts for the bulk of the training time.
When sophisticated CNNs are trained with millions of images, the convolution ker‐
nels become very efficient at extracting features. But that efficiency comes at a cost.

The premise behind transfer learning is shown in Figure 10-11. You load the bottle‐
neck layers of a pretrained CNN, but you don’t load the classification layers. Instead,
you provide your own, which train orders of magnitude more quickly than an entire
CNN. Then you pass the training images through the bottleneck layers for feature
extraction and train the classification layers on the resulting features. The pretrained
CNN might have been trained to extract features from pictures of apples and oranges,
but those same layers are probably pretty good at extracting features from photos of
dogs and cats too. By using the pretrained bottleneck layers to extract features and
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then using those features to train your own classification layers, you can teach the
model that a certain feature extracted from an image might be indicative of a dog
rather than an apple.

Figure 10-11. Neural network architecture for transfer learning

Transfer learning is relatively simple to implement with Keras and TensorFlow. Recall
that the following statement loads ResNet50V2 and initializes it with the weights
(including kernel values) and biases that were arrived at when the network was
trained on a subset of the ImageNet dataset:

base_model = ResNet50V2(weights='imagenet')

To load ResNet50V2 (or any other pretrained CNN that Keras supports) without the
classification layers, you simply add an include_top=False attribute:

base_model = ResNet50V2(weights='imagenet', include_top=False)

From that point, there are two ways to go about transfer learning. The first involves
appending classification layers to the base model’s bottleneck layers and setting each
base layer’s trainable attribute to False so that the weights, biases, and convolution
kernels won’t be updated when the network is trained:

for layer in base_model.layers:
    layer.trainable = False

model = Sequential()
model.add(base_model)
model.add(Flatten())
model.add(Dense(1024, activation='relu'))
model.add(Dense(3, activation='softmax'))
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(x, y, validation_split=0.2, epochs=10, batch_size=10)
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The second technique is to run all the training images through the base model for
feature extraction, and then run the features through a separate network containing
your classification layers:

features = base_model.predict(x)

model = Sequential()
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(3, activation='softmax'))
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(features, y, validation_split=0.2, epochs=10, batch_size=10)

Which technique is better? The second is faster because the training images go
through the bottleneck layers for feature extraction just one time rather than once per
epoch. It’s the technique you should use in the absence of a compelling reason to do
otherwise. The first technique is slightly slower, but it lends itself to fine-tuning, in
which you unfreeze one or more bottleneck layers after training is complete and train
for a few more epochs with a very low learning rate. It also facilitates data augmenta‐
tion, which I’ll introduce in the next section.

Fine-tuning is frequently applied to transfer-learning models after
training is complete in an effort to squeeze out an extra percentage
point or two of accuracy. We will use fine-tuning in Chapter 13 to
increase the accuracy of an NLP model that utilizes a pretrained
neural network.

If you use the first technique to implement transfer learning, you make predictions by
preprocessing the images and passing them to the model’s predict method. For the
second technique, making predictions is a two-step process. After preprocessing the
images, you pass them to the base model’s predict method, and then you pass
the output from that method to your model’s predict method:

x = image.img_to_array(x)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x) / 255

features = base_model.predict(x)
predictions = model.predict(features)

And with that, transfer learning is complete. All that remains is to put it in practice.
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Using Transfer Learning to Identify Arctic Wildlife
Let’s use transfer learning to solve the same problem that we attempted to solve ear‐
lier with a scratch-built CNN: building a model that determines whether a photo con‐
tains an Arctic fox, a polar bear, or a walrus.

Create a Jupyter notebook and use the same code you used earlier to load the training
and test images and assign labels to them: 0 for Arctic foxes, 1 for polar bears, and 2
for walruses. Once that’s done, the next step is to preprocess the images. We’ll use
ResNet50V2 as our pretrained CNN, so use the ResNet version of preprocess_input
to preprocess the pixels. Then divide the pixel values by 255:

import numpy as np
from tensorflow.keras.applications.resnet50 import preprocess_input

x_train = preprocess_input(np.array(x_train)) / 255
x_test = preprocess_input(np.array(x_test)) / 255

y_train = np.array(y_train)
y_test = np.array(y_test)

The next step is to load ResNet50V2, being careful to load the bottleneck layers but
not the classification layers, and use it to extract features from the training and test
images:

from tensorflow.keras.applications import ResNet50V2

base_model = ResNet50V2(weights='imagenet', include_top=False)

x_train = base_model.predict(x_train)
x_test = base_model.predict(x_test)

Now train a neural network to classify features extracted from the training images:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Flatten, Dense

model = Sequential()
model.add(Flatten())
model.add(Dense(1024, activation='relu'))
model.add(Dense(3, activation='softmax'))
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

hist = model.fit(x_train, y_train,
                 validation_data=(x_test, y_test),
                 batch_size=10, epochs=10)

How well did the network train? Plot the training accuracy and validation accuracy
for each epoch:
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import seaborn as sns
sns.set()

acc = hist.history['accuracy']
val_acc = hist.history['val_accuracy']
epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, '-', label='Training Accuracy')
plt.plot(epochs, val_acc, ':', label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.plot()

Your results will differ from mine, but I got about 97% accuracy. If you didn’t quite
get there, try training the network again:

Finally, use a confusion matrix to visualize how well the network distinguishes
between classes:

from sklearn.metrics import ConfusionMatrixDisplay as cmd

sns.reset_orig()
fig, ax = plt.subplots(figsize=(4, 4))
ax.grid(False)

y_pred = model.predict(x_test)
class_labels = ['arctic fox', 'polar bear', 'walrus']

cmd.from_predictions(y_test, y_pred.argmax(axis=1),
                     display_labels=class_labels, colorbar=False,
                     cmap='Blues', xticks_rotation='vertical', ax=ax)
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Here’s how it turned out for me:

To see transfer learning at work, load one of the Arctic fox images from the samples
folder. That folder contains wildlife images with which the model was neither trained
nor validated:

x = image.load_img('Wildlife/samples/arctic_fox/arctic_fox_140.jpeg',
                    target_size=(224, 224))
plt.xticks([])
plt.yticks([])
plt.imshow(x)

Now preprocess the image, run it through ResNet50V2’s feature extraction layers, and
run the output through the newly trained classification layers:

x = image.img_to_array(x)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x) / 255

y = base_model.predict(x)
predictions = model.predict(y)

for i, label in enumerate(class_labels):
    print(f'{label}: {predictions[0][i]}')

For me, the network predicted with almost 100% confidence that the image contains
an Arctic fox:

arctic fox: 1.0
polar bear: 0.0
walrus: 0.0
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Perhaps that’s not surprising, since ResNet50V2 was trained with Arctic fox images.
But now let’s load a walrus image, which, you’ll recall, ResNet50V2 was unable to
classify:

x = image.load_img('Wildlife/samples/walrus/walrus_143.png',
                    target_size=(224, 224))
plt.xticks([])
plt.yticks([])
plt.imshow(x)

Preprocess the image and make a prediction:

x = image.img_to_array(x)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x) / 255

y = base_model.predict(x)
predictions = model.predict(y)

for i, label in enumerate(class_labels):
    print(f'{label}: {predictions[0][i]}')

Here’s how it turned out this time:

arctic fox: 0.0
polar bear: 0.0
walrus: 1.0

ResNet50V2 wasn’t trained to recognize walruses, but your network was. That’s trans‐
fer learning in a nutshell. It’s the deep-learning equivalent of having your cake and
eating it too. And it’s the secret sauce that makes CNNs a viable tool for anyone with a
laptop and a few hundred training images.

That’s not to say that transfer learning will always get you 97% accuracy with 100
images per class. It won’t. If a dataset lacks the information to achieve that level of
separation, neither scratch-built CNNs nor transfer learning will magically make it
happen. That’s always true in machine learning and AI. You can’t get water from a
rock. And you can’t build an accurate model from data that doesn’t support it.

Data Augmentation
The previous example demonstrated how to use transfer learning to build a model
that, with just 300 training images, can classify photos of three different types of Arc‐
tic wildlife with 97% accuracy. One of the benefits of transfer learning is that it can do
more with fewer images. This feature is also a bug, however. With just 100 or so sam‐
ples of each class, there is little diversity among images. A model might be able to rec‐
ognize a polar bear if the bear’s head is perfectly aligned in the center of the photo.
But if the training images don’t include photos with the bear’s head aligned differently
or tilted at different angles, the model might have difficulty classifying the photo.
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One solution is data augmentation. Rather than scare up more training images, you
can rotate, translate, and scale the images you have. It doesn’t always increase a CNN’s
accuracy, but it frequently does, especially with small datasets. Keras makes it easy to
randomly transform training images provided to a network. Images are transformed
differently in each epoch, so if you train for 10 epochs, the network sees 10 different
variations of each training image. This can increase a model’s ability to generalize
with little impact on training time. Figure 10-12 shows the effect of applying random
transforms to a hot dog image. You can see why presenting the same image to a
model in different ways might make the model more adept at recognizing hot dogs,
regardless of how the hot dog is framed.

Figure 10-12. Hot dog image with random transforms applied

Keras has built-in support for data augmentation with images. Let’s look at a couple
of ways to put image augmentation to work, and then apply it to the Arctic wildlife
model.

Image Augmentation with ImageDataGenerator
One way to apply image augmentation when training a model is to use Keras’s Image
DataGenerator class. ImageDataGenerator generates batches of training images on
the fly, either from images you’ve loaded (for example, with Keras’s load_img func‐
tion) or from a specified location in the filesystem. The latter is especially useful when
training CNNs with millions of images because it loads images into memory in
batches rather than all at once. Regardless of where the images come from, however,
ImageDataGenerator is happy to apply transforms as it serves them up.

Here’s a simple example that you can try yourself. Use the following code to load an
image from your filesystem, wrap an ImageDataGenerator around it, and generate 24
versions of the image:

import numpy as np
from tensorflow.keras.preprocessing import image
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import matplotlib.pyplot as plt
%matplotlib inline

# Load an image
x = image.load_img('Wildlife/train/polar_bear/polar_bear_010.jpeg')
x = image.img_to_array(x)
x = np.expand_dims(x, axis=0)
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# Wrap an ImageDataGenerator around it
idg = ImageDataGenerator(rescale=1./255,
                         horizontal_flip=True,
                         rotation_range=30,
                         width_shift_range=0.2,
                         height_shift_range=0.2,
                         zoom_range=0.2)
idg.fit(x)

# Generate 24 versions of the image
generator = idg.flow(x, [0], batch_size=1, seed=0)
fig, axes = plt.subplots(3, 8, figsize=(16, 6),
                         subplot_kw={'xticks': [], 'yticks': []})

for i, ax in enumerate(axes.flat):
    img, label = generator.next()
    ax.imshow(img[0])

Here’s the result:

The parameters passed to ImageDataGenerator tell it how to transform each image it
delivers:

rescale=1./255

Divides each pixel value by 255

horizontal_flip=True

Randomly flips the image horizontally (around the vertical axis)

rotation_range=30

Randomly rotates the image by –30 to 30 degrees

width_shift_range=0.2 and height_shift_range=0.2
Randomly translates the image by –20% to 20%

zoom_range=0.2

Randomly scales the image by –20% to 20%
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There are other parameters that you can use, such as vertical_flip, shear_range,
and brightness_range, but you get the picture. The flow method used in this exam‐
ple generates images from the images you pass to fit. The related flow_from
_directory method loads images from the filesystem and optionally labels them
based on the subdirectories they’re in.

The generator returned by flow can be passed directly to a model’s fit method to
provide randomly transformed images to the model as it is trained. Assume that
x_train and y_train hold a collection of training images and labels. The following
code wraps an ImageDataGenerator around them and uses them to train a model:

idg = ImageDataGenerator(rescale=1./255,
                         horizontal_flip=True,
                         rotation_range=30,
                         width_shift_range=0.2,
                         height_shift_range=0.2,
                         zoom_range=0.2)

idg.fit(x_train)
image_batch_size = 10
generator = idg.flow(x_train, y_train, batch_size=image_batch_size, seed=0)

model.fit(generator,
          steps_per_epoch=len(x_train) // image_batch_size,
          validation_data=(x_test, y_test),
          batch_size=20,
          epochs=10)

The steps_per_epoch parameter is key because an ImageDataGenerator can provide
an infinite number of versions of each image. In this example, the batch_size
parameter passed to flow tells the generator to create 10 images in each batch. Divid‐
ing the number of images by the image batch size to calculate steps_per_epoch
ensures that in each training epoch, the model is provided with one transformed ver‐
sion of each image in the dataset.

Versions of Keras prior to 2.1 didn’t allow a generator to be passed
to the fit method. Instead, they provided a separate method
named fit_generator. That method is deprecated and will be
removed in a future release.

Observe that the call to fit includes a validation_data parameter identifying a sep‐
arate set of images and labels for validating the network during training. You
generally don’t want to augment validation images, so you should avoid using
validation_split when passing a generator to fit.
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Image Augmentation with Augmentation Layers
You can use ImageDataGenerator to provide transformed images to a model, but
recent versions of Keras provide an alternative in the form of image preprocessing
layers and image augmentation layers. Rather than transform training images sepa‐
rately, you can integrate the transforms directly into the model. Here’s an example:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
from tensorflow.keras.layers import Rescaling, RandomFlip, RandomRotation
from tensorflow.keras.layers import RandomTranslation, RandomZoom

model = Sequential()
model.add(Rescaling(1./255))
model.add(RandomFlip(mode='horizontal'))
model.add(RandomTranslation(0.2, 0.2))
model.add(RandomRotation(0.2))
model.add(RandomZoom(0.2))
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(224, 224, 3)))
model.add(MaxPooling2D(2, 2))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D(2, 2))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(3, activation='softmax')

Each image used to train the CNN has its pixel values divided by 255 and is then ran‐
domly flipped, translated, rotated, and scaled. Significantly, the RandomFlip, Random
Translation, RandomRotation, and RandomZoom layers operate only on training
images. They are inactive when the network is validated or asked to make predic‐
tions. Consequently, it’s fine to use validation_split when training a model that
contains image augmentation layers. The Rescaling layer is active at all times, mean‐
ing you no longer have to remember to divide pixel values by 255 before training the
model or submitting an image for classification.

Applying Image Augmentation to Arctic Wildlife
Would image augmentation make transfer learning even better? There’s one way to
find out.

Create a Jupyter notebook and copy the code that loads the training and test images
from the transfer learning example. Then use the following statements to prepare the
data. Note that there is no need to divide by 255 this time because a Rescaling layer
will take care of that:
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import numpy as np
from tensorflow.keras.applications.resnet50 import preprocess_input

x_train = preprocess_input(np.array(x_train))
x_test = preprocess_input(np.array(x_test))

y_train = np.array(y_train)
y_test = np.array(y_test)

Now load ResNet50V2 without the classification layers and initialize it with the
ImageNet weights. A key element here is preventing the bottleneck layers from train‐
ing when the network is trained by setting their trainable attributes to False, effec‐
tively freezing those layers. Rather than setting each individual layer’s trainable
attribute to False, we’ll set trainable to False on the model itself and allow that set‐
ting to be “inherited” by the individual layers:

from tensorflow.keras.applications import ResNet50V2

base_model = ResNet50V2(weights='imagenet', include_top=False)
base_model.trainable = False

Define a network that incorporates rescaling and augmentation layers, ResNet50V2’s
bottleneck layers, and dense layers for classification. Then train the network:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Flatten, Dense, Rescaling, RandomFlip
from tensorflow.keras.layers import RandomRotation, RandomTranslation, RandomZoom

model = Sequential()
model.add(Rescaling(1./255))
model.add(RandomFlip(mode='horizontal'))
model.add(RandomTranslation(0.2, 0.2))
model.add(RandomRotation(0.2))
model.add(RandomZoom(0.2))
model.add(base_model)
model.add(Flatten())
model.add(Dense(1024, activation='relu'))
model.add(Dense(3, activation='softmax'))
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

hist = model.fit(x_train, y_train,
                 validation_data=(x_test, y_test),
                 batch_size=10, epochs=10)

How well did the network train? Plot the training accuracy and validation accuracy
for each epoch:

import seaborn as sns
sns.set()

acc = hist.history['accuracy']
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val_acc = hist.history['val_accuracy']
epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, '-', label='Training Accuracy')
plt.plot(epochs, val_acc, ':', label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.plot()

With a little luck, the accuracy slightly exceeded that of the model trained without
data augmentation:

You may find that the version of the model that uses data augmen‐
tation is less accurate than the version that doesn’t. To be sure, I
trained each version 10 times and averaged the results. I found that
the data augmentation version delivered, on average, about 0.5%
more accuracy than the version that lacks augmentation. That’s not
a lot, but data scientists frequently go to great lengths to improve
accuracy by just a fraction of a percentage point.

Use a confusion matrix to visualize how well the network performed during testing:

from sklearn.metrics import ConfusionMatrixDisplay as cmd

sns.reset_orig()
fig, ax = plt.subplots(figsize=(4, 4))
ax.grid(False)

y_pred = model.predict(x_test)
class_labels = ['arctic fox', 'polar bear', 'walrus']
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cmd.from_predictions(y_test, y_pred.argmax(axis=1),
                     display_labels=class_labels, colorbar=False,
                     cmap='Blues', xticks_rotation='vertical', ax=ax)

Here’s how it turned out for me:

Data scientists sometimes employ data augmentation even when they’re training a
CNN from scratch rather than employing transfer learning, especially when the data‐
set is relatively small. It’s a useful tool to know about, and one that could make a dif‐
ference when you’re trying to squeeze every last ounce of accuracy out of a deep-
learning model.

Global Pooling
The purpose of including a Flatten layer in a CNN is to reshape the 3D tensors con‐
taining the final feature maps into 1D tensors suitable for input to a Dense layer. But
Flatten isn’t the only way to do it. Flattening sometimes leads to overfitting by pro‐
viding too much information to the classification layers.

One way to combat overfitting is to introduce a Dropout layer. Another strategy is to
reduce the width of the Dense layer. A third option is to replace the Flatten layer
with a GlobalMaxPooling2D layer or a GlobalAverage Pooling2D layer. They, too,
output 1D tensors, but they generate them in a different way. And that way is less
prone to overfitting.

To demonstrate, modify the MNIST dataset example earlier in this chapter to use a
GlobalMaxPooling2D layer rather than a Flatten layer:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, \
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    GlobalMaxPooling2D, Dense

model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(MaxPooling2D(2, 2))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(2, 2))
model.add(GlobalMaxPooling2D()) # In lieu of Flatten()
model.add(Dense(128, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
model.summary(line_length=120)

The summary (Figure 10-13) shows that the output from the GlobalMaxPooling2D
layer is a tensor containing 64 values—one per feature map emitted by the final Max
Pooling2D layer—rather than 5 × 5 × 64, or 1,600, values, as it was for the Flatten
layer. Each value is the maximum of the 25 values in each 5 × 5 feature map. Had you
used GlobalAveragePooling2D instead, each value would have been the average of
the 25 values in each feature map.

Figure 10-13. Output from the summary method

Global pooling sometimes increases a CNN’s ability to generalize and sometimes does
not. For the MNIST dataset, it slightly diminishes accuracy. As is so often the case in
machine learning, the only way to know is to try. And due to the randomness inher‐
ent in training neural networks, it’s always advisable to train the network several
times in each configuration and average the results before drawing conclusions.

Audio Classification with CNNs
Imagine that you’re the leader of a group of climate scientists concerned about the
planet’s dwindling rainforests. The world loses up to 10 million acres of old-growth
rainforests each year, much of it due to illegal logging. Your team plans to convert
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thousands of discarded smartphones into solar-powered listening devices and posi‐
tion them throughout the Amazon to transmit alerts in response to the sounds of
chainsaws and truck engines. You need software that uses AI to identify such sounds
in real time. And you need it fast, because climate change won’t wait.

An effective way to perform audio classification is to convert audio streams into spec‐
trogram images, which provide visual representations of spectrums of frequencies as
they vary over time, and use CNNs to classify the spectrograms. The spectrograms in
Figure 10-14 were generated from WAV files containing chainsaw sounds. Let’s use
transfer learning to create a model that can identify the telltale sounds of logging
operations and distinguish them from ambient sounds such as wildlife and
thunderstorms.

Figure 10-14. Spectrograms generated from audio files containing chainsaw sounds

The tutorial in this section was inspired by the Rainforest Connec‐
tion, which uses recycled Android phones to monitor rainforests
for sounds of illegal activity. A TensorFlow CNN hosted in the
cloud analyzes audio from the phones and may one day run on the
phones themselves with an assist from TensorFlow Lite, a smaller
version of TensorFlow designed for mobile, embedded, and edge
devices. For more information, see “The Fight Against Illegal
Deforestation with TensorFlow” in the Google AI blog. It’s just one
example of how AI is making the world a better place.

Begin by downloading a ZIP file containing a dataset of rainforest sounds. (Warning:
it’s a 666 MB download.) Create a subdirectory named Sounds in the directory where
your notebooks are hosted, and copy the contents of the ZIP file into the subdirec‐
tory. Sounds now contains subdirectories named background, chainsaw, engine, and
storm. Each subdirectory contains 100 WAV files. The WAV files in the background
directory contain rainforest background noises only, while the files in the other sub‐
directories include the sounds of chainsaws, engines, and thunderstorms overlaid on
the background noises. I generated these files by using a soundscape synthesis pack‐
age named Scaper to combine sounds in the public UrbanSound8K dataset with rain‐
forest sounds. Play a few of the WAV files on your computer to get a feel for the
sounds they contain.
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Now create a Jupyter notebook and paste the following code into the first cell:

import numpy as np
import librosa.display, os
import matplotlib.pyplot as plt
%matplotlib inline

def create_spectrogram(audio_file, image_file):
    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1)
    fig.subplots_adjust(left=0, right=1, bottom=0, top=1)

    y, sr = librosa.load(audio_file)
    ms = librosa.feature.melspectrogram(y=y, sr=sr)
    log_ms = librosa.power_to_db(ms, ref=np.max)
    librosa.display.specshow(log_ms, sr=sr)

    fig.savefig(image_file)
    plt.close(fig)

def create_pngs_from_wavs(input_path, output_path):
    if not os.path.exists(output_path):
        os.makedirs(output_path)

    dir = os.listdir(input_path)

    for i, file in enumerate(dir):
        input_file = os.path.join(input_path, file)
        output_file = os.path.join(output_path, file.replace('.wav', '.png'))
        create_spectrogram(input_file, output_file)

This code defines a pair of functions to help convert WAV files into spectrogram
images. create_spectrogram uses a Python package named Librosa to create a spec‐
trogram image from a WAV file. create_pngs_from_wavs converts all the WAV files
in a specified directory into spectrogram images. You will need to install Librosa if it
isn’t installed already.

Use the following statements to create PNG files containing spectrograms from all the
WAV files in the Sounds directory’s subdirectories:

create_pngs_from_wavs('Sounds/background', 'Spectrograms/background')
create_pngs_from_wavs('Sounds/chainsaw', 'Spectrograms/chainsaw')
create_pngs_from_wavs('Sounds/engine', 'Spectrograms/engine')
create_pngs_from_wavs('Sounds/storm', 'Spectrograms/storm')

Check the Spectrograms directory for subdirectories containing spectrograms and
confirm that each subdirectory contains 100 PNG files. Then use the following code
to define two new helper functions for loading and displaying spectrograms, and
declare two Python lists—one to store spectrogram images and another to store class
labels:
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from tensorflow.keras.preprocessing import image

def load_images_from_path(path, label):
    images, labels = [], []

    for file in os.listdir(path):
        images.append(image.img_to_array(image.load_img(os.path.join(path, file),
                      target_size=(224, 224, 3))))
        labels.append((label))

    return images, labels

def show_images(images):
    fig, axes = plt.subplots(1, 8, figsize=(20, 20),
                             subplot_kw={'xticks': [], 'yticks': []})

    for i, ax in enumerate(axes.flat):
        ax.imshow(images[i] / 255)

x, y = [], []

Use the following statements to load the background spectrogram images, add them
to the list named x, and label them with 0s:

images, labels = load_images_from_path('Spectrograms/background', 0)
show_images(images)

x += images
y += labels

Repeat this process to load chainsaw spectrograms from the Spectrograms/chainsaw
directory, engine spectrograms from the Spectrograms/engine directory, and thunder‐
storm spectrograms from the Spectrograms/storm directory. Label chainsaw spectro‐
grams with 1s, engine spectrograms with 2s, and thunderstorm spectrograms with 3s.
Here are the labels for the four classes of images:

Spectrogram type Label
Background 0
Chainsaw 1
Engine 2
Storm 3

Since this model may one day run on mobile phones, we’ll use MobileNetV2 as the
base network. Use the following code to preprocess the pixels and split the images
and labels into two datasets—one for training and one for testing:

from sklearn.model_selection import train_test_split
from tensorflow.keras.applications.mobilenet import preprocess_input

x = preprocess_input(np.array(x))
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y = np.array(y)

x_train, x_test, y_train, y_test = train_test_split(x, y, stratify=y,
                                                    test_size=0.3,
                                                    random_state=0)

Call Keras’s MobileNetV2 function to instantiate MobileNetV2 without the classifica‐
tion layers. Then run the training data and test data through MobileNetV2 to extract
features from the spectrogram images:

from tensorflow.keras.applications import MobileNetV2

base_model = MobileNetV2(weights='imagenet', include_top=False,
                         input_shape=(224, 224, 3))

train_features = base_model.predict(x_train)
test_features = base_model.predict(x_test)

Define a neural network to classify features extracted by MobileNetV2:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten

model = Sequential()
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dense(4, activation='softmax'))
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

As an experiment, I replaced the Flatten layer with a Global
AveragePooling2D layer. Validation accuracy improved slightly, but
the model didn’t generalize as well when tested with audio extrac‐
ted from a documentary video. This underscores an important
point from Chapter 9: you can have full trust and confidence in a
model only when it’s tested with data it has never seen before—
preferably data that comes from a different source.

Train the network with the features:

hist = model.fit(train_features, y_train,
                 validation_data=(test_features, y_test),
                 batch_size=10, epochs=10)

Plot the training and validation accuracy:

import seaborn as sns
sns.set()

acc = hist.history['accuracy']
val_acc = hist.history['val_accuracy']
epochs = range(1, len(acc) + 1)

Audio Classification with CNNs | 255

https://oreil.ly/UyRAc


plt.plot(epochs, acc, '-', label='Training Accuracy')
plt.plot(epochs, val_acc, ':', label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.plot()

The validation accuracy should reach 95% or higher:

Run the test images through the network and use a confusion matrix to assess the
results:

from sklearn.metrics import ConfusionMatrixDisplay as cmd

sns.reset_orig()
fig, ax = plt.subplots(figsize=(4, 4))
ax.grid(False)

y_pred = model.predict(test_features)
class_labels = ['background', 'chainsaw', 'engine', 'storm']

cmd.from_predictions(y_test, y_pred.argmax(axis=1),
                     display_labels=class_labels, colorbar=False,
                     cmap='Blues', xticks_rotation='vertical', ax=ax)

The network is reasonably adept at identifying clips that don’t contain the sounds of
chainsaws or engines. It sometimes confuses chainsaw sounds and engine sounds.
That’s OK, because the presence of either might indicate illicit activity in a rainforest:
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The Sounds directory has a subdirectory named samples containing WAV files with
which the CNN was neither trained nor validated. The WAV files bear no relation to
the samples used for training and testing; they come from a YouTube video docu‐
menting Brazil’s efforts to curb illegal logging. Let’s use the model you just trained to
analyze these files for sounds of logging activity.

Start by creating a spectrogram from the first sample WAV file, which contains audio
of loggers cutting down trees in the Amazon:

create_spectrogram('Sounds/samples/sample1.wav', 'Spectrograms/sample1.png')

x = image.load_img('Spectrograms/sample1.png', target_size=(224, 224))
plt.xticks([])
plt.yticks([])
plt.imshow(x)

Preprocess the spectrogram image, pass it to MobileNetV2 for feature extraction, and
classify the features:

x = image.img_to_array(x)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)

y = base_model.predict(x)
predictions = model.predict(y)

for i, label in enumerate(class_labels):
    print(f'{label}: {predictions[0][i]}')
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Now create a spectrogram from a WAV file that features the sound of a logging truck
rumbling through the rainforest:

create_spectrogram('Sounds/samples/sample2.wav', 'Spectrograms/sample2.png')

x = image.load_img('Spectrograms/sample2.png', target_size=(224, 224))
plt.xticks([])
plt.yticks([])
plt.imshow(x)

Preprocess the image, pass it to MobileNetV2 for feature extraction, and classify the
features:

x = image.img_to_array(x)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)

y = base_model.predict(x)
predictions = model.predict(y)

for i, label in enumerate(class_labels):
    print(f'{label}: {predictions[0][i]}')

If the network got either of the samples wrong, try training it again. Remember that a
neural network will train differently every time, in part because Keras initializes the
weights with small random values. In the real world, data scientists often train a neu‐
ral network several times and average the results to quantify its accuracy.

Summary
Convolutional neural networks excel at image classification because they use convo‐
lution kernels to extract features from images at different resolutions—features
intended to accentuate differences between classes. Convolution layers use convolu‐
tion kernels to extract features, and pooling layers reduce the size of the feature maps
output from the convolution layers. Output from these layers is input to fully connec‐
ted layers for classification. Keras provides implementations of convolution and pool‐
ing layers in classes such as Conv2D and MaxPooling2D.

Training a CNN from scratch when there is a relatively high degree of separation
between classes—for example, the MNIST dataset—is feasible on an ordinary laptop
or PC. Training a CNN to solve a more perceptual problem requires more training
images and commensurately more compute power. Transfer learning is a practical
alternative to training CNNs from scratch. It uses the intelligence already present in
the bottleneck layers of pretrained CNNs to extract features from images, and then
uses its own classification layers to interpret the results.

Data augmentation can increase the accuracy of a CNN trained with a relatively small
number of images and is especially useful with transfer learning. Augmentation
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involves applying random transforms such as translations and rotations to the train‐
ing images. You can transform images before inputting them to the network with
Keras’s ImageDataGenerator class, or you can build the transforms into the network
with layers such as RandomRotation and RandomTranslation. Layers that transform
images are active at training time but inactive when the network makes predictions.

CNNs are applicable to a wide variety of computer-vision problems and are almost
single-handedly responsible for the rapid advancements made in that field in the past
decade. They play an important role in modern facial recognition systems too. Want
to know more? Detecting and identifying faces in photographs is the subject of the
next chapter.

Summary | 259





CHAPTER 11

Face Detection and Recognition

Not long ago, I boarded a flight to Europe and was surprised that I didn’t have to
show my passport. I passed in front of a camera and was promptly welcomed aboard
the flight. It was part of an early pilot for Delta Air Lines’ effort to push forward with
facial recognition and offer a touchless curb-to-gate travel experience.

Facial recognition is everywhere. It’s one of the most common, and sometimes con‐
troversial, applications for AI. Meta, formerly known as Facebook, uses it to tag
friends in photos—at least it did until it killed the feature due to privacy concerns.
Apple uses it to allow users to unlock their iPhones, while Microsoft uses it to unlock
Windows PCs. Uber uses it to confirm the identity of its drivers. Used properly, facial
recognition has vast potential to make the world a better, safer, and more secure
place.

Suppose you want to build a system that identifies people in photos or video frames.
Perhaps it’s part of a security system that restricts access to college dorms to students
and staff who are authorized to enter. Or perhaps you’re writing an app that searches
your hard disk for photos of people you know. (“Show me all the photos of me and
my daughter.”) Building systems such as these requires algorithms or models
capable of:

• Finding faces in photos or video frames, a process known as face detection
• Identifying the faces detected, a process known as facial recognition or face

identification

Numerous well-known algorithms exist for finding and identifying faces in photos.
Some rely on deep learning—in particular, convolutional neural networks—while
some do not. Facial recognition, after all, predated the explosion of deep learning by
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decades. But deep learning has supercharged the science of facial recognition and
made it more practical than ever before.

This chapter begins by introducing two popular face detection methods. Then it
moves on to facial recognition and introduces transfer learning as a means for recog‐
nizing faces. It concludes with a tutorial in which you put the pieces together and
build a facial recognition system of your own. Sound like fun? Then let’s get started.

Face Detection
The sections that follow introduce two widely used algorithms for face detection—
one that relies on machine learning and another that uses deep learning—as well as
libraries that implement them. The goal is to be able to find all the faces in a photo or
video frame like the one in Figure 11-1. Afterward, I’ll present an easy-to-use func‐
tion that you can call to extract all the facial images from a photo and save them to
disk or submit them to a facial recognition model.

Figure 11-1. Face detection

Face Detection with Viola-Jones
One of the fastest and most popular algorithms for detecting faces in photos stems
from a paper published in 2001 titled “Rapid Object Detection Using a Boosted Cas‐
cade of Simple Features”. Sometimes known as Viola-Jones (the authors of the paper),
the algorithm keys on the relative intensities of adjacent blocks of pixels. For example,
the average pixel intensity in a rectangle around the eyes is typically darker than the
average pixel intensity in a rectangle immediately below that area. Similarly, the
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bridge of the nose is usually lighter than the region around the eyes, so two dark rec‐
tangles with a bright rectangle in the middle might represent two eyes and a nose.
The presence of many such Haar-like features in a frame at the right locations is an
indicator that the frame contains a face (Figure 11-2).

Figure 11-2. Face detection using Haar-like features

Viola-Jones works by sliding windows of various sizes over an image looking for
frames with Haar-like features in the right places. At each stop, the pixels in the win‐
dow are scaled to a specified size (typically 24 × 24), and features are extracted and
fed into a binary classifier that returns positive indicating the frame contains a face or
negative indicating it does not. Then the window slides to the next location and the
detection regimen begins again.

The key to Viola-Jones’s performance is the binary classifier. A frame that is 24 pixels
wide and 24 pixels high contains more than 160,000 combinations of rectangles rep‐
resenting potential Haar-like features. Rather than compute values for every combi‐
nation, Viola-Jones computes only those that the classifier requires. Furthermore,
how many features the classifier requires depends on the content of the frame. The
classifier is actually several binary classifiers arranged in stages. The first stage might
require just one feature. The second stage might require 10, the third might require
20, and so on. Features are extracted and passed to stage n only if stage n – 1 returns
positive, giving rise to the term cascade classifier.

Figure 11-3 depicts a three-stage cascade classifier. Each stage is carefully tuned to
achieve a 100% detection rate using a limited number of features even if the false-
positive rate is high. In the first stage, one feature determines whether the frame con‐
tains a face. A positive response means the frame might contain a face; a negative
response means that it most certainly doesn’t, in which case no further checks are
performed. If stage 1 returns positive, however, 10 other features are extracted and
passed to stage 2. A frame is judged to contain a face only if all stages return positive,
yielding a cumulative false-positive rate near zero. In machine learning, this is a
design pattern known as high recall then precision because while individual stages are
tuned for high recall, the cumulative effect is one of high precision.
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Figure 11-3. Face detection using a cascade classifier

One benefit of this architecture is that frames lacking faces tend to fall out fast
because they evoke a negative response early in the cascade. Because most frames
don’t contain faces, the algorithm runs very quickly until it encounters a frame that
does. In testing with a 38-stage classifier trained on 6,061 features from 4,916 facial
images, Viola and Jones found that, on average, just 10 features were extracted from
each frame.

The efficacy of Viola-Jones depends on the cascade classifier, which is essentially a
machine learning model trained with facial and nonfacial images. Training is slow,
but predictions are fast. In some respects, Viola-Jones acts like a CNN handcrafted to
extract the minimum number of features needed to determine whether a frame con‐
tains a face. To speed feature extraction, Viola-Jones uses a clever mathematical trick
called integral images to rapidly compute the difference in intensity between two
blocks of pixels. The result is a system that can identify bounding boxes surrounding
faces in an image with a relatively high degree of accuracy, and it can do so quickly
enough to detect faces in live video frames.

Using the OpenCV Implementation of Viola-Jones
OpenCV is a popular open source computer-vision library that’s free for commercial
use. It provides an implementation of Viola-Jones in its CascadeClassifier class,
along with an XML file containing a cascade classifier trained to detect faces. The fol‐
lowing statements use CascadeClassifier in a Jupyter notebook to detect faces in an
image and draw rectangles around the faces. You can use an image of your own or
download the one featured in my example from GitHub:

import cv2
from cv2 import CascadeClassifier
from matplotlib.patches import Rectangle
import matplotlib.pyplot as plt
%matplotlib inline
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image = plt.imread('Data/Amsterdam.jpg')
fig, ax = plt.subplots(figsize=(12, 8), subplot_kw={'xticks': [], 'yticks': []})
ax.imshow(image)

model = CascadeClassifier(cv2.data.haarcascades +
                          'haarcascade_frontalface_default.xml')
faces = model.detectMultiScale(image)

for face in faces:
    x, y, w, h = face
    rect = Rectangle((x, y), w, h, color='red', fill=False, lw=2)
    ax.add_patch(rect)

Here’s the output with a photo of a mother and her daughter taken in Amsterdam a
few years ago:

CascadeClassifier detected the two faces in the photo, but it also suffered a number
of false positives. One way to mitigate that is to use the minNeighbors parameter. It
defaults to 3, but higher values make CascadeClassifier more selective. With min
Neighbors=20, detectMultiScale finds just the faces of the two people:

faces = model.detectMultiScale(image, minNeighbors=20)
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Here is the output:

As detectMultiScale analyzes an image, it typically detects a face multiple times,
each defined by a bounding box that’s aligned slightly differently. The minNeighbors
parameter specifies the minimum number of times a face must be detected to be
reported as a face. Higher values deliver higher precision (fewer false positives), but at
the cost of lower recall, which means some faces might not be detected.

CascadeClassifier frequently requires tuning in this manner to strike the right bal‐
ance between finding too many faces and finding too few. With that in mind, it is
among the fastest face detection algorithms in existence. It can also be used to detect
objects other than faces by loading XML files containing other pretrained classifiers.
In OpenCV’s GitHub repo, you’ll find XML files for detecting silverware and other
objects using Haar-like features, and XML files that detect objects using a different
type of discriminator called local binary patterns.

Face Detection with Convolutional Neural Networks
While more computationally expensive, deep-learning methods often do a better job
of detecting faces in images than Viola-Jones. In particular, multitask cascaded convo‐
lutional neural networks, or MTCNNs, have proven adept at face detection in a vari‐
ety of benchmarks. They also identify facial landmarks such as the eyes, the nose, and
the mouth.

266 | Chapter 11: Face Detection and Recognition

https://oreil.ly/Aj0At
https://oreil.ly/a9p27


Figure 11-4 is adapted from a diagram in the 2016 paper titled “Joint Face Detection
and Alignment Using Multitask Cascaded Convolutional Networks” that proposed
MTCNNs. An MTCNN uses three CNNs arranged in a series to detect faces. The first
one, called the Proposal Network, or P-Net, is a shallow CNN that searches the image
at various resolutions looking for features indicative of faces. Rectangles identified by
P-Net are combined to form candidate face rectangles and are input to the Refine
Network, or R-Net, which is a deeper CNN that examines each rectangle more closely
and rejects those that lack faces. Finally, output from R-Net is input to the Output
Network (O-Net), which further filters candidate rectangles and identifies facial land‐
marks. MTCNNs are multitask CNNs because they produce three outputs each—a
classification output indicating the confidence level that the rectangle contains a face,
and two regression outputs locating the face and facial landmarks—rather than just
one. And they’re cascaded like Viola-Jones classifiers to quickly rule out frames that
don’t contain faces.

Figure 11-4. Multitask cascaded convolutional neural network
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A handy MTCNN implementation is available in the Python package named
MTCNN. The following statements use it to detect faces in the same photo featured
in the previous example:

import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
from mtcnn.mtcnn import MTCNN
%matplotlib inline

image = plt.imread('Data/Amsterdam.jpg')
fig, ax = plt.subplots(figsize=(12, 8), subplot_kw={'xticks': [], 'yticks': []})
ax.imshow(image)

detector = MTCNN()
faces = detector.detect_faces(image)

for face in faces:
    x, y, w, h = face['box']
    rect = Rectangle((x, y), w, h, color='red', fill=False, lw=2)
    ax.add_patch(rect)

Here’s the result:

The MTCNN detected not only the faces of the two people but also the face
of a statue reflected in the door behind them. Here’s what detect_faces actually
returned—a list containing three dictionaries, each corresponding to one of the faces
in the photo:
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[
  {
    'box': [723, 248, 204, 258],
    'confidence': 0.9997798800468445,
    'keypoints': {
      'left_eye': (765, 341),
      'right_eye': (858, 343),
      'nose': (800, 408),
      'mouth_left': (770, 432),
      'mouth_right': (864, 433)
    }
  },
  {
    'box': [538, 258, 183, 232],
    'confidence': 0.9997591376304626,
    'keypoints': {
      'left_eye': (601, 353),
      'right_eye': (685, 344),
      'nose': (662, 394),
      'mouth_left': (614, 433),
      'mouth_right': (689, 424)
    }
  },
  {
    'box': [1099, 84, 40, 41],
    'confidence': 0.8863282203674316,
    'keypoints': {
      'left_eye': (1108, 101),
      'right_eye': (1123, 96),
      'nose': (1116, 102),
      'mouth_left': (1114, 115),
      'mouth_right': (1127, 111)
    }
  }
]

You can eliminate the face in the reflection in either of two ways: by ignoring faces
with a confidence level below a certain threshold, or by passing a min_face_size
parameter to the MTCNN function so that detect_faces ignores faces smaller than a
specified size. Here’s a modified for loop that does the former:

for face in faces:
    if face['confidence'] > 0.9:
        x, y, w, h = face['box']
        rect = Rectangle((x, y), w, h, color='red', fill=False, lw=2)
        ax.add_patch(rect)
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And here’s the result:

The facial rectangles in Figure 11-1 were generated using MTCNN’s default
settings—that is, without any filtering based on confidence levels or face sizes. Gener‐
ally speaking, it does a better job out of the box than CascadeClassifier at detecting
faces.

Extracting Faces from Photos
Once you know how to find faces in photos, it’s a simple matter to extract facial
images in order to train a model or submit them to a trained model for identification.
Example 11-1 presents a Python function that accepts a path to an image file and
returns a list of facial images. By default, it crops facial images so that they’re square
(perfect for passing them to a CNN), but you can disable cropping by passing the
function a crop=False parameter. You can also specify a minimum confidence level
with a min_confidence parameter, which defaults to 0.9.

Example 11-1. Function for extracting facial images from a photo

import numpy as np
from PIL import Image, ImageOps
from mtcnn.mtcnn import MTCNN

def extract_faces(input_file, min_confidence=0.9, crop=True):
    # Load the image and orient it correctly
    pil_image = Image.open(input_file)
    exif = pil_image.getexif()
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    for k in exif.keys():
        if k != 0x0112:
            exif[k] = None
            del exif[k]

    pil_image.info["exif"] = exif.tobytes()
    pil_image = ImageOps.exif_transpose(pil_image)
    image = np.array(pil_image)

    # Find the faces in the image
    detector = MTCNN()
    faces = detector.detect_faces(image)
    faces = [face for face in faces if face['confidence'] >= min_confidence]
    results = []

    for face in faces:
        x1, y1, w, h = face['box']

        if (crop):
            # Compute crop coordinates
            if w > h:
                x1 = x1 + ((w - h) // 2)
                w = h
            elif h > w:
                y1 = y1 + ((h - w) // 2)
                h = w

        # Extract the facial image and add it to the list
        x2 = x1 + w
        y2 = y1 + h
        results.append(Image.fromarray(image[y1:y2, x1:x2]))

    # Return all the facial images
    return results

I passed the photo in Figure 11-5 to the function, and it returned the faces under‐
neath. The items returned from extract_faces are Python Imaging Library (PIL)
images, so you can resize them or save them to disk with a single line of code. Here’s a
code snippet that extracts all the faces from a photo, resizes them to 224 × 224 pixels,
and saves the resized images:

faces = extract_faces('PATH_TO_IMAGE_FILE')

for i, face in enumerate(faces):
    face.resize((224, 224)).save(f'face{i}.jpg')
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Figure 11-5. Facial images extracted from a photo

With extract_faces to lend a hand, it’s a relatively simple matter to generate a set of
facial images for training a CNN from a batch of photos on your hard disk, or to
extract faces from a photo and submit them to a CNN for identification.

Facial Recognition
Now that you know how to detect faces in photos, the next step is to learn how to
identify them. Several algorithms for recognizing faces in photos have been devel‐
oped over the years. Some rely on biometrics, such as the distance between the eyes
or the texture of the skin, while others take a more holistic approach by treating facial
identification as a pattern recognition problem. State-of-the-art models today fre‐
quently rely on deep convolutional neural networks. One of the primary benchmarks
for facial recognition models is the Labeled Faces in the Wild (LFW) dataset pictured
in Figure 11-6, which contains more than 13,000 facial images of more than 5,000
people collected from the web. Deep-learning models such as MobiFace and FaceNet
routinely achieve greater than 99% accuracy on the dataset. This equals or exceeds a
human’s ability to identify faces in LFW photos.
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Figure 11-6. The Labeled Faces in the Wild dataset

Chapter 5 presented a support vector machine (SVM) that achieved 85% accuracy
using a subset of 500 images—100 each of five famous people—from the dataset.
Chapter 9 tackled the same problem with a neural network, with similar results.
These models merely scratch the surface of what modern facial recognition can
accomplish. Let’s apply CNNs and transfer learning to the same LFW subset and see if
they can do better at recognizing faces in photos. Along the way, you’ll learn a valua‐
ble lesson about pretrained CNNs and the specificity of the weights that are generated
when those CNNs are trained.

Applying Transfer Learning to Facial Recognition
The first step in exploring CNN-based facial recognition is to load the LFW dataset.
This time, we’ll load full-size color images and crop them to 128 × 128 pixels. Here’s
the code:

import pandas as pd
from sklearn.datasets import fetch_lfw_people

faces = fetch_lfw_people(min_faces_per_person=100, slice_=None, resize=1.0,
                         color=True)
faces.images = faces.images[:, 60:188, 60:188]
faces.data = faces.images.reshape(faces.images.shape[0], faces.images.shape[1] *
                                  faces.images.shape[2], faces.images.shape[3])
class_count = len(faces.target_names)

print(faces.target_names)
print(faces.images.shape)
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Because we set min_faces_per_person to 100, a total of 1,140 facial images corre‐
sponding to five people were loaded. Use the following statements to show the first
several images and the labels that go with them:

import matplotlib.pyplot as plt
%matplotlib inline

fig, ax = plt.subplots(3, 6, figsize=(18, 10))

for i, axi in enumerate(ax.flat):
    axi.imshow(faces.images[i])
    axi.set(xticks=[], yticks=[], xlabel=faces.target_names[faces.target[i]])

The dataset is imbalanced, containing almost as many photos of George W. Bush as of
everyone else combined. Use the following code to reduce the dataset to 100 images
of each person, for a total of 500 facial images:

import numpy as np

mask = np.zeros(faces.target.shape, dtype=bool)

for target in np.unique(faces.target):
    mask[np.where(faces.target == target)[0][:100]] = 1

x_faces = faces.data[mask]
y_faces = faces.target[mask]
x_faces = np.reshape(x_faces, (x_faces.shape[0], faces.images.shape[1],
                               faces.images.shape[2], faces.images.shape[3]))
x_faces.shape

Now preprocess the pixel values for input to a pretrained ResNet50 CNN and use
Scikit-Learn’s train_test_split function to split the dataset, yielding 400 training
samples and 100 test samples:

from sklearn.model_selection import train_test_split
from tensorflow.keras.applications.resnet50 import preprocess_input

face_images = preprocess_input(np.array(x_faces * 255))

x_train, x_test, y_train, y_test = train_test_split(
    face_images, y_faces, train_size=0.8, stratify=y_faces,
    random_state=0)

If you wanted, you could divide the preprocessed pixel values by 255 and train a
CNN from scratch right now with this data. Here’s how you’d go about it (in case you
care to give it a try):

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPooling2D

model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(x_train.shape[1:])))
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model.add(MaxPooling2D(2, 2))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(2, 2))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(2, 2))
model.add(Flatten())
model.add(Dense(1024, activation='relu'))
model.add(Dense(class_count, activation='softmax'))
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(x_train / 255, y_train, validation_data=(x_test / 255, y_test),
          epochs=20, batch_size=10)

I did it and then plotted the training and validation accuracy:

The validation accuracy is better than that of an SVM or a conventional neural net‐
work, but it’s nowhere near what modern CNNs achieve on the LFW dataset. So
clearly there is a better way.

That better way, of course, is transfer learning, which we covered in Chapter 10.
ResNet50 was trained with more than 1 million images from the ImageNet dataset, so
it should be adept at extracting features from photos—more so than a handcrafted
CNN trained with 400 images. Let’s see if that’s the case. Use the following statements
to load ResNet50’s feature extraction layers, initialize them with the ImageNet
weights, and freeze them so that the weights aren’t adjusted during training:

from tensorflow.keras.applications import ResNet50

base_model = ResNet50(weights='imagenet', include_top=False)
base_model.trainable = False
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Now add classification layers to the base model and include a Resizing layer to resize
images input to the network to the size that ResNet50 expects:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Flatten, Dense, Resizing

model = Sequential()
model.add(Resizing(224, 224))
model.add(base_model)
model.add(Flatten())
model.add(Dense(1024, activation='relu'))
model.add(Dense(class_count, activation='softmax'))
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

Train the model and plot the training and validation accuracy:

import seaborn as sns
sns.set()

hist = model.fit(x_train, y_train, validation_data=(x_test, y_test),
                 batch_size=10, epochs=10)

acc = hist.history['accuracy']
val_acc = hist.history['val_accuracy']
epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, '-', label='Training Accuracy')
plt.plot(epochs, val_acc, ':', label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.plot()

Results will vary, but my run produced a validation accuracy around 94%:
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This is an improvement over a CNN trained from scratch, and it’s an indication that
ResNet50 does a better job of extracting features from facial images. But it’s still not
state of the art. Is it possible to do even better?

Boosting Transfer Learning with Task-Specific Weights
Initialized with ImageNet weights, ResNet50 does a credible job of feature extraction.
Those weights were arrived at when ResNet50 was trained on more than 1 million
photos of objects ranging from basketballs to butterflies. It was not, however, trained
with facial images. Would it be better at extracting features from facial images if it
were trained with facial images?

In 2017, a group of researchers at the University of Oxford’s Visual Geometry Group
published a paper titled “VGGFace2: A Dataset for Recognising Faces Across Pose
and Age”. After assembling a dataset comprising several million facial images, they
trained two variations of ResNet50 with it and published the results. They also pub‐
lished the weights, which are wrapped in a handy Python library named Keras-
vggface. That library includes a class named VGGFace that encapsulates ResNet50 with
TensorFlow-compatible weights. Out of the box, the VGGFace model is capable of
recognizing the faces of thousands of celebrities ranging from Brie Larson to Jennifer
Aniston. But its real value lies in using transfer learning to repurpose it to recognize
faces it wasn’t trained to recognize before.

To simplify matters, I installed Keras-vggface, created an instance of VGGFace without
the classification layers, initialized the weights, and saved the model to an H5 file
named vggface.h5. Download that file and drop it into your notebooks’ Data subdi‐
rectory. Then use the following code to create an instance of VGGFace built on top of
ResNet50, and add custom classification layers:

from tensorflow.keras.models import load_model

base_model = load_model('Data/vggface.h5')
base_model.trainable = False

model = Sequential()
model.add(Resizing(224, 224))
model.add(base_model)
model.add(Flatten())
model.add(Dense(1024, activation='relu'))
model.add(Dense(class_count, activation='softmax'))
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

Next, train the model and plot the training and validation accuracy:

hist = model.fit(x_train, y_train, validation_data=(x_test, y_test),
                 batch_size=10, epochs=10)
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acc = hist.history['accuracy']
val_acc = hist.history['val_accuracy']
epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, '-', label='Training Accuracy')
plt.plot(epochs, val_acc, ':', label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.plot()

The results are spectacular:

To be sure, run the test data through the network and use a confusion matrix to assess
the results:

from sklearn.metrics import ConfusionMatrixDisplay as cmd

sns.reset_orig()
y_pred = model.predict(x_test)
fig, ax = plt.subplots(figsize=(5, 5))
ax.grid(False)

cmd.from_predictions(y_test, y_pred.argmax(axis=1),
                     display_labels=faces.target_names, colorbar=False,
                     cmap='Blues', xticks_rotation='vertical', ax=ax)

Because VGGFace was tuned to extract features from facial images, it achieves a per‐
fect score on the 100 test images. That’s not to say that it will never fail to recognize a
face. It does indicate that, on the dataset you trained it with, it is remarkably adept at
extracting features from facial images:

278 | Chapter 11: Face Detection and Recognition



And therein lies an important lesson. CNNs that are trained in task-specific ways fre‐
quently provide a better base for transfer learning than CNNs trained in a more
generic fashion. If the goal is to perform facial recognition, you’ll almost always do
better with a CNN trained with facial images than a CNN trained with photos of
thousands of dissimilar objects. For a neural network, it’s all about the weights.

ArcFace
VGGFace isn’t the only pretrained CNN that excels at extracting features from
facial images. Another is ArcFace, which was introduced in a 2019 paper titled
“ArcFace: Additive Angular Margin Loss for Deep Face Recognition”. A handy imple‐
mentation is available in a Python package named Arcface.

Each facial image submitted to ArcFace is transformed into a dense vector of 512 val‐
ues known as a face embedding. The code for creating an embedding is simple:

from arcface import ArcFace

af = ArcFace.ArcFace()
embedding = af.calc_emb(image)

Embeddings can be used to train machine learning models, and they can be used to
make predictions with those models. Thanks to the loss function named in the title of
the paper, embeddings created by ArcFace often do a better job of capturing the
uniqueness of a face than embeddings generated by conventional CNNs.
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Another use for the embeddings created by ArcFace is face verification, which com‐
pares two facial images and computes the probability that they represent the same
person. The following statements generate embeddings for two facial images and use
the cosine_similarity function introduced in Chapter 4 to quantify the similarity
between the two:

af = ArcFace.ArcFace()
face_emb1 = af.calc_emb(image1)
face_emb2 = af.calc_emb(image2)
sim = cosine_similarity([face_emb1, face_emb2])[0][1]

The result is a value from 0.0 to 1.0, with higher values reflecting greater similarity
between the faces.

Putting It All Together: Detecting and
Recognizing Faces in Photos
Any time a model scores perfectly in testing, you should be skeptical. No model is
perfect, and even if it achieves 100% accuracy against a test dataset, it won’t duplicate
that in the wild. Given that VGGFace was trained with images of some of the same
famous people found in the LFW dataset, is it possible that it’s biased toward those
people? That transfer learning with VGGFace wouldn’t do as well if trained with
images of ordinary people? And how would it perform with just a handful of training
images?

To answer these questions, let’s build a notebook that trains a facial recognition
model based on VGGFace, uses an MTCNN to detect faces in photos, and uses the
model to identify the faces it detects. The dataset you’ll use contains eight pictures
each of three ordinary people in slightly different poses, at ages up to 20 years apart,
with and without glasses (Figure 11-7). These images were extracted from photos
using the extract_faces function in Example 11-1 and resized to 224 × 224.

Figure 11-7. Photos for training a facial recognition model
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Begin by downloading a ZIP file containing the facial images and copying the con‐
tents of the ZIP file into a subdirectory named Faces where your notebooks are hos‐
ted. The ZIP file contains four folders: one named Jeff, one named Lori, one named
Abby, and one named Samples that contains uncropped photos for testing.

Now create a new notebook and run the following code in the first cell to define
helper functions for loading and displaying facial images from the subdirectories you
copied them to, and declare a pair of Python lists to hold the images and labels:

import os
from tensorflow.keras.preprocessing import image
import matplotlib.pyplot as plt
%matplotlib inline

def load_images_from_path(path, label):
    images, labels = [], []

    for file in os.listdir(path):
        images.append(image.img_to_array(image.load_img(os.path.join(path, file),
                      target_size=(224, 224, 3))))
        labels.append((label))
        
    return images, labels

def show_images(images):
    fig, axes = plt.subplots(1, 8, figsize=(20, 20),
                             subplot_kw={'xticks': [], 'yticks': []})
 
    for i, ax in enumerate(axes.flat):
        ax.imshow(images[i] / 255)

x, y = [], []

Next, load the images of Jeff and label them with 0s:

images, labels = load_images_from_path('Faces/Jeff', 0)
show_images(images)
    
x += images
y += labels

Load the images of Lori and label them with 1s:

images, labels = load_images_from_path('Faces/Lori', 1)
show_images(images)
    
x += images
y += labels
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Load the images of Abby and label them with 2s:

images, labels = load_images_from_path('Faces/Abby', 2)
show_images(images)
    
x += images
y += labels

Finally, preprocess the pixels for the ResNet50 version of VGGFace and split the data
fifty-fifty so that the network will be trained with four randomly selected images of
each person and validated with the same number of images:

import numpy as np
from sklearn.model_selection import train_test_split
from tensorflow.keras.applications.resnet50 import preprocess_input

faces = preprocess_input(np.array(x))
labels = np.array(y)

x_train, x_test, y_train, y_test = train_test_split(
    faces, labels, train_size=0.5, stratify=labels,
    random_state=0)

The next step is to load the saved VGGFace model and freeze the bottleneck layers. If
you didn’t download vggface.h5 earlier, download it now and drop it into your note‐
books’ Data subdirectory. Then execute the following code:

from tensorflow.keras.models import load_model

base_model = load_model('Data/vggface.h5')
base_model.trainable = False

Now define a network that uses transfer learning with VGGFace to identify faces. The
Resizing layer ensures that each image measures exactly 224 × 224 pixels. The Dense
layer contains just eight neurons because the training dataset is small and we don’t
want the network to fit too tightly to it:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Flatten, Dense, Resizing

model = Sequential()
model.add(Resizing(224, 224))
model.add(base_model)
model.add(Flatten())
model.add(Dense(8, activation='relu'))
model.add(Dense(3, activation='softmax'))
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

Train the model:

hist = model.fit(x_train, y_train, validation_data=(x_test, y_test),
                 batch_size=2, epochs=10)
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Plot the training and validation accuracy:

import seaborn as sns
sns.set()

acc = hist.history['accuracy']
val_acc = hist.history['val_accuracy']
epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, '-', label='Training Accuracy')
plt.plot(epochs, val_acc, ':', label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.plot()

Hopefully you got something like this:

Now comes the fun part: using an MTCNN to detect the faces in a photo and the
trained model to identify those faces. First make sure the MTCNN package is
installed in your environment. Then define a pair of helper functions—one that
retrieves a face from a specified location in an image (get_face), and another that
loads a photo and annotates faces in the photo with names and confidence levels
(label_faces):

from mtcnn.mtcnn import MTCNN
from PIL import Image, ImageOps
from tensorflow.keras.preprocessing import image
from matplotlib.patches import Rectangle

def get_face(image, face):
    x1, y1, w, h = face['box']
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    if w > h:
        x1 = x1 + ((w - h) // 2)
        w = h
    elif h > w:
        y1 = y1 + ((h - w) // 2)
        h = w
    
    x2 = x1 + h
    y2 = y1 + w
    
    return image[y1:y2, x1:x2]

def label_faces(path, model, names, face_threshold=0.9, prediction_threshold=0.9,
                show_outline=True, size=(12, 8)):
    # Load the image and orient it correctly
    pil_image = Image.open(path)
    exif = pil_image.getexif()
    
    for k in exif.keys():
        if k != 0x0112:
            exif[k] = None
            del exif[k]

    pil_image.info["exif"] = exif.tobytes()
    pil_image = ImageOps.exif_transpose(pil_image)
    np_image = np.array(pil_image)

    fig, ax = plt.subplots(figsize=size, subplot_kw={'xticks': [], 'yticks': []})
    ax.imshow(np_image)

    detector = MTCNN()
    faces = detector.detect_faces(np_image)
    faces = [face for face in faces if face['confidence'] > face_threshold]

    for face in faces:
        x, y, w, h = face['box']
        
        # Use the model to identify the face
        face_image = get_face(np_image, face)
        face_image = image.array_to_img(face_image)
        face_image = preprocess_input(np.array(face_image))
        predictions = model.predict(np.expand_dims(face_image, axis=0))
        confidence = np.max(predictions)

        if (confidence > prediction_threshold):
            # Optionally draw a box around the face
            if show_outline:
                rect = Rectangle((x, y), w, h, color='red', fill=False, lw=2)
                ax.add_patch(rect)
            
            # Label the face
            index = int(np.argmax(predictions))
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            text = f'{names[index]} ({confidence:.1%})'
            ax.text(x + (w / 2), y, text, color='white', backgroundcolor='red',
                    ha='center', va='bottom', fontweight='bold',
                    bbox=dict(color='red'))

Now pass the first sample image in the Samples folder to label_faces:

labels = ['Jeff', 'Lori', 'Abby']
label_faces('Faces/Samples/Sample-1.jpg', model, labels)

The output should look like this, although your percentages might be different:

Try it again, but this time with a different photo:

label_faces('Faces/Samples/Sample-2.jpg', model, labels)

Here’s the output:

Finally, submit a photo containing all three individuals that the model was trained
with:

label_faces('Faces/Samples/Sample-3.jpg', model, labels)
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Trained with just 12 facial images—four of each person—the model does a credible
job of identifying faces in photos. Of course, you could generate a dataset of your own
by passing photos of friends and family members through the function in
Example 11-1 and training the model with the resulting images.

Handling Unknown Faces: Closed-Set
Versus Open-Set Classification
Now for some bad news. A VGGFace facial recognition model is adept at identifying
faces it was trained with, but it doesn’t know what to do when it encounters a face it
wasn’t trained with. Try it: pass in a photo of yourself. The model will probably iden‐
tify you as Jeff, Lori, or Abby, and it might do so with a high level of confidence. It
literally doesn’t know what it doesn’t know. This is especially true when the dataset is
small and the network is given room to overfit.

The reason why has nothing to do with VGGFace. It has everything to do with the
fact that a neural network with a softmax output layer is a closed-set classifier, mean‐
ing it classifies any sample presented to it for predictions as one of the classes it was
trained with. (Remember that softmax ensures that the sum of the probabilities for all
classes is 1.0.) The alternative is an open-set classifier (Figure 11-8), which has the
ability to say “this sample doesn’t belong to any of the classes I was trained with.”

Figure 11-8. Closed-set versus open-set classification

There is not a one-size-fits-all solution for building open-set classifiers in the deep-
learning community today. A 2016 paper titled “Towards Open Set Deep Networks”
proposed one solution in the form of openmax output layers, which replace softmax
output layers and “estimate the probability of an input being from an unknown class.”
Essentially, if the network is trained with 10 classes, the openmax output layer adds
an 11th output representing the unknown class. It works by taking the activations
from the final classification layer and adjusting them using a Weibull distribution
rather than normalizing the probabilities as softmax does.
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Another potential solution was put forth in a 2018 paper titled “Reducing Network
Agnostophobia” from researchers at the University of Colorado. It proposed replac‐
ing cross-entropy loss with a new loss function called entropic open-set loss that drives
softmax scores for unknown classes toward a uniform probability distribution. Using
this technique, you could more reliably detect samples belonging to an unknown
class using probability thresholds paired with conventional softmax output layers. For
a great summary of the problems posed by open-set classification in deep learning
and an overview of openmax and entropic open-set loss, see “Does a Neural Network
Know When It Doesn’t Know?” by Tivadar Danka.

Yet another solution is to use ArcFace to verify each face the model identifies by com‐
paring an embedding generated from that face to a reference embedding for the same
person. You could reject the model’s conclusion if cosine similarity falls below a pre‐
determined threshold.

A more naive approach is to prevent the network from learning the training data too
well in hopes that unknown classes will yield lower softmax probabilities. That’s why I
included just eight neurons in the classification layer in the previous example. (You
could go even further by introducing a dropout layer.) It works up to a point, but it
isn’t perfect. The label_faces function has a default prediction threshold of 0.9,
meaning it labels a face only if the model classifies it with at least 90% confidence.
You could set prediction_threshold to 0.99 to rule out more unknown faces, but at
the cost of failing to identify more known faces. Tuning in this manner to strike the
right balance between recognizing known faces while ignoring unknowns is an inevi‐
table part of readying a facial recognition model for production.

Summary
Building an end-to-end facial recognition system requires a means for detecting faces
in photos as well as a means for classifying (identifying) those faces. One way to
detect faces is the Viola-Jones algorithm, for which the OpenCV library provides a
convenient implementation. An alternative that relies on deep learning is a multitask
cascaded convolutional neural network, or MTCNN. The Python package named
MTCNN contains a ready-to-use MTCNN implementation. Viola-Jones is faster and
more suitable for real-time applications (for example, identifying faces in a live web‐
cam feed), but MTCNNs are generally more accurate and incur fewer false positives.

Deep learning can be applied to the task of facial recognition by employing convolu‐
tional neural networks. Transfer learning with a pretrained CNN such as ResNet50
can identify faces with a relatively high degree of accuracy, but transfer learning with
a CNN that was trained with millions of facial images delivers unparalleled accuracy.
The primary reason is that the CNN’s bottleneck layers are optimized for extracting
features from facial images.
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With a highly optimized set of weights, a neural network can do almost anything.
Generic weights will suffice when nothing better is available, but given a task-specific
set of weights to start with, facial recognition via transfer learning can achieve
human-like accuracy.
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CHAPTER 12

Object Detection

The previous chapter introduced two popular algorithms for detecting faces in pho‐
tographs: Viola-Jones, which relies on machine learning, and MTCNNs, which rely
on deep learning. Face detection is a special case of object detection, in which comput‐
ers detect and identify objects in images. Identifying an object is an image classifica‐
tion problem, something at which CNNs excel. But finding objects to identify poses a
different challenge.

Object detection is challenging because objects aren’t assumed to be perfectly cropped
and aligned as they are for image classification tasks. Nor are they limited to one per
image. Figure 12-1 shows what a self-driving car might see as it scans video frames
from a forward-pointing camera. A CNN trained to do conventional image classifica‐
tion using carefully prepared training images is powerless to help. It might be able to
classify the image as one of a city street, but it can’t determine that the image contains
cars, people, and traffic lights, much less pinpoint their locations.

Object detection has grown in speed and accuracy in recent years, and state-of-the-
art methods rely on deep learning. In particular, they employ CNNs, which were
introduced in Chapter 10. Let’s discuss how CNNs do object detection and identifica‐
tion and try our hand at it using cutting-edge object detection models.
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Figure 12-1. Detecting and identifying objects in a scene

R-CNNs
One way to apply deep learning to the task of object detection is to use region-based
CNNs, also known as region CNNs or simply R-CNNs. The first R-CNN was intro‐
duced in a 2014 paper titled “Rich Feature Hierarchies for Accurate Object Detection
and Semantic Segmentation”. The model described in the paper comprises three
stages. The first stage scans the image and identifies up to 2,000 bounding boxes rep‐
resenting regions of interest—regions that might contain objects. The second stage is
a deep CNN that extracts features from regions of interest. The third is a support vec‐
tor machine that classifies the features. The output is a collection of bounding boxes
with class labels and confidence scores. An algorithm called non-maximum suppres‐
sion (NMS) filters the output and selects the best bounding box for each object.

NMS is a crucial element of virtually all modern object detection systems. A detector
invariably emits several bounding boxes for each object. If a photo contains one
instance of a given class—for example, one zebra—NMS selects the bounding box
with the highest confidence score. If the photo contains two zebras (Figure 12-2),
NMS divides the bounding boxes into two groups and selects the box with the highest
confidence score in each group. It groups boxes based on the amount of overlap
between them. Overlap is computed by dividing the area of intersection between two
boxes by the area formed by the union of the boxes. If the resulting intersection-over-
union (IoU) score is greater than a predetermined threshold (typically 0.5), NMS
assigns the boxes to the same group. Otherwise, it assigns them to separate groups.

When two objects of the same class have little or no overlap, NMS easily separates the
two. When two instances of the same class overlap significantly (picture one zebra
standing behind the other), the IoU threshold might have to be adjusted to achieve
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separation. IoU threshold is a hyperparameter that can be tuned to strike the right
balance between being overly aggressive at separating overlapping objects and not
aggressive enough.

Figure 12-2. Non-maximum suppression

The first stage of most R-CNN implementations uses an algorithm called selective
search to identify regions of interest by keying on similarities in color, texture, shape,
and size. Figure 12-3 shows the first 500 bounding boxes generated when OpenCV’s
implementation of selective search examines an image. Submitting a targeted list of
regions to the CNN is faster than a brute-force sliding-window approach that inputs
the contents of the window to the CNN at every stop.

Figure 12-3. Bounding boxes generated by selective search
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Even with selective search narrowing the list of candidate regions input to stage 2, an
R-CNN can’t do object detection in real time. Why? Because the CNN individually
processes the 2,000 or so regions of interest identified in stage 1. These regions invari‐
ably overlap, so the CNN processes the same pixels multiple times.

A 2015 paper titled “Fast R-CNN” addressed this by proposing a modified architec‐
ture in which the entire image passes through the CNN one time (Figure 12-4). Selec‐
tive search or a similar algorithm identifies regions of interest in the image, and those
regions are projected onto the feature map generated by the CNN. A region of interest
(ROI) pooling layer then uses a form of max pooling to reduce the features in each
region of interest to a fixed-length vector, independent of the region’s size and shape.
(By contrast, R-CNN scales each region to an image of predetermined size before
submitting it to the CNN, which is substantially more expensive than ROI pooling.)
Classification of the feature vectors is performed by fully connected layers rather than
SVMs, and the output is split to include both a softmax classifier and a bounding-box
regressor. NMS filters the bounding boxes down to the ones that matter. The result is
a system that trains an order of magnitude faster than R-CNN, makes predictions two
orders of magnitude faster, and is slightly more accurate than R-CNN.

Figure 12-4. Fast R-CNN architecture

ROI pooling reduces any region of interest to a feature vector of a
specified size, regardless of the region’s height and width. Imagine
that you have an 8 × 16 region of a feature map and you want to
reduce it to 4 × 4. You can divide the 8 × 16 region into a 4 × 4 grid,
with each cell in the grid measuring 2 × 4. You can then take the
maximum of the eight values in each cell and plug them into the
4 × 4 grid. That’s ROI pooling. It’s simple, fast, and effective. And it
works with regions of any size and aspect ratio.

A 2016 paper titled “Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks” further boosted performance by replacing selective
search with a region proposal network, or RPN. The RPN is a shallow CNN that shares
layers with the main CNN (Figure 12-5). To generate region proposals, it slides a win‐
dow over the feature map generated by the last shared layer. At each stop in the
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window’s travel, the RPN evaluates n candidate regions called anchors or anchor boxes
and computes an objectness score for each based on IoU scores with ground-truth
boxes. Objectness scores and anchor boxes are input to fully connected layers for
classification (does the anchor contain an object, and if so, what type?) and regres‐
sion. The output from these layers ultimately determines the regions of interest pro‐
jected onto the feature map generated by the main CNN and forwarded to the ROI
pooling layer.

Figure 12-5. Faster R-CNN architecture

Faster R-CNN can perform 10 times faster than Fast R-CNN and do object detection
in near real time. It’s typically more accurate than Fast R-CNNs too, thanks to the
RPN’s superior ability to identify candidate regions. Selective search is static, but an
RPN gets smarter as the network is trained. RPNs also execute in parallel to the main
CNN, which means region proposals have little impact on performance.

Mask R-CNN
The next chapter in the R-CNN story came in 2017 in a paper titled “Mask R-CNN”.
Mask R-CNNs extend Faster R-CNNs by adding instance segmentation, which identi‐
fies the shapes of objects detected in an image using segmentation masks like the ones
in Figure 12-6. Performance impact is minimal because instance segmentation is per‐
formed in parallel with region evaluation. The benefit of Mask R-CNNs is that they
provide more detail about the objects they detect. For example, you can tell whether a
person’s arms are extended—something you can’t discern from a simple bounding
box. They are also slightly more accurate than Faster R-CNNs because they replace
ROI pooling with ROI alignment, which discards less information when generating
feature vectors whose boundaries don’t perfectly align with the boundaries of the
regions they represent.
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Figure 12-6. Bounding boxes and segmentation masks generated by a Mask R-CNN

Zoom uses instance segmentation to display custom backgrounds behind you in
video feeds. Instance segmentation also powers AI-based image editing tools that
crop figures from the foreground and place them on different backgrounds. Let’s
demonstrate using a pretrained Mask R-CNN.

Start by downloading a ZIP file containing the files needed for this exercise. The files
are:

adam.jpg
A photo of a young man wearing a backpack

maui.jpg
A photo taken poolside in Hawaii

mask.py
Contains helper functions for preprocessing images before they’re input to a
Mask R-CNN and postprocessing functions for interpreting the results

MaskRCNN-12-int8.onnx
Contains a pretrained Mask R-CNN saved in ONNX format
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Place mask.py in the directory where your Jupyter notebooks are hosted, and the
remaining files in your notebooks’ Data subdirectory.

The critical file in this ensemble is MaskRCNN-12-int8.onnx. Chapter 7 introduced
Open Neural Network Exchange (ONNX) as a means for loading Scikit-Learn mod‐
els written in Python and consuming them in other languages. But ONNX does more
than bridge the language gap to Scikit. It’s a neutral format that enables neural net‐
works written with one deep-learning framework to be exported to others. For exam‐
ple, you can save a PyTorch model to a .onnx file, and then convert the .onnx file to a
TensorFlow model and use it as if it had been written with TensorFlow from the out‐
set. Or you can install an ONNX runtime and load and call the model without con‐
verting it to TensorFlow. Chapter 7 demonstrated how to save a Scikit model in
ONNX format and use the Python ONNX runtime to load the model and call it from
Python. It also used the .NET ONNX runtime to load the model and call it from C#.
As noted in Chapter 7, ONNX runtimes are available for a variety of platforms and
programming languages.

MaskRCNN-12-int8.onnx contains a sophisticated Mask R-CNN implementation
from Facebook Research. It uses a ResNet50 backbone to extract features from the
images input to it, and it includes a branch that computes instance segmentation
masks in parallel with bounding box computations. It was trained with more than
200,000 images from the COCO dataset. Those images contain more than 1.5 million
objects that fall into 80 categories ranging from cats and dogs to people, bicycles, and
cars. And because the trained model was published in the ONNX model zoo on Git‐
Hub, you can load it and pass images to it with just a few lines of code.

The first step in using the model in Python is to make sure the Python ONNX run‐
time is installed in your environment. For this exercise, make sure OpenCV is
installed too. Then create a Jupyter notebook and run the following code in the first
cell to load and display adam.jpg:

import matplotlib.pyplot as plt
from PIL import Image
%matplotlib inline

image = Image.open('Data/adam.jpg')
fig, ax = plt.subplots(figsize=(12, 8), subplot_kw={'xticks': [], 'yticks': []})
ax.imshow(image)
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Here’s the output:

The goal is to run this image through Mask R-CNN, detect the objects in it, and
annotate the image accordingly. To that end, use the following code to preprocess the
image pixels the way the model expects, load Mask R-CNN from the ONNX file, and
submit the preprocessed image to it:

from mask import *
import onnxruntime as rt

image_data = preprocess(image)
session = rt.InferenceSession('Data/MaskRCNN-12-int8.onnx')
input_name = session.get_inputs()[0].name
result = session.run(None, { input_name: image_data })

The value returned by the run method is an array of four arrays. The first array con‐
tains bounding boxes for the objects detected in the image. In this example, it detec‐
ted a total of 13 objects:

array([[ 377.50537,  174.36874,  801.177  ,  787.7125 ],
       [ 428.15994,  344.70105,  699.99097,  599.8499 ],
       [ 757.1859 ,  529.4938 ,  814.2776 ,  658.8041 ],
       [ 432.57123,  351.229  ,  672.2242 ,  484.63702],
       [ 435.53653,  357.34235,  494.73557,  516.4939 ],
       [ 672.56714,  516.2991 ,  822.82153,  663.68726],
       [ 608.1904 ,  361.0429 ,  686.1207 ,  552.70105],
       [ 629.84894,  355.3375 ,  799.4963 ,  718.9458 ],
       [ 437.99078,  331.19318,  709.4969 ,  748.2785 ],
       [ 438.44028,  348.14404,  579.8056 ,  546.0588 ],
       [1152.0518 ,  203.89978, 1163.7583 ,  223.2485 ],
       [1151.8087 ,  132.45256, 1164.0013 ,  150.6876 ],
       [1151.8087 ,  404.0875 , 1164.0013 ,  423.058  ],
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       [ 416.03802,  396.8123 ,  694.8975 ,  511.93896],
       [ 683.35236,  765.0078 ,  701.3403 ,  784.47546]], dtype=float32)

The second array is an array of integer class identifiers corresponding to classes in the
COCO dataset: 1 for a person, 2 for a bicycle, and so on. These identify the objects in
the image:

array([ 1, 25, 27, 25, 25, 27, 25, 27, 27, 25,  1,  1,  1, 25, 75],
      dtype=int64)

The third array contains confidence scores for the 13 objects. They range from a high
of 99.9% for the person in the image to a low of 5.5% for the logo on his cap, which
the model thinks might be a clock. Observe that only two objects scored a confidence
level of 70% or higher:

array([0.99911565, 0.8009716 , 0.4624603 , 0.19400069, 0.17042953,
       0.11972303, 0.11626374, 0.10352837, 0.08243025, 0.08089489,
       0.07266886, 0.07266886, 0.07266886, 0.06278796, 0.0549276 ],
      dtype=float32)

Finally, the fourth array contains segmentation masks for each object. Each mask is a
28 × 28 array of floating-point values sometimes referred to as a soft mask due to the
soft edges. Figure 12-7 shows the mask for the person detected in the image. When
mapped back to the image’s original size and aspect ratio, it does a reasonable job of
defining which pixels correspond to that person.

Figure 12-7. A 28 × 28 soft mask corresponding to the person in the preceding photo

The next step is to grab the bounding boxes, predicted class labels, confidence scores,
and segmentation masks and pass them to the annotate_image function to visualize
the results:

boxes = result[0]  # Bounding boxes
labels = result[1] # Class labels
scores = result[2] # Confidence scores
masks = result[3]  # Segmentation masks

annotate_image(image, boxes, labels, scores, masks)
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Here’s the result:

By default, annotate_image ignores objects identified with less than 70% confidence.
You can override that by including a min_confidence parameter in the call. The
model detected two objects in the image with a confidence that equaled or exceeded
70%: a person and a backpack. annotate_image draws the bounding boxes and anno‐
tates them with class names and confidence levels. It also shades the objects by over‐
laying them with partially transparent pixels. These are the segmentation masks
returned by run.

annotate_image is one of several helper functions found in mask.py. Another is
preprocess, which preps each image in the way Mask R-CNN expects by resizing the
image, making sure the width and height are multiples of 32, converting the image to
BGR format, and normalizing the pixel values. I brought both of these functions over
from the model’s GitHub page with some minor modifications. Since Mask R-CNNs
are often used to crop objects from images, I also added a change_background func‐
tion that extracts all the objects detected in an image with a specified confidence level
(default = 0.7) and composites them onto a new background. To see for yourself, run
the following statements in the notebook’s next cell:

fg_image = Image.open('Data/adam.jpg')
bg_image = Image.open('Data/maui.jpg')

change_background(session, fg_image, bg_image)
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The output should look like this:

change_background submits the foreground image (the one passed in the function’s
second parameter) to the model and copies all the pixels inside the segmentation
masks to the background image. It works best when the foreground and background
images are the same size, but it will resize the background image if needed to match
the foreground image. The background will be distorted if its aspect ratio differs from
that of the foreground image.

The fact that segmentation masks produced by Mask R-CNN measure just 28 × 28
explains the “tearing” around the pixels copied from the foreground image: the reso‐
lution of the mask is lower than that of the person in the photo. You could modify
Mask R-CNN to use higher-resolution masks, but you’d have to retrain the model
from scratch. That’s a time-consuming endeavor with a model as complex as this one
and a dataset as large as COCO, even if you do the training on GPUs.

YOLO
While the R-CNN family of object detection systems delivers unparalleled accuracy, it
leaves something to be desired when it comes to real-time object detection of the type
required by, say, self-driving cars. A paper titled “You Only Look Once: Unified, Real-
Time Object Detection” published in 2015 proposed an alternative to R-CNNs known
as YOLO (You Only Look Once) that revolutionized the way engineers think about
object detection. From the paper’s introduction:
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Humans glance at an image and instantly know what objects are in the image, where
they are, and how they interact. The human visual system is fast and accurate, allowing
us to perform complex tasks like driving with little conscious thought. Fast, accurate
algorithms for object detection would allow computers to drive cars without special‐
ized sensors, enable assistive devices to convey real-time scene information to human
users, and unlock the potential for general purpose, responsive robotic systems.

Current detection systems repurpose classifiers to perform detection. To detect an
object, these systems take a classifier for that object and evaluate it at various locations
and scales in a test image. Systems like deformable parts models (DPM) use a sliding
window approach where the classifier is run at evenly spaced locations over the entire
image.

More recent approaches like R-CNN use region proposal methods to first generate
potential bounding boxes in an image and then run a classifier on these proposed
boxes. After classification, post-processing is used to refine the bounding boxes, elimi‐
nate duplicate detections, and rescore the boxes based on other objects in the scene.
These complex pipelines are slow and hard to optimize because each individual com‐
ponent must be trained separately.

We reframe object detection as a single regression problem, straight from image pixels
to bounding box coordinates and class probabilities. Using our system, you only look
once (YOLO) at an image to predict what objects are present and where they are.

YOLO systems are characterized by their performance:

Our base network runs at 45 frames per second with no batch processing on a Titan X
GPU and a fast version runs at more than 150 fps. This means we can process stream‐
ing video in real-time with less than 25 milliseconds of latency. Furthermore, YOLO
achieves more than twice the mean average precision of other real-time systems.

At a high level, YOLO works by dividing feature maps into grids of cells and evaluat‐
ing each cell for the presence of an object, as shown in Figure 12-8. Using the anchor-
box concept borrowed from Faster R-CNN, YOLO analyzes bounding boxes of
various shapes and sizes around each cell and assigns classes and probabilities to the
boxes. One CNN handles everything, including feature extraction, classification, and
regression designating the sizes and locations of the bounding boxes, and an image
goes through the CNN just once. At the end, NMS reduces the number of bounding
boxes to one per object, and each bounding box is attributed with a class as well as a
confidence level—the probability that the box actually contains an object of the speci‐
fied class.
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Figure 12-8. YOLO’s approach to analyzing an image

There are currently seven versions of YOLO referred to as YOLOv1 through
YOLOv7. Each new version improves on the previous version in terms of accuracy
and performance. There are also variations such as PP-YOLO and YOLO9000.
YOLOv3 was the last version that YOLO creator Joseph Redmon contributed to and
is considered a reference implementation of sorts. By extracting feature maps from
certain layers of the CNN, YOLOv3 analyzes the image using a 13 × 13 grid, a 26 × 26
grid, and a 52 × 52 grid in an effort to detect objects of various sizes. It uses anchors
to predict nine bounding boxes per cell. YOLO’s primary weakness is that it has diffi‐
culty detecting very small objects that are close together, although YOLOv3 improved
on YOLOv1 and YOLOv2 in this regard. More information about YOLO can be
found on its creator’s website. A separate article titled “Digging Deep into YOLO V3”
offers a deep dive into the YOLOv3 architecture.

YOLOv3 and Keras
YOLO was originally written using a deep-learning framework called Darknet, but it
can be implemented with other frameworks as well. The keras-yolo3 project on Git‐
Hub contains a Keras implementation of YOLOv3 that can be trained from scratch or
initialized with predefined weights and used for inference—that is, to make predic‐
tions. This version accepts 416 × 416 images. To simplify usage, I created a file named
yolov3.py containing helper classes and helper functions. It is a modified version of a
file that’s available in the keras-yolo3 project. I removed elements that weren’t needed
for making predictions, rewrote some of the code for improved utility and perfor‐
mance, and added a little code of my own, but most of the credit goes to Huynh Ngoc
Anh, whose GitHub ID is experiencor. With yolov3.py and a set of weights to lend a
hand, you can load YOLOv3 and make predictions with just a few lines of code.
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To see YOLOv3 in action, begin by downloading a ZIP file containing the files you
need. Open the ZIP file and place yolov3.py in the directory with your notebooks.
Place the other files in your notebooks’ Data subdirectory. Next, download
yolov3.weights, which contains the weights arrived at when YOLOv3 was trained on
the COCO dataset, and place it in the Data subdirectory as well.

Now create a new Jupyter notebook and paste the following code into the first cell:

from yolov3 import *

model = make_yolov3_model()
weight_reader = WeightReader('Data/yolov3.weights')
weight_reader.load_weights(model)
model.summary()

Run the code to import the helper classes and functions in yolov3.py, create the
model, and initialize it with the COCO weights. Then use the following statements to
load a photo of a couple biking the city wall surrounding Xian, China:

import matplotlib.pyplot as plt
%matplotlib inline

image = plt.imread('Data/xian.jpg')
width, height = image.shape[1], image.shape[0]
fig, ax = plt.subplots(figsize=(12, 8), subplot_kw={'xticks': [], 'yticks': []})
ax.imshow(image)

Now let’s see if YOLOv3 can detect objects in the image. Use the following code to
load the image again, resize it to 416 × 416, preprocess the pixels, and submit the
resulting image to the model for prediction:

import numpy as np
from tensorflow.keras.preprocessing.image import load_img, img_to_array

x = load_img('Data/xian.jpg', target_size=(YOLO3.width, YOLO3.height))
x = img_to_array(x) / 255
x = np.expand_dims(x, axis=0)
y = model.predict(x)

predict returns arrays containing information about objects detected in the image at
three resolutions (that is, with grid cells measuring 8, 16, and 32 pixels square), but
the arrays need to be decoded into bounding boxes and the boxes filtered with NMS.
To help, yolov3.py contains a function called decode_predictions (inspired by
Keras’s decode_predictions function) to do the post-processing. decode

_predictions requires the width and height of the original image as input so that it
can scale the bounding boxes to match the original image dimensions. The return
value is a list of BoundingBox objects, each containing the pixel coordinates of a box
surrounding an object detected in the scene, along with a label identifying the object
and a confidence value from 0.0 to 1.0.
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The next step, then, is to pass the predictions returned by predict to decode
_predictions and list the bounding boxes:

boxes = decode_predictions(y, width, height)

for box in boxes:
    print(f'({box.xmin}, {box.ymin}), ({box.xmax}, {box.ymax}), ' +
          f'{box.label}, {box.score}')

Here’s the output:

(692, 232), (1303, 1490), person, 0.9970048069953918
(1314, 327), (1920, 1496), person, 0.9957388639450073
(716, 786), (1277, 1634), bicycle, 0.9924144744873047
(1210, 845), (2397, 1600), bicycle, 0.9957170486450195

The model detected four objects in the image: two people and two bikes. The labels
come from the COCO dataset. There are 80 in all, and they’re built into the YOLO3
class in yolov3.py. Use the following command to list them and see all the different
types of objects the model can detect:

YOLO3.labels

yolov3.py also contains a helper function named annotate_image that loads an image
from the filesystem and draws the bounding boxes returned by decode_predictions
as well as labels and confidence values. Use the following statement to visualize what
the model found in the image:

annotate_image('Data/xian.jpg', boxes)

The output should look like this:

Now let’s try it with another image—this time, a photo of a young woman and the
family dog. First show the image and save its width and height:
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image = plt.imread('Data/abby-lady.jpg')
width, height = image.shape[1], image.shape[0]
fig, ax = plt.subplots(figsize=(12, 8), subplot_kw={'xticks': [], 'yticks': []})
ax.imshow(image)

Preprocess the image and pass it to the model’s predict method:

x = load_img('Data/abby-lady.jpg', target_size=(YOLO3.width, YOLO3.height))
x = img_to_array(x) / 255
x = np.expand_dims(x, axis=0)
y = model.predict(x)

Show the image again, this time annotated with the objects detected in it:

boxes = decode_predictions(y, width, height)
annotate_image('Data/abby-lady.jpg', boxes)

Here is the output:

The model detected the girl and her laptop, but it didn’t detect the dog even though
the COCO training images included dogs. Under the hood, it did detect the dog, but
with less than 90% confidence. The model’s predict method typically returns infor‐
mation about thousands of bounding boxes, most of which can be ignored because
the confidence levels are so low. By default, decode_predictions ignores bounding
boxes with confidence scores less than 0.9, but you can override that by including a
min_score parameter in the call. Use the following statements to decode the predic‐
tions and visualize them again, this time with a minimum confidence level of 55%:

boxes = decode_predictions(y, width, height, min_score=0.55)
annotate_image('Data/abby-lady.jpg', boxes)
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With the confidence threshold lowered to 0.55, the model not only detected the dog,
but also the sofa:

Because the model was trained on the COCO dataset, it can detect lots of other
objects too, including traffic lights, stop signs, various types of food and animals, and
even bottles and wine glasses. Try it with some images of your own to experience
state-of-the-art object detection firsthand.

Custom Object Detection
An object detection model trained on the COCO dataset can readily detect and iden‐
tify 80 different types of objects. But what if you need an object detection model that
identifies other objects? What if, for example, you need a model that detects license
plates on cars, packages left on your front porch, or cancer cells in tissue samples? All
of these are ways in which object detection is employed in industry today. And none
of them rely on models trained solely with COCO images.

Training an object detection model from scratch is a heavy lift even for researchers at
Microsoft, Facebook, and Google. You can short-circuit the process a bit by starting
with the COCO weights and incrementally training the network with new classes, but
even that is compute and time intensive.

There is an easier way. The premise underlying this entire book is that you’re a soft‐
ware developer or engineer, not a PhD data scientist. You want to use machine learn‐
ing (or deep learning) to add value to your business. You want results, not equations
on a blackboard. You may or may not own a GPU, but you have a job to do, and in
this case, that job involves custom object detection.
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The “easier way” is Azure Cognitive Services—specifically, a member of the Cognitive
Services family called the Custom Vision service. I will formally introduce Azure
Cognitive Services in Chapter 14, but if your goal is to build a custom object detector,
now’s the right time for your first foray into the world of AI as a service. In my opin‐
ion, nothing makes crafting custom object detection models easier than the Custom
Vision service. Little expertise is required, and at the end, you’re left with a trained
model that you can easily consume in Python or C# or other programming languages
such as Swift.

Azure’s Custom Vision service is one of the best-kept secrets in AI. Let’s use it to train
a custom object detection model—and then don our marine biologist cap and put the
model to work.

Training a Custom Object Detection Model
with the Custom Vision Service
The Custom Vision service is one of more than 20 services and APIs that make up
Azure Cognitive Services. Cognitive Services enables you to build intelligence into
apps without requiring deep expertise in machine learning and AI. The Custom
Vision service lets you build image classification models and object detection models
and train them in the cloud on GPUs. When training is complete, you can either
deploy the models as web services and call them using REST APIs, or download them
in various formats, including TensorFlow and Core ML, and consume them locally.
Included in the download are sample source code files demonstrating how to con‐
sume the model.

To use the Custom Vision service, you need a Microsoft account and an Azure sub‐
scription. If you don’t have a Microsoft account, you can create one for free. If you
don’t have an Azure subscription, you can create a free trial subscription. You have to
provide a credit card or debit card, but you get $200 in free credits to use for 30 days
and access to many free service tiers. Even if you have a paid subscription or let your
free trial roll over into a paid subscription, you won’t necessarily incur any charges for
using the Custom Vision service—especially if you export the models you create.

If you’d prefer not to create an Azure subscription, you can skip the
remainder of this section and pick up again with the next section,
where we use the trained model to detect objects. All the files you
need in order to utilize the model are present in the Chapter 12
folder of this book’s GitHub repo.
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Ready to build a custom object detection model? How about one that spots sea turtles
in the wild? Start by downloading a dataset of sea turtle images. I used Bing image
search to find these photos and limited the search to images that are free to be shared
and used commercially. Copy the images from the ZIP file to a convenient location
on your hard disk.

Next, navigate to the Custom Vision portal in your browser and log in with your
Microsoft account. Click “+ NEW PROJECT,” and in the “Create new project” dialog,
click “create new” to create a new Azure resource for the project (Figure 12-9).

Figure 12-9. Creating a new Azure resource in a Custom Vision service project

Enter a name such as “turtle-detector” for the resource and select your Azure sub‐
scription, as shown in Figure 12-10. Select an existing Azure resource group for the
new resource or click “create new” and create a new one. Make sure Cognitive‐
Services is selected as the resource type and either accept the default Azure location
or choose one that’s closer to you. Finally, select F0 as the pricing tier if it’s available,
or S1 if it’s not. (F0 is a free tier and is generally limited to one per Azure subscrip‐
tion.) Then click the “Create resource” button.
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Figure 12-10. Creating a new Cognitive Services resource

In Azure, a resource group is a collection of related resources that
serve a common purpose and share a common lifetime. Deleting a
resource group deletes all the resources in that group. In addition,
you can easily get billing information for the group as a whole
rather than add up the costs of the individual resources.

In the “Create new project” dialog, enter a name for the project and select the
resource that you just created (Figure 12-11). Select Object Detection as the project
type and “General (compact)” as the domain. Selecting one of the “compact” domains
is essential if the goal is to train a model that can be exported and consumed locally.
Make sure “Basic platforms” is selected under Export Capabilities, and then click
“Create project.”
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Figure 12-11. Creating a project containing an object detector
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Now that the Custom Vision project has been created, the next step is to upload the
images that you’ll use to train the model and annotate them with class names and
bounding boxes. To begin, click “Add images.” Then navigate to the folder where your
sea turtle images are stored and upload all 50. After the upload is complete, click the
first image to open it in the image detail editor. Use your mouse to draw a box around
the sea turtle, as shown in Figure 12-12. Then type sea-turtle into the tag editor
that pops up, and click the plus sign to the right of it. Now click the right arrow at the
far right to move to the next image, and repeat this process for the remaining training
images. You don’t have to enter the tag name again; you simply select it from a list of
existing tags. In addition, you usually don’t have to draw boxes around the sea turtles.
Hover your cursor over a sea turtle and the editor will use a little AI of its own to
suggest a bounding box.

Figure 12-12. Identifying sea turtles in training images
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The most tedious part of training a custom object detection model
is identifying objects and bounding boxes in all the training
images. The Custom Vision service helps by providing an intelli‐
gent editor to minimize the amount of clicking and dragging
required. Still, imagine doing this for hundreds of thousands of
images!

In cases in which a photo contains two or more sea turtles, be sure to tag them all, as
shown in Figure 12-13. It’s fine if the bounding boxes overlap. Objects frequently do
overlap in the real world, after all. Data scientists refer to overlapping bounding boxes
as occlusions.

Figure 12-13. Sea turtles with overlapping bounding boxes

After you’ve tagged all 50 training images, click the green Train button in the upper-
right corner of the page. When asked to choose a training type (Figure 12-14), select
Quick Training to conserve time and money, and then click the Train button in the
lower-right corner of the dialog to commence training. The Advanced Training
option usually produces a more accurate model, but it takes longer and charges you
for up to the number of hours you budget. Advanced training might not be an option
if you selected the free F0 tier when you created the model. F0 provides one hour of
training per month at no charge.
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Figure 12-14. Choosing a training option

Quick training usually takes 5 to 10 minutes. When training is complete, you’ll see a
summary like the one in Figure 12-15. You already know what precision and recall
are. The third metric, mean average precision (mAP), is a common metric for gauging
the accuracy of object detection models. It reflects the model’s ability to classify
objects and identify the objects’ bounding boxes. The higher the percentage, the bet‐
ter. If the number isn’t sufficiently high, then you have two choices: train with more
images, or try advanced training rather than quick training (or both). State-of-the-art
object detection models are usually trained with thousands of examples of each class.
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Figure 12-15. Training results

As an experiment, I trained the same model using the advanced
training option and budgeted one hour for training. Training took
less than 30 minutes and mAP reached 97.2%. At the time of this
writing, advanced training costs $10 per hour, so the cost to my
Azure subscription was less than $5. The Custom Vision pricing
page has more information on pricing.

You can test the model’s accuracy by clicking the Quick Test button at the top of the
page and selecting a photo or two that the model wasn’t trained with. Or you can
click Publish in the upper-left corner of the page and deploy the model as a web ser‐
vice. But our goal is to download the model and run it locally. To that end, click
Export at the top of the page. Choose TensorFlow as the export type and then click
the Export button. Wait for the export to be prepared, and then click the Download
button (Figure 12-16).

Custom Object Detection | 313

https://oreil.ly/DCAvD
https://oreil.ly/DCAvD


Figure 12-16. Downloading the trained TensorFlow model

When the download completes, open the downloaded ZIP file. Copy the following
files from the ZIP file to the directory where your Jupyter notebooks are hosted:

labels.txt
Contains the label you created (sea-turtle) when you labeled the images.

model.pb
Contains the trained and serialized TensorFlow model.

object_detection.py
Found in the ZIP file’s python folder, this file contains helper functions for utiliz‐
ing the model in Python apps.

Once these files are downloaded, delete the project in the Custom Vision portal
unless you want to go back and refine the model by training it with more images (or
granting it more training time). To ensure that no additional charges to your Azure
subscription will be incurred, delete the Azure resource group containing the model.
You can delete resource groups through the Azure portal.

Note that when preparing a model with the Custom Vision service, you aren’t limited
to one class of object. You can upload images with dozens of different classes and tag
them accordingly in the image detail editor. In that case, labels.txt will contain all the
labels rather than just one.

Using the Exported Model
Now you’re ready to put the model to work. Begin by creating a new Jupyter note‐
book and pasting the following code into the first cell. These statements define a class
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named SeaTurtleDetector that represents a TensorFlow model and a function
named annotate_image that annotates an image to show what the model detected.
The SeaTurtleDetector class is a child of the ObjectDetection class implemented in
object_detection.py. It has a predict method that you can call to detect objects in an
image:

import sys
import tensorflow as tf
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
from object_detection import ObjectDetection
from PIL import Image
import numpy as np

class SeaTurtleDetector(ObjectDetection):
    def __init__(self, graph_def, labels):
        super(SeaTurtleDetector, self).__init__(labels)
        self.graph = tf.compat.v1.Graph()
        with self.graph.as_default():
            input_data = tf.compat.v1.placeholder(
                tf.float32, [1, None, None, 3], name='Placeholder')
            tf.import_graph_def(graph_def,
                                input_map={"Placeholder:0": input_data},
                                name="")

    def predict(self, preprocessed_image):
        inputs = np.array(preprocessed_image, dtype=float)[:, :, (2, 1, 0)]

        with tf.compat.v1.Session(graph=self.graph) as sess:
            output_tensor = sess.graph.get_tensor_by_name('model_outputs:0')
            outputs = sess.run(output_tensor,
                               {'Placeholder:0': inputs[np.newaxis, ...]})
            return outputs[0]

def annotate_image(image, predictions, min_score=0.7, figsize=(12, 8)):
    fig, ax = plt.subplots(figsize=figsize,
                           subplot_kw={'xticks': [], 'yticks': []})
    img_width, img_height = image.size
    ax.imshow(image)

    for p in predictions:
        score = p['probability']

        if score >= min_score: 
            x1 = p['boundingBox']['left'] * img_width
            y1 = p['boundingBox']['top'] * img_height
            width = p['boundingBox']['width'] * img_width
            height = p['boundingBox']['height'] * img_height
            label = p['tagName']

            rect = Rectangle((x1, y1), width, height, fill=False,
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                             color='red', lw=2)
            ax.add_patch(rect)
            label = f'{label} ({score:.0%})'
            ax.text(x1 + (width / 2), y1, label, color='white',
                    backgroundcolor='red', ha='center', va='bottom',
                    fontweight='bold', bbox=dict(color='red'))

Next, use the following statements to load the serialized model in model.pb and the
label in labels.txt and initialize an object detection model:

# Load the serialized model graph
graph_def = tf.compat.v1.GraphDef()
with tf.io.gfile.GFile('model.pb', 'rb') as f:
    graph_def.ParseFromString(f.read())

# Load the labels
with open('labels.txt', 'r') as f:
    labels = [l.strip() for l in f.readlines()]

# Create the model
model = SeaTurtleDetector(graph_def, labels)

Finally, go out to the internet and download a sea turtle photo. Then load the photo
into your notebook and see if the model detects the sea turtle in it:

%matplotlib inline

image = Image.open('PATH_TO_IMAGE_FILE')
predictions = model.predict_image(image)
annotate_image(image, predictions)

Did the model get it right? It did for me:
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Keep in mind that state-of-the-art accuracy in object detection is a product of train‐
ing with lots of labeled images. The 50 you trained with here are a good start, but to
train a model to a sufficient level of accuracy for real-world use, you’ll probably need
a minimum of 10 times more. The good news is that once you’ve collected the
images, the Custom Vision service makes the process of labeling the images and
training the model relatively easy.

Summary
Object detection represents the tip of the spear in the world of computer vision. It’s
how self-driving cars “see” objects in front of them, and it’s the technology underlying
numerous real-world applications. State-of-the-art object detection is accomplished
with deep learning using specially crafted CNNs that do more than mere image clas‐
sification. You can use pretrained models such as YOLO and Mask R-CNN to detect
objects in images and video frames. With Mask R-CNN, you can even generate seg‐
mentation masks revealing additional information about those objects.

Custom object detection requires you to train models like these with images of your
own carefully labeled to denote objects and bounding boxes. Azure’s Custom Vision
service simplifies the process of training custom object detection models, and allows
the models you train to be hosted in the cloud and called using REST APIs or down‐
loaded and consumed locally. It’s one of several services that comprise Azure Cogni‐
tive Services, and it’s the right tool for the job when the job calls for detecting objects
that pretrained models weren’t trained to detect.
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CHAPTER 13

Natural Language Processing

It’s not difficult to use Scikit-Learn to build machine learning models that analyze text
for sentiment, identify spam, and classify text in other ways. But today, state-of-the-
art text classification is most often performed with neural networks. You already
know how to build neural networks that accept numbers and images as input. Let’s
build on that to learn how to construct deep-learning models that process text—a
segment of deep learning known as natural language processing, or NLP for short.

NLP encompasses a variety of activities including text classification, named-entity
recognition, keyword extraction, question answering, and language translation. The
accuracy of NLP models has improved in recent years for a variety of reasons, not the
least of which are newer and better ways of converting words and sentences into
dense vector representations that incorporate meaning, and a relatively new neural
network architecture called the transformer that can zero in on the most meaningful
words and even differentiate between different meanings of the same word.

One element that virtually all neural networks that process text have in common is an
embedding layer, which uses word embeddings to transform arrays, or sequences, of
scalar values representing words into arrays of floating-point numbers called word
vectors. These vectors encode information about the meanings of words and the rela‐
tionships between them. Output from an embedding layer can be input to a classifi‐
cation layer, or it can be input to other types of neural network layers to tease more
meaning from it before subjecting it to further processing.

Transformers? Embedding layers? Word vectors? There’s a lot to unpack here, but
once you wrap your head around a few basic concepts, neural networks that process
language are pure magic. Let’s dive in. We’ll start by learning how to prepare text for
processing by a deep-learning model and how to create word embeddings. Then we’ll
put that knowledge to work building neural networks that classify text, translate text
from one language to another, and more—all classic applications of NLP.
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Text Preparation
Chapter 4 introduced Scikit-Learn’s CountVectorizer class, which converts rows of
text into rows of word counts that a machine learning model can consume. Count
Vectorizer also converts characters to lowercase, removes numbers and punctuation
symbols, and optionally removes stop words—common words such as and and the
that are likely to have little influence on the outcome.

Text must be cleaned and vectorized before it’s used to train a neural network too, but
vectorization is typically performed differently. Rather than create a table of word
counts, you create a table of sequences containing tokens representing individual
words. Tokens are often indices into a dictionary, or vocabulary, built from the corpus
of words in the dataset. To help, Keras provides the Tokenizer class, which you can
think of as the deep-learning equivalent of CountVectorizer. Here’s an example that
uses Tokenizer to create sequences from four lines of text:

from tensorflow.keras.preprocessing.text import Tokenizer

lines = [
    'The quick brown fox',
    'Jumps over $$$ the lazy brown dog',
    'Who jumps high into the blue sky after counting 123',
    'And quickly returns to earth'
]

tokenizer = Tokenizer()
tokenizer.fit_on_texts(lines)
sequences = tokenizer.texts_to_sequences(lines)

fit_on_texts creates a dictionary containing all the words in the input text.
texts_to_sequences returns a list of sequences, which are simply arrays of indices
into the dictionary:

[[1, 4, 2, 5],
 [3, 6, 1, 7, 2, 8],
 [9, 3, 10, 11, 1, 12, 13, 14, 15, 16],
 [17, 18, 19, 20, 21]]

The word brown appears in lines 1 and 2 and is represented by the index 2. Therefore,
2 appears in both sequences. Similarly, a 3 representing the word jumps appears in
sequences 2 and 3. The index 0 isn’t used to denote words; it’s reserved to serve as
padding. More on this in a moment.

You can use Tokenizer’s sequences_to_texts method to reverse the process and con‐
vert the sequences back into text:

['the quick brown fox',
 'jumps over the lazy brown dog',
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 'who jumps high into the blue sky after counting 123',
 'and quickly returns to earth']

One revelation that comes from this is that Tokenizer converts text to lowercase and
removes symbols, but it doesn’t remove stop words or numbers. If you want to
remove stop words, you can use a separate library such as the Natural Language Tool‐
kit (NLTK). You can also remove words containing numbers while you’re at it:

from tensorflow.keras.preprocessing.text import Tokenizer
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords

lines = [
    'The quick brown fox',
    'Jumps over $$$ the lazy brown dog',
    'Who jumps high into the blue sky after counting 123',
    'And quickly returns to earth'
]

def remove_stop_words(text):
    text = word_tokenize(text.lower())
    stop_words = set(stopwords.words('english'))
    text = [word for word in text if word.isalpha() and not word in stop_words]
    return ' '.join(text)

lines = list(map(remove_stop_words, lines))

tokenizer = Tokenizer()
tokenizer.fit_on_texts(lines)
tokenizer.texts_to_sequences(lines)

The resulting sequences look like this:

[[3, 1, 4],
 [2, 5, 1, 6],
 [2, 7, 8, 9, 10],
 [11, 12, 13]]

which, converted back to text, are as follows:

['quick brown fox',
 'jumps lazy brown dog',
 'jumps high blue sky counting',
 'quickly returns earth']

The sequences range from three to five values in length, but a neural network expects
all sequences to be the same length. Keras’s pad_sequences function performs this
final step, truncating sequences longer than the specified length and padding sequen‐
ces shorter than the specified length with 0s:
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from tensorflow.keras.preprocessing.sequence import pad_sequences

padded_sequences = pad_sequences(sequences, maxlen=4)

The resulting padded sequences look like this:

array([[ 0,  3,  1,  4],
       [ 2,  5,  1,  6],
       [ 7,  8,  9, 10],
       [ 0, 11, 12, 13]])

Converting these sequences back to text yields this:

['quick brown fox',
 'jumps lazy brown dog',
 'high blue sky counting',
 'quickly returns earth']

By default, pad_sequences pads and truncates on the left, but you can include a
padding='post' parameter if you prefer to pad and truncate on the right. Padding on
the right is sometimes important when using neural networks to translate text.

Removing stop words frequently has little or no effect on text clas‐
sification tasks. If you simply want to remove numbers from text
input to a neural network without removing stop words, create a
Tokenizer this way:

tokenizer = Tokenizer(
    filters='!"#$%&()*+,-./:;<=>?@[\\]^_` ' \
    '{|}~\t\n0123456789')

The filters parameter tells Tokenizer what characters to remove.
It defaults to '!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n'. This
code simply adds 0–9 to the list. Note that Tokenizer does not
remove apostrophes by default, but you can remove them by
adding an apostrophe to the filters list.

It’s important that text input to a neural network for predictions be tokenized and
padded in the same way as text input to the model for training. If you’re thinking
it sure would be nice not to have to do the tokenization and sequencing manually,
there is a way around it. Rather than write a lot of code, you can include a
TextVectorization layer in the model. I’ll demonstrate how momentarily. But first,
you need to learn about embedding layers.

Word Embeddings
Once text is tokenized and converted into padded sequences, it is ready for training a
neural network. But you probably won’t get very far training on the raw padded
sequences.
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One of the crucial elements of a neural network that processes text is an embedding
layer whose job is to convert padded sequences of word tokens into arrays of word
vectors, which represent each word with an array (vector) of floating-point numbers
rather than a single integer. Each word in the input text is represented by a vector in
the embedding layer, and as the network is trained, vectors representing individual
words are adjusted to reflect their relationship to one another. If you’re building a
sentiment analysis model and words such as excellent and amazing have similar con‐
notations, then the vectors representing those words in the embedding space should
be relatively close together so that phrases such as “excellent service” and “amazing
service” score similarly.

Implementing an embedding layer by hand is a complex undertaking (especially the
training aspect), so Keras offers the Embedding class. With Keras, creating a trainable
embedding layer requires just one line of code:

Embedding(input_dim=10000, output_dim=32, input_length=100)

In order, the three parameters passed to the Embedding function are:

• The vocabulary size, or the number of words in the vocabulary built by
Tokenizer

• The number of dimensions m in the embedding space
• The length n of each padded sequence

You pick the number of dimensions m, and each word gets encoded in the embed‐
ding space as an m-dimensional vector. More dimensions provide more fitting power,
but also increase training time. In practice, m is usually a number from 32 to 512.

The vectors that represent individual words in an embedding layer are learned during
training, just as the weights connecting neurons in adjacent dense layers are learned.
If the number of training samples is sufficiently high, training the network usually
creates effective vector representations of all the words. However, if you have only a
few hundred training samples, the embedding layer might not have enough informa‐
tion to properly vectorize the corpus of text.

In that case, you can elect to initialize the embedding layer with pretrained word
embeddings rather than rely on it to learn the word embeddings on its own. Several
popular pretrained word embeddings exist in the public domain, including the GloVe
word vectors developed by Stanford and Google’s own Word2Vec. Pretrained embed‐
dings tend to model semantic relationships between words, recognizing, for example,
that king and queen are related terms while stairs and zebra are not. While that can be
beneficial, a network trained to classify text usually performs better when word
embeddings are learned from the training data because such embeddings are task
specific. For an example showing how to use pretrained embeddings, see “Using Pre-
trained Word Embeddings” by the author of Keras.
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Text Classification
Figure 13-1 shows the baseline architecture for a neural network that classifies text.
Tokenized text sequences are input to the embedding layer. The output from the
embedding layer is a 2D matrix of floating-point values measuring m by n, where m is
the number of dimensions in the embedding space and n is the sequence length. The
Flatten layer following the embedding layer “flattens” the 2D output into a 1D array
suitable for input to a dense layer, and the dense layer classifies the values emitted
from the flatten layer. You can experiment with different dimensions in the embed‐
ding layer and different widths of the dense layer to maximize accuracy. You can also
add more dense layers if needed.

Figure 13-1. Neural network for classifying text

A neural network like the one in Figure 13-1 can be implemented this way:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Embedding

model = Sequential() 
model.add(Embedding(10000, 32, input_length=100)) 
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

One application for a neural network that classifies text is spam filtering. Chapter 4
demonstrated how to use Scikit to build a machine learning model that separates
spam from legitimate emails. Let’s build an equivalent deep-learning model with
Keras and TensorFlow. We’ll use the same dataset we used before: one containing
1,000 emails, half of which are spam (indicated by 1s in the label column) and half of
which are not (indicated by 0s in the label column).
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Begin by downloading the dataset and copying it into the Data subdirectory where
your Jupyter notebooks are hosted. Then use the following statements to load the
dataset and shuffle the rows to distribute positive and negative samples throughout.
Shuffling is important because rather than use train_test_split to create a valida‐
tion dataset, we’ll use fit’s validation_split parameter. It doesn’t shuffle the data as
train_test_split does:

import pandas as pd

df = pd.read_csv('Data/ham-spam.csv')
df = df.sample(frac=1, random_state=0)
df.head()

Use the following statements to remove any duplicate rows from the dataset and
check for balance:

df = df.drop_duplicates()
df.groupby('IsSpam').describe()

Next, extract the emails from the DataFrame’s Text column and labels from the
IsSpam column. Then use Keras’s Tokenizer class to tokenize the text and convert it
into sequences, and pad_sequences to produce sequences of equal length. There’s no
need to remove stop words because doing so doesn’t impact the outcome:

from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences

x = df['Text']
y = df['IsSpam']

max_words = 10000 # Limit the vocabulary to the 10,000 most common words
max_length = 500

tokenizer = Tokenizer(num_words=max_words)
tokenizer.fit_on_texts(x)
sequences = tokenizer.texts_to_sequences(x)
x = pad_sequences(sequences, maxlen=max_length)

Define a binary classification model that contains an embedding layer with 32 dimen‐
sions, a flatten layer to flatten output from the embedding layer, a dense layer for clas‐
sification, and an output layer with a single neuron and sigmoid activation:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Embedding

model = Sequential() 
model.add(Embedding(max_words, 32, input_length=max_length)) 
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
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model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) 
model.summary()

Train the network and allow Keras to use 20% of the training samples for validation:

hist = model.fit(x, y, validation_split=0.2, epochs=5, batch_size=20)

Use the history object returned by fit to plot the training and validation accuracy in
each epoch:

import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set()

acc = hist.history['accuracy']
val = hist.history['val_accuracy']
epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, '-', label='Training accuracy')
plt.plot(epochs, val, ':', label='Validation accuracy')
plt.title('Training and Validation Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.plot()

Hopefully, the network achieved a validation accuracy exceeding 95%. If it didn’t,
train it again. Here’s how it turned out for me:

Once you’re satisfied with the accuracy, use the following statements to compute the
probability that an email regarding a code review is spam:
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text = 'Can you attend a code review on Tuesday? ' \
       'Need to make sure the logic is rock solid.'

sequence = tokenizer.texts_to_sequences([text])
padded_sequence = pad_sequences(sequence, maxlen=max_length)
model.predict(padded_sequence)[0][0]

Then do the same for another email:

text = 'Why pay more for expensive meds when ' \
       'you can order them online and save $$$?'

sequence = tokenizer.texts_to_sequences([text])
padded_sequence = pad_sequences(sequence, maxlen=max_length)
model.predict(padded_sequence)[0][0]

What did the network predict for the first email? What about the second? Do you
agree with the predictions? Remember that a number close to 0.0 indicates that the
email is not spam, while a number close to 1.0 indicates that it is.

Automating Text Vectorization
Rather than run Tokenizer and pad_sequences manually, you can preface an embed‐
ding layer with a TextVectorization layer. Here’s an example:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Embedding
from tensorflow.keras.layers import TextVectorization, InputLayer
import tensorflow as tf

model = Sequential()
model.add(InputLayer(input_shape=(1,), dtype=tf.string))
model.add(TextVectorization(max_tokens=max_words,
                            output_sequence_length=max_length))
model.add(Embedding(max_words, 32, input_length=max_length))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam',
              metrics=['accuracy'])
model.summary()

Note that the input layer (an instance of InputLayer) is now explicitly defined, and
it’s configured to accept string input. In addition, before training the model, the Text
Vectorization layer must be fit to the input data by calling adapt:

model.layers[0].adapt(x)

Now you no longer need to preprocess the training text, and you can pass raw text
strings to predict:
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text = 'Why pay more for expensive meds when ' \
       'you can order them online and save $$$?'
model.predict([text])[0][0]

TextVectorization doesn’t remove stop words, so if you want them removed, you
can do that separately or use the TextVectorization function’s standardize parame‐
ter to identify a callback function that does it for you.

Using TextVectorization in a Sentiment Analysis Model
To demonstrate how TextVectorization layers simplify text processing, let’s use it to
build a binary classifier that performs sentiment analysis. We’ll use the same dataset
we used in Chapter 4: the IMDB reviews dataset containing 25,000 positive reviews
and 25,000 negative reviews.

Download the dataset if you haven’t already and place it in your Jupyter notebooks’
Data subdirectory. Then create a new notebook and use the following statements to
load and shuffle the dataset:

import pandas as pd

df = pd.read_csv('Data/reviews.csv', encoding="ISO-8859-1")
df = df.sample(frac=1, random_state=0)
df.head()

Remove duplicate rows and check for balance:

df = df.drop_duplicates()
df.groupby('Sentiment').describe()

Now create the model and include a TextVectorization layer to preprocess input
text:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import TextVectorization, InputLayer
from tensorflow.keras.layers import Dense, Flatten, Embedding
import tensorflow as tf

max_words = 20000
max_length = 500
 
model = Sequential()
model.add(InputLayer(input_shape=(1,), dtype=tf.string))
model.add(TextVectorization(max_tokens=max_words,
                            output_sequence_length=max_length))
model.add(Embedding(max_words, 32, input_length=max_length))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam',
              metrics=['accuracy'])
model.summary()
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Extract the reviews from the DataFrame’s Text column and the labels (0 for negative
sentiment, 1 for positive) from the Sentiment column, and use the former to fit the
TextVectorization layer to the text. Then train the model:

x = df['Text']
y = df['Sentiment']
model.layers[0].adapt(x)

hist = model.fit(x, y, validation_split=0.5, epochs=5, batch_size=250)

When training is complete, plot the training and validation accuracy:

import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set()

acc = hist.history['accuracy']
val = hist.history['val_accuracy']
epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, '-', label='Training accuracy')
plt.plot(epochs, val, ':', label='Validation accuracy')
plt.title('Training and Validation Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.plot()

The model fits to the training text extremely well, but validation accuracy usually
peaks between 85% and 90%:
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Use the model to score a positive comment for sentiment:

text = 'Excellent food and fantastic service!'
model.predict([text])[0][0]

Now do the same for a negative comment:

text = 'The long lines and poor customer service really turned me off.'
model.predict([text])[0][0]

Observe how much simpler the code is. Operationalizing the model is simpler too,
because you no longer need a Tokenizer fit to the training data to prepare text sub‐
mitted to the model for predictions. Be aware, however, that a model with a Text
Vectorization layer can’t be saved in Keras’s H5 format. It can be saved in Tensor‐
Flow’s SavedModel format. The following statement saves the model in the
saved_model subdirectory of the current directory:

model.save('saved_model')

Once the model is reloaded, you can pass text directly to it for making predictions.

Factoring Word Order into Predictions
Both of the models you just built are bag-of-words models that ignore word order.
Such models are common and are often more accurate than other types of models.
But that’s not always the case. The relative position of the words in a sentence some‐
times has meaning. Credit and card should probably influence a spam classifier one
way if they appear far apart in a sentence and another way if they appear together.

One way to improve—or at least attempt to improve—on a simple bag-of-words
model is to use n-grams as described in Chapter 4. An n-gram is a collection of
n words appearing in consecutive order. Keras’s TextVectorization class features an
ngrams parameter that makes applying n-grams easy. The following statement creates
a TextVectorization layer that considers word pairs as well as individual words:

model.add(TextVectorization(max_tokens=max_words,
                            output_sequence_length=max_length,
                            ngrams=2))

One limitation of n-grams is that they only consider words that are directly adjacent
to each other. A slightly more robust way to factor word position into a classification
task is to replace dense layers with Conv1D and MaxPooling1D layers, turning the net‐
work into a convolutional neural network. CNNs are most often used to classify
images, but one-dimensional convolution layers play well with text sequences. Here’s
the network presented in the previous example recast as a CNN:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv1D, MaxPooling1D, GlobalMaxPooling1D
from tensorflow.keras.layers import TextVectorization, InputLayer
from tensorflow.keras.layers import Dense, Embedding
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import tensorflow as tf

model = Sequential()
model.add(InputLayer(input_shape=(1,), dtype=tf.string))
model.add(TextVectorization(max_tokens=max_words,
                            output_sequence_length=max_length))
model.add(Embedding(max_words, 32, input_length=max_length))
model.add(Conv1D(32, 7, activation='relu'))
model.add(MaxPooling1D(5))
model.add(Conv1D(32, 7, activation='relu'))
model.add(GlobalMaxPooling1D())
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam',
              metrics=['accuracy'])

Rather than process individual words, the Conv1D layers in this example extract fea‐
tures from groups of vectors representing words (seven in the first layer and seven
more in the second), just as Conv2D layers extract features from blocks of pixels. The
MaxPooling1D layer condenses the output from the first Conv1D layer to reveal higher-
level structure in input sequences, similar to the way reducing the resolution of an
image tends to draw out macro features such as the shape of a person’s body while
minimizing or filtering out altogether lesser features such as the shape of a person’s
eyes. A simple CNN like this one sometimes classifies text more accurately than bag-
of-words models, and sometimes does not. As is so often the case in machine learn‐
ing, the only way to know is to try.

Recurrent Neural Networks (RNNs)
Yet another way to factor word position into a classifier is to include recurrent layers
in the network. Recurrent layers were originally invented to process time-series
data—for example, to look at weather data for the past five days and predict what
tomorrow’s high temperature will be. If you simply took all the weather data for those
five days and treated each day independently, trends evident in the data would be lost.
A recurrent layer, however, might detect those trends and factor them into its output.
A sequence of vectors output by an embedding layer qualifies as a time series because
words in a phrase are ordered consecutively and words used early in a phrase could
inform how words that occur later are interpreted.

Figure 13-2 illustrates how a recurrent layer transforms word embeddings into a vec‐
tor that’s influenced by word order. In this example, sequences are input to an embed‐
ding layer, which transforms each word (token) in the sequence into a vector of
floating-point numbers. These word embeddings are input to a recurrent layer, yield‐
ing another output vector. To compute that vector, cells in the recurrent layer loop
over the embeddings comprising the sequence. The input to iteration n + 1 of the
loop is the current embedding vector and the output from iteration n—the so-called
hidden state. The output from the recurrent layer is the output from the final iteration
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of the loop. The result is different than it would have been had each embedding vec‐
tor been processed independently because each iteration uses information from the
previous iteration to compute an output. Context from a word early in a sequence
can carry over to words that occur later on.

Figure 13-2. Processing word embeddings with a recurrent layer

It’s not difficult to build a very simple recurrent layer by hand that works reasonably
well with short sequences (say, four or five words), but longer sequences will suffer
from a vanishing-gradient effect that means words far apart will exert little influence
over one another. One solution is a recurrent layer composed of Long Short-Term
Memory (LSTM) cells, which were introduced in a 1997 paper titled, appropriately
enough, “Long Short-Term Memory”.

LSTM cells are miniature neural networks in their own right. As the cells loop over
the words in a sequence, they learn (just as the weights connecting neurons in dense
layers are learned) which words are important and lend that information precedence
in subsequent iterations through the loop. A dense layer doesn’t recognize that there’s
a connection between blue and sky in the phrase “I like blue, for on a clear and sunny
day, it is the color of the sky.” An LSTM layer does and can factor that into its output.
Its power diminishes, however, as words grow farther apart.

Keras provides a handy implementation of LSTM layers in its LSTM class. It also pro‐
vides a GRU class implementing gated recurrent unit (GRU) layers, which are simpli‐
fied LSTM layers that train faster and often yield results that equal or exceed those of
LSTM layers. Here’s how our spam classifier would look if it were modified to use
LSTM:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import TextVectorization, InputLayer
from tensorflow.keras.layers import Dense, Embedding, LSTM
import tensorflow as tf

model = Sequential()
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model.add(InputLayer(input_shape=(1,), dtype=tf.string))
model.add(TextVectorization(max_tokens=max_words,
                            output_sequence_length=max_length))
model.add(Embedding(max_words, 32, input_length=max_length))
model.add(LSTM(32))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam',
              metrics=['accuracy'])

LSTMs are compute intensive, especially when dealing with long sequences. If you try
this code, you’ll find that the model takes much longer to train. You’ll also find that
validation accuracy improves little if at all. This goes back to the fact that bag-of-
words models, while simple, also tend to be effective at classifying text.

LSTM layers can be stacked, just like dense layers. The trick is to include a
return_sequences=True attribute in all LSTM layers except the last so that the previ‐
ous layers return all the vectors generated (all the hidden state) rather than just the
final vector. Google Translate once used two stacks of LSTMs eight layers deep to
encode phrases in one language and decode them into another.

Using Pretrained Models to Classify Text
If training your own sentiment analysis model doesn’t yield the accuracy you require,
you can always turn to a pretrained model. Just as there are pretrained computer-
vision models trained with millions of labeled images, there are pretrained sentiment
analysis models available that were trained with millions of labeled text samples.
Keras doesn’t provide a convenient wrapper around these models as it does for pre‐
trained CNNs, but they are relatively easy to consume nonetheless.

Many such models are available from Hugging Face, an AI-focused company whose
goal is to advance and democratize AI. Hugging Face originally concentrated on NLP
models but has since expanded its library to include other types of models, including
image classification models and object detection models. Currently, Hugging Face
hosts more than 400 sentiment analysis models trained on different types of input
ranging from tweets to product reviews in a variety of languages. It even offers mod‐
els that analyze text for joy, anger, surprise, and other emotions.

All of these models are free for you to use. Care to give it a try? Start by installing
Hugging Face’s Transformers package in your Python environment (for example, pip
install transformers). Then fire up a Jupyter notebook and use the following code
to load Hugging Face’s default sentiment analysis model:

from transformers import pipeline

model = pipeline('sentiment-analysis')
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You’ll incur a short delay while the model is downloaded for the first time. Once the
download completes, score a sentence for sentiment:

model('The long lines and poor customer service really turned me off')

Here’s the result:

[{'label': 'NEGATIVE', 'score': 0.9995430707931519}]

Try it with a positive comment:

model('Great food and excellent service!')

Here’s the result:

[{'label': 'POSITIVE', 'score': 0.9998843669891357}]

In the return value, label indicates whether the sentiment is positive or negative, and
score reveals the model’s confidence in the label.

It’s just as easy to analyze a text string for emotion by loading a different pretrained
model. To demonstrate, try this:

model = pipeline('text-classification',
                 model='bhadresh-savani/distilbert-base-uncased-emotion',
                 return_all_scores=True)

model('The long lines and poor customer service really turned me off')

Here’s what it returned for me:

[[{'label': 'sadness', 'score': 0.10837080329656601},
  {'label': 'joy', 'score': 0.002373947761952877},
  {'label': 'love', 'score': 0.0006029471987858415},
  {'label': 'anger', 'score': 0.8861245512962341},
  {'label': 'fear', 'score': 0.0019340706057846546},
  {'label': 'surprise', 'score': 0.0005936296074651182}]]

It doesn’t get much easier than that! And as you’ll see in a moment, pretrained Hug‐
ging Face models lend themselves to much more than just text classification.

Neural Machine Translation
In the universe of natural language processing, text classification is a relatively simple
task. At the opposite end of the spectrum lies neural machine translation (NMT),
which uses deep learning to translate text from one language to another. NMT has
proven superior to the rules-based machine translation (RBMT) and statistical
machine translation (SMT) systems that predated the explosion of deep learning and
today is the basis for virtually all state-of-the-art text translation services.
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The gist of text classification is that you transform an input sequence into a vector
characterizing the sequence, and then you input the vector to a classifier. There are
several ways to generate that vector. You can reshape the 2D output from an embed‐
ding layer into a 1D vector, or you can feed that output into a recurrent layer or con‐
volution layer in hopes of generating a vector that is more context aware. Whichever
route you choose, the goal is simple: convert a string of text into an array of floating-
point numbers that uniquely describes it and use a sigmoid or softmax output layer to
classify it.

NMT is basically an extension of text classification. You start by converting a text
sequence into a vector. But rather than classify the vector, you use it to generate a new
sequence. One way to do that is with an LSTM encoder-decoder.

LSTM Encoder-Decoders
Until a few years ago, most NMT models, including the one underlying Google
Translate, were LSTM-based sequence-to-sequence models similar to the one in
Figure 13-3. In such models, one or more LSTM layers encode a tokenized input
sequence representing the phrase to be translated into a vector. A second set of recur‐
rent layers uses that vector as input and decodes it into a tokenized phrase in another
language. The model accepts sequences as input and returns sequences as output,
hence the term sequence-to-sequence model. A softmax output layer at the end out‐
puts a set of probabilities for each token in the output sequence. If the maximum out‐
put phrase length that’s supported is 20 tokens, for example, and the vocabulary of
the output language contains 20,000 words, then the output is 20 sets (one per token)
of 20,000 probabilities. The word selected for each output token is the word assigned
the highest probability.

Figure 13-3. LSTM-based encoder-decoder for neural machine translation
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LSTM-based sequence-to-sequence models are relatively easy to build with Keras and
TensorFlow. This book’s GitHub repo contains a notebook that uses 50,000 samples to
train an LSTM model to translate English to French. The model is defined this way:

model = Sequential()
model.add(Embedding(en_vocab_size, 256, input_length=en_max_len, mask_zero=True))
model.add(LSTM(256))
model.add(RepeatVector(fr_max_len))
model.add(LSTM(256, return_sequences=True))
model.add(Dropout(0.4))
model.add(TimeDistributed(Dense(fr_vocab_size, activation='softmax')))
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam',
              metrics=['accuracy'])model.summary(line_length=100)

The first layer is an embedding layer that converts word tokens into vectors contain‐
ing 256 floating-point values. The mask_zero=True parameter indicates that zeros in
the input sequences denote padding so that the next layer can ignore them. (There is
no need to translate those tokens, after all.) Next is an LSTM layer that encodes
English phrases input to the model. A second LSTM layer decodes the phrases into
dense vectors representing the French equivalents. In between lies a RepeatVector
layer that reshapes the output from the first LSTM layer for input to the second by
repeating the output a specified number of times. The final layer is a softmax classifi‐
cation layer that outputs probabilities for each word in the French vocabulary. The
TimeDistributed wrapper ensures that the model outputs a set of probabilities for
each token in the output rather than just one set for the entire sequence.

After 34 epochs of training, the model translates 10 test phrases this way:

its fall now => cest maintenant maintenant
im losing => je suis en train
it was quite funny => cetait fut amusant amusant
thats not unusual => ce nest pas inhabituel
i think ill do that => je pense que je le
tom looks different => tom a lair different
its worth a try => ca vaut le coup
fortune smiled on him => la la lui a souri
lets hit the road => taillons la
i love winning => jadore gagner

The model isn’t perfect, in part due to the limited size of the training set. Real NMT
models are trained with hundreds of millions or even billions of phrases. But is this
one truly representative of the models used for state-of-the-art text translation?
Figure 13-4 is adapted from an image in a 2016 paper written by Google engineers
documenting the architecture of Google Translate. The architecture maps closely to
that of the model just presented. It’s deeper, with eight LSTM layers in the encoder
and eight in the decoder. It also employs residual connections between layers to sup‐
port the network’s greater depth.
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Figure 13-4. Google Translate circa 2016

One difference between our model and the model described in the paper is the block
labeled “Attention” between the encoder and decoder. In deep learning, attention is a
mechanism for focusing a model’s attention on the parts of a phrase that are most
important, recognizing that one word can have different meanings in different con‐
texts and that the meaning of a word sometimes depends on what’s around it.

Attention was introduced to deep learning in a seminal 2014 paper titled “Neural
Machine Translation by Jointly Learning to Align and Translate”, but it wasn’t until a
few years later that attention took center stage as a way to replace LSTM layers rather
than supplement them. Enter perhaps the most significant contribution to the field of
NMT, and to NLP overall, to date: the transformer model.

Transformer Encoder-Decoders
A landmark 2017 paper titled “Attention Is All You Need” changed the way data sci‐
entists approach NMT and other neural text processing tasks. It proposed a better
way to perform sequence-to-sequence processing based on transformer models that
eschew recurrent layers and use attention mechanisms to model the context in which
words are used. Today transformer models have almost entirely replaced LSTM-
based models.

Neural Machine Translation | 337

https://oreil.ly/moOX9
https://oreil.ly/moOX9
https://oreil.ly/OUfbX


Figure 13-5 is adapted from an image in the aforementioned paper. On the left is the
encoder, which takes text sequences as input and generates dense vector representa‐
tions of those sequences. On the right is the decoder, which transforms dense vector
representations of input sequences into output sequences. At a high level, a trans‐
former model uses the same encoder-decoder architecture as an LSTM-based model.
The difference lies in how it does the encoding and decoding.

Figure 13-5. The transformer model

338 | Chapter 13: Natural Language Processing



The chief innovation introduced by the transformer model is the use of multi-head
attention (MHA) layers in place of LSTM layers. MHA layers embody the concept of
self-attention, which enables a model to analyze an input sequence and focus on the
words that are most important as well as the context in which the words are used. In
the sentence “We took a walk in the park,” for example, the word park has a different
meaning than it does in “Where did you park the car?” An embedding layer stores
one vector representation for park, but in a transformer model, the MHA layer modi‐
fies the vector output by the embedding layer so that park is represented by two dif‐
ferent vectors in the two sentences. Not surprisingly, the values used to make
embedding vectors context aware are learned during training.

How does self-attention work? The gist is that an MHA layer uses
dot products to compute similarity scores for every word pair in a
sequence. After normalizing the scores, it uses them to compute
weighted versions of each word embedding in the sequence. Then
it modifies them again using weights learned during training.
The “multi” in multi-head attention denotes the fact that an MHA
layer learns several sets of weights rather than just one, not unlike a
convolution layer in a CNN. This gives MHA the ability to discern
context in long sequences where words might have multiple rela‐
tionships to one another.

MHA also provides additional context regarding words that refer to other words. An
embedding layer represents the pronoun it with a single vector, but an MHA layer
helps the model understand that in the sentence “I love my car because it is fast,” it
refers to a car. It also adds weight to the word fast because it’s crucial to the meaning
of the sentence. Without it, it’s not clear why you love your car.

Unlike LSTM layers, MHA layers’ ability to model relationships among the words in
an input sequence is independent of sequence length. MHA layers also support paral‐
lel workloads and therefore train faster on multiple GPUs. They do not, however,
encode information regarding the positions of the words in a phrase. To compensate,
a transformer uses simple vector addition to add information denoting a word’s posi‐
tion in a sequence to each vector output from the embedding layer. This is referred to
as positional encoding or positional embedding. It’s denoted by the plus signs labeled
“Positional encoding” in Figure 13-5.
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Transformers aren’t limited to neural machine translation; they’re used in virtually all
aspects of NLP today. The encoder half of a transformer outputs dense vector repre‐
sentations of the sequences input to it. Text classification can be performed by using a
transformer rather than a standalone embedding layer to encode input sequences.
Models architected this way frequently outperform bag-of-words models, particularly
if the ratio of samples to sample length (the number of training samples divided by
the average length of each sample) exceeds 1,500. This so-called “golden constant”
was discovered by a team of researchers at Google and documented in a tutorial on
text classification.

Building a Transformer-Based NMT Model
Keras provides some, but not all, of the building blocks that comprise an end-to-end
transformer. It provides a handy implementation of self-attention layers in its Multi
HeadAttention class, for example, but it doesn’t implement positional embedding.
However, a separate package named KerasNLP does. Among others, it includes the
following classes representing layers in a transformer-based network:

TransformerEncoder

Represents a transformer encoder

TransformerDecoder

Represents a transformer decoder

TokenAndPositionEmbedding

Implements an embedding layer that supports positional embedding

With these classes, transformer-based NMT models are relatively easy to build. You
can demonstrate by building an English-to-French translator. Start by installing
KerasNLP if it isn’t already installed. Then download en-fr.txt, a data file that contains
50,000 English phrases and their French equivalents, and drop it into the Data subdi‐
rectory where your Jupyter notebooks are hosted. The file en-fr.txt is a subset of a
larger file containing more than 190,000 phrases and their corresponding translations
compiled as part of the Tatoeba project. The file is tab delimited. Each line contains
an English phrase, the equivalent French phrase, and an attribution identifying where
the translation came from. We don’t need the attributions, so load the dataset into a
DataFrame, remove the attribution column, and shuffle and reindex the rows:

import pandas as pd

df = pd.read_csv('Data/en-fr.txt', names=['en', 'fr', 'attr'],
                 usecols=['en', 'fr'], sep='\t')
df = df.sample(frac=1, random_state=42)
df = df.reset_index(drop=True)
df.head()

Here’s the output:
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The dataset needs to be cleaned before it’s used to train a model. Use the following
statements to remove numbers and punctuation symbols, convert words with Uni‐
code characters such as où into their ASCII equivalents (ou), convert characters to
lowercase, and insert [start] and [end] tokens at the beginning and end of each
French phrase:

import re
from unicodedata import normalize

def clean_text(text):
    text = normalize('NFD', text.lower())
    text = re.sub('[^A-Za-z ]+', '', text)
    return text

def clean_and_prepare_text(text):
    text = '[start] ' + clean_text(text) + ' [end]'
    return text

df['en'] = df['en'].apply(lambda row: clean_text(row))
df['fr'] = df['fr'].apply(lambda row: clean_and_prepare_text(row))
df.head()

The output looks a little cleaner afterward:
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The next step is to scan the dataset and determine the maximum length of the English
phrases and of the French phrases. These lengths will determine the lengths of the
sequences input to and output from the model:

en = df['en']
fr = df['fr']

en_max_len = max(len(line.split()) for line in en)
fr_max_len = max(len(line.split()) for line in fr)
sequence_len = max(en_max_len, fr_max_len)

print(f'Max phrase length (English): {en_max_len}')
print(f'Max phrase length (French): {fr_max_len}')
print(f'Sequence length: {sequence_len}')

In this example, the longest English phrase contains seven words, while the longest
French phrase contains 16 (including the [start] and [end] tokens). The model will be
able to translate English phrases up to seven words in length into French phrases up
to 14 words in length.

Now fit one Tokenizer to the English phrases and another Tokenizer to their French
equivalents, and generate padded sequences from all the phrases. Note the filters
parameter passed to the French tokenizer. It configures the tokenizer to remove all
the punctuation characters it normally removes except for the square brackets used to
delimit [start] and [end] tokens:

from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences

en_tokenizer = Tokenizer()
en_tokenizer.fit_on_texts(en)
en_sequences = en_tokenizer.texts_to_sequences(en)
en_x = pad_sequences(en_sequences, maxlen=sequence_len, padding='post')

fr_tokenizer = Tokenizer(filters='!"#$%&()*+,-./:;<=>?@\\^_`{|}~\t\n')
fr_tokenizer.fit_on_texts(fr)
fr_sequences = fr_tokenizer.texts_to_sequences(fr)
fr_y = pad_sequences(fr_sequences, maxlen=sequence_len + 1, padding='post')

Next, compute the vocabulary size for each language from the Tokenizer instances:

en_vocab_size = len(en_tokenizer.word_index) + 1
fr_vocab_size = len(fr_tokenizer.word_index) + 1

print(f'Vocabulary size (English): {en_vocab_size}')
print(f'Vocabulary size (French): {fr_vocab_size}')

The output reveals that the English vocabulary contains 6,033 words, while the
French vocabulary contains 12,197. These values will be used to size the model’s two
embedding layers. The latter will also be used to size the output layer.
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Finally, create the features and the labels the model will be trained with. The features
are the padded English sequences and the padded French sequences minus the [end]
tokens. The labels are the padded French sequences minus the [start] tokens. Package
the features in a dictionary so that they can be input to a model that accepts multiple
inputs:

inputs = { 'encoder_input': en_x, 'decoder_input': fr_y[:, :-1] }
outputs = fr_y[:, 1:]

Now let’s define a model. This time, we’ll use Keras’s functional API rather than its
sequential API. It’s necessary because this model has two inputs: one that accepts a
tokenized English phrase and another that accepts a tokenized French phrase. We’ll
also seed the random-number generators used by Keras and TensorFlow to get
repeatable results, at least on CPU. This is a departure from all the other examples in
this book, but it ensures that when you train the model, you get the same results that I
did. Here’s the code:

import numpy as np
import tensorflow as tf
from tensorflow.keras import Model
from tensorflow.keras.layers import Input, Dense, Dropout
from keras_nlp.layers import TokenAndPositionEmbedding, TransformerEncoder
from keras_nlp.layers import TransformerDecoder

np.random.seed(42)
tf.random.set_seed(42)

num_heads = 8
embed_dim = 256

encoder_input = Input(shape=(None,), dtype='int64', name='encoder_input')
x = TokenAndPositionEmbedding(en_vocab_size, sequence_len,
                              embed_dim)(encoder_input)
encoder_output = TransformerEncoder(embed_dim, num_heads)(x)
encoded_seq_input = Input(shape=(None, embed_dim))

decoder_input = Input(shape=(None,), dtype='int64', name='decoder_input')
x = TokenAndPositionEmbedding(fr_vocab_size, sequence_len, embed_dim,
                              mask_zero=True)(decoder_input)
x = TransformerDecoder(embed_dim, num_heads)(x, encoded_seq_input)
x = Dropout(0.4)(x)

decoder_output = Dense(fr_vocab_size, activation='softmax')(x)
decoder = Model([decoder_input, encoded_seq_input], decoder_output)
decoder_output = decoder([decoder_input, encoder_output])

model = Model([encoder_input, decoder_input], decoder_output)
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
model.summary(line_length=100)
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The Keras Functional API
The functional API is a richer version of Keras’s sequential API. Among other things,
it lets you create models with multiple inputs or outputs and models with shared lay‐
ers like the ones in Faster R-CNN’s region proposal network. Here’s a simple binary
classifier defined with the sequential API:

model = Sequential()
model.add(Dense(128, activation='relu', input_dim=3))
model.add(Dense(1, activation='sigmoid'))

Here’s the same network created with the functional API:

input = Input(shape=(3,))
hidden = Dense(128, activation='relu')(input)
output = Dense(1, activation='sigmoid')(hidden)
model = Model(inputs=input, outputs=output)

When you create the model, you specify the inputs and outputs, and since the inputs
and outputs parameters accept Python lists, it’s a simple matter to create a model
with multiple inputs and outputs. For a concise introduction to the functional API
and examples demonstrating advanced uses, including multiple inputs and outputs
and shared layers, see “How to Use the Keras Functional API for Deep Learning” by
Jason Brownlee.

The model is designed to operate iteratively. To translate text, you first pass an
English phrase to the English input and the word “[start]” to the French input. Then
you append the next French word the model predicts to the previous French input
and call the model again, and you repeat this process until the entire phrase has been
translated—that is, until the next word predicted by the model is “[end].”

Figure 13-6 diagrams the model’s architecture. The model includes two embedding
layers: one for English sequences and one for French sequences. Both convert word
tokens into vectors of 256 floating point values each, and both are instances of Ker‐
asNLP’s TokenAndPositionEmbedding class, which adds positional information to
word embeddings. Output from the English embedding layer passes through an
encoder (an instance of TransformerEncoder) before being input along with the out‐
put from the French embedding layer to the decoder, which is an instance of
TransformerDecoder. The decoder outputs a vector representing the next step in the
translation, and a softmax output layer converts that vector into a set of probabilities
—one for each word in the French vocabulary—identifying the next token. During
training, the mask_zero=True parameter passed to the French embedding layer limits
the model to making predictions based on the tokens preceding the one that’s being
predicted. In other words, given a set of French tokens numbered 0 through n, the
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model is trained to predict what token n + 1 will be without peeking at n + 1 in the
training text.

Figure 13-6. Transformer-based NMT architecture

Now call fit to train the model, and use an EarlyStopping callback to end training if
the validation accuracy fails to improve for three consecutive epochs:

from tensorflow.keras.callbacks import EarlyStopping

callback = EarlyStopping(monitor='val_accuracy', patience=3,
                         restore_best_weights=True)

hist = model.fit(inputs, outputs, epochs=50, validation_split=0.2,
                 callbacks=[callback])

Training typically requires two to three minutes per epoch on CPU. If you don’t have
a GPU and training is too slow, I recommend running the code in Google Colab. (Be
sure to go to “Notebook settings” in the Edit menu and select GPU as the hardware
accelerator.) When training is complete, plot the per-epoch training and validation
accuracy and observe how the latter steadily increases until it levels off:

import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set()

acc = hist.history['accuracy']
val = hist.history['val_accuracy']
epochs = range(1, len(acc) + 1)

plt.plot(epochs, acc, '-', label='Training accuracy')
plt.plot(epochs, val, ':', label='Validation accuracy')
plt.title('Training and Validation Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
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plt.legend(loc='lower right')
plt.plot()

The output should look like this:

The plot reveals that at the end of 14 epochs, the model was about 75% accurate in
translating English samples in the validation data to French. This isn’t a very robust
measure of accuracy because it literally compares each word in the predicted text to
each word in the target text and ignores the fact that a missing or misplaced article
such as le (French for the) doesn’t necessarily imply a poor translation. The accuracy
of NMT models is typically measured with bilingual evaluation understudy (BLEU)
scores. BLEU scores are rather easily computed after the training is complete using
packages such as NLTK, but during training, validation accuracy is a reasonable met‐
ric for judging when to halt training.

Can the model really translate English to French? Use the following code to define a
function that accepts an English phrase and returns a French phrase. Then call it on
10 of the phrases used to validate the model during training and see for yourself. Note
that one call to translate_text precipitates multiple calls to the model. To translate
“hello world,” for example, translate_text calls the model with the inputs “hello
world” and “[start].” Assuming the model predicts that salut is the next word,
translate_text invokes it again with the inputs “hello world” and “[start] salut.” It
repeats this cycle until the next word predicted by the model is “[end]” denoting the
end of the translation.

def translate_text(text, model, en_tokenizer, fr_tokenizer, fr_index_lookup,
                   sequence_len):
    input_sequence = en_tokenizer.texts_to_sequences([text])
    padded_input_sequence = pad_sequences(input_sequence, maxlen=sequence_len,
                                          padding='post')
    decoded_text = '[start]'
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    for i in range(sequence_len):
        target_sequence = fr_tokenizer.texts_to_sequences([decoded_text])
        padded_target_sequence = pad_sequences(
            target_sequence, maxlen=sequence_len, padding='post')[:, :-1]
        
        prediction = model([padded_input_sequence, padded_target_sequence])

        idx = np.argmax(prediction[0, i, :]) - 1
        token = fr_index_lookup[idx]
        decoded_text += ' ' + token

        if token == '[end]':
            break
    
    return decoded_text[8:-6] # Remove [start] and [end] tokens

fr_vocab = fr_tokenizer.word_index
fr_index_lookup = dict(zip(range(len(fr_vocab)), fr_vocab))
texts = en[40000:40010].values

for text in texts:
    translated = translate_text(text, model, en_tokenizer, fr_tokenizer,
                                fr_index_lookup, sequence_len)
    print(f'{text} => {translated}')

Here’s the output:

its fall now => cest desormais tombe
im losing => je suis en train de perdre
it was quite funny => ce fut assez amusant
thats not unusual => ce nest pas inhabituel
i think ill do that => je pense que je ferai ca
tom looks different => tom a lair different
its worth a try => ca vaut le coup dessayer
fortune smiled on him => la chance lui souri
lets hit the road => cassonsnous
i love winning => jadore gagner

If you don’t speak French, use Google Translate to translate some of the French
phrases to English. According to Google, for example, “la chance lui souri” translates
to “Luck smiled on him,” while “ce nest pas inhabituel” translates to “it’s not unusual.”
The model isn’t perfect, but it’s not bad, either. The vocabulary you used is small, so
you can’t input just any old phrase and expect the model to translate it. But simple
phrases that use words in the training text translate reasonably well.

Finish up by using the translate_text function to see how the model translates
“Hello world” into French:

translate_text('Hello world', model, en_tokenizer, fr_tokenizer,
                fr_index_lookup, sequence_len)
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I haven’t had French lessons since high school, but even I know that “Salut le monde”
is a reasonable translation of “Hello world.”

Using Pretrained Models to Translate Text
Engineers at Microsoft, Google, and Facebook have the resources to collect millions
of text translation samples and the hardware to train sophisticated transformer mod‐
els on them, but you and I do not. The good news is that this needn’t stop us from
writing software that translates text from one language to another. Hugging Face has
published several pretrained transformer models that do a fine job of text translation.
Leveraging those models in Python is simplicity itself.

Here’s an example that translates English to French:

from transformers import pipeline

translator = pipeline('translation_en_to_fr')
translation = translator('Programming is fun!') [0]['translation_text']
print(translation)

The same syntax can be used to translate English to German and English to Roma‐
nian too. Simply replace translation_en_to_fr with translation_en_to_de or
translation_en_to_ro when creating the pipeline.

For other languages, you use a slightly more verbose syntax to load a transformer and
a corresponding tokenizer. The following example translates Dutch to English:

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

# Initialize the tokenizer
tokenizer = AutoTokenizer.from_pretrained('Helsinki-NLP/opus-mt-nl-en')

# Initialize the model
model = AutoModelForSeq2SeqLM.from_pretrained('Helsinki-NLP/opus-mt-nl-en')

# Tokenize the input text
text = 'Hallo vrienden, hoe gaat het vandaag?'
tokenized_text = tokenizer.prepare_seq2seq_batch([text], return_tensors='pt')

# Perform translation and decode the output
translation = model.generate(**tokenized_text)
translated_text = tokenizer.batch_decode(
    translation, skip_special_tokens=True)[0]
print(translated_text)

You’ll find an exhaustive list of Hugging Face translators and tokenizers on the organ‐
ization’s website. There are hundreds of them covering dozens of languages.
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Bidirectional Encoder Representations
from Transformers (BERT)
The introduction of transformers in 2017 laid the groundwork for another landmark
innovation in the NLP space: Bidirectional Encoder Representations from Trans‐
formers, or BERT for short. Introduced by Google researchers in a 2018 paper titled
“BERT: Pre-training of Deep Bidirectional Transformers for Language Understand‐
ing”, BERT advanced the state of the art by providing pretrained transformers that
can be fine-tuned for a variety of NLP tasks.

BERT was instilled with language understanding by training it with more than 2.5
billion words from Wikipedia articles and 800 million words from Google Books.
Training required four days on 64 tensor processing units (TPUs). Fine-tuning is
accomplished by further training the pretrained model with task-specific samples and
a reduced learning rate (Figure 13-7). It’s a relatively simple matter, for example, to
fine-tune BERT to perform sentiment analysis and outscore bag-of-words models for
accuracy. BERT’s value lies in the fact that it possesses an innate understanding of the
languages it was trained with and can be refined to perform domain-specific tasks.

Aside from the fact that it was trained with a huge volume of samples, the key to
BERT’s ability to understand human languages is an innovation known as masked
language modeling, or MLM for short. The big idea behind MLM is that a model has a
better chance of predicting what word should fill in the blank in the phrase “Every
good ____ does fine” than it has at predicting the next word in the phrase “Every
good ____.” The answer could be boy, as in “Every good boy does fine,” or it could be
turn, as in “Every good turn deserves another.” Unidirectional models look at the text
to the left or the text to the right and attempt to predict what the next word should
be. MLM, on the other hand, uses text on the left and right to inform its decisions.
That’s why BERT is a “bidirectional” transformer.

When BERT models are pretrained, a specified percentage of the word tokens in each
sequence—usually 15%—are randomly removed or “masked” so that the model can
learn to predict them from the words around them. In addition, BERT models are
usually pretrained to do next-sentence prediction, which makes them more adept at
certain NLP tasks such as answering questions.

BERT has been called the “Swiss Army knife” of NLP. Google uses it to improve
search results and predict text as you type into a Gmail or Google Doc. Dozens of
variations have been published, including DistilBERT, which retains 97% of the accu‐
racy of the original model while weighing in 40% smaller and running 60% faster.
Also available are variations of BERT already fine-tuned for specific tasks such as
question answering. Such models can be further refined using domain-specific data‐
sets, or they can be used as is.
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Figure 13-7. Bidirectional Encoder Representations from Transformers (BERT)

Building a BERT-Based Question Answering System
Hugging Face’s transformers package contains several pretrained BERT models
already fine-tuned for specific tasks. One example is the minilm-uncased-squad2
model, which was trained with Stanford’s SQuAD 2.0 dataset to answer questions by
extracting text from documents. To get a feel for what models like this one can
accomplish, let’s use it to build a simple question-answering system.

First, some context. When you ask Google a question like the one in Figure 13-8, it
queries a database containing billions of web pages to identify ones that might con‐
tain an answer. Then it uses a BERT-based NLP model to extract answers from the
pages it identified and rank them based on confidence levels.
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Figure 13-8. Google question answering

Let’s load a pretrained BERT model already fine-tuned for question answering and
use it to extract answers from passages of text in this book. The model we’ll use is a
version of the MiniLM model introduced in a 2020 paper titled “MiniLM: Deep Self-
Attention Distillation for Task-Agnostic Compression of Pre-trained Transformers”.
This version was fine-tuned on SQuAD 2.0, which contains more than 100,000 ques‐
tions generated by humans paired with answers culled from Wikipedia articles, plus
50,000 questions which lack answers. The MiniLM architecture enables reading com‐
prehension gained from one dataset to be applied to other datasets with little or no
retraining.

My eighth-grade history teacher, Mr. Aird, roomed with Charles
Lindbergh one summer in the early 1920s. Apparently the world’s
most famous aviator was something of a daredevil in college, and
I’ll never forget something Mr. Aird said about him. “In 1927,
when I learned that Charles had flown solo across the Atlantic, I
wasn’t surprised. I have never met a person with less regard for his
own life than Charles Lindbergh.” 😊

Begin by creating a new Jupyter notebook and using the following statements to load
a pretrained MiniLM model from the Hugging Face hub and a tokenizer to tokenize
text input to the model. (BERT uses a special tokenization format called WordPiece
that is slightly different from the one Keras’s Tokenizer class and TextVectorization
layer use. Fortunately, Hugging Face has a solution for that too.) Then compose a
pipeline from them. The first time you run this code, you’ll experience a momentary
delay while the pretrained weights are downloaded. After that, the weights will be
cached and loading will be fast:
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from transformers import AutoTokenizer, TFAutoModelForQuestionAnswering, pipeline

id = 'deepset/minilm-uncased-squad2'
tokenizer = AutoTokenizer.from_pretrained(id)
model = TFAutoModelForQuestionAnswering.from_pretrained(id, from_pt=True)
pipe = pipeline('question-answering', model=model, tokenizer=tokenizer)

Hugging Face stores weights for this particular model in PyTorch format. The
from_pt=True parameter converts the weights to TensorFlow format. It’s not trivial to
convert neural network weights from one format to another, but the Hugging Face
library reduces it to a simple function parameter.

Now use the pipeline to answer a question by extracting text from a paragraph:

question = 'What does NLP stand for?'
 
context = 'Natural Language Processing, or NLP, encompasses a variety of ' \
          'activities, including text classification, keyword and topic ' \
          'extraction, text summarization, and language translation. The ' \
          'accuracy of NLP models has improved in recent years for a variety ' \
          'of reasons, not the least of which are newer and better ways of ' \
          'converting words and sentences into dense vector representations ' \
          'that incorporate context, and a relatively new neural network ' \
          'architecture called the transformer that can zero in on the most ' \
          'meaningful words and even differentiate between multiple meanings ' \
          'of the same word.'
 
pipe(question=question, context=context)

Is the answer accurate? A human could easily read the paragraph and come up with
the same answer, but the fact that a deep-learning model can do it indicates that the
model displays some level of reading comprehension. Observe that the output con‐
tains the answer to the question as well as a confidence score and the starting and
ending indices of the answer in the paragraph:

{'score': 0.9793193340301514,
 'start': 0,
 'end': 27,
 'answer': 'Natural Language Processing'}

Now try it again with a different question and context:

question = 'When was TensorFlow released?'
 
context = 'Machine learning isn\'t hard when you have a properly ' \
          'engineered dataset to work with. The reason it\'s not ' \
          'hard is libraries such as Scikit-Learn and ML.NET, which ' \
          'reduce complex learning algorithms to a few lines of code. ' \
          'Deep learning isn\'t difficult, either, thanks to libraries ' \
          'such as the Microsoft Cognitive Toolkit (CNTK), Theano, and ' \
          'PyTorch. But the library that most of the world has settled ' \
          'on for building neural networks is TensorFlow, an open source ' \
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          'framework created by Google that was released under the ' \
          'Apache License 2.0 in 2015.'
 
pipe(question=question, context=context)['answer']

This time, the output is the answer provided by the model rather than the dictionary
containing the answer. Once again, is the answer reasonable?

Repeat this process with another question and context from which to extract an
answer:

question = 'Is Keras part of TensorFlow?'
 
context = 'The learning curve for TensorFlow is rather steep. ' \
          'Another library, named Keras, provides a simplified ' \
          'Python interface to TensorFlow and has emerged as the ' \
          'Scikit of deep learning. Keras is all about neural networks. ' \
          'It began life as a standalone project in 2015 but was ' \
          'integrated into TensorFlow in 2019. Any code that you write ' \
          'using TensorFlow\'s built-in Keras module ultimately executes ' \
          'in (and is optimized for) TensorFlow. Even Google recommends ' \
          'using the Keras API.'
 
pipe(question=question, context=context)['answer']

Perform one final test using the same context as before but a different question:

question = 'Is it better to use Keras or TensorFlow to build neural networks?'
pipe(question=question, context=context)['answer']

The questions posed here were hand-selected to highlight the model’s capabilities. It’s
not difficult to come up with questions that the model can’t answer. Nevertheless, you
have proven the principle that a pretrained BERT model fine-tuned on SQuAD 2.0
can answer straightforward questions from passages of text presented to it.

Sophisticated question-answering systems employ a retriever-reader architecture in
which the retriever searches a data store for relevant documents—ones that might
contain an answer to a question—and the reader extracts answers from the docu‐
ments. The reader is often a BERT instance similar to the one shown earlier. The
retriever may be one from the open source Haystack library published by Deepset, a
German company focused on NLP solutions. Haystack retrievers interface with a
wide range of document stores including Elasticsearch stores, which are highly scal‐
able. If you’d like to learn more or build a retriever-reader system of your own, I rec‐
ommend reading Chapter 7 of Natural Language Processing with Transformers by
Lewis Tunstall, Leandro von Werra, and Thomas Wolf (O’Reilly).
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Fine-Tuning BERT to Perform Sentiment Analysis
State-of-the-art sentiment analysis can be accomplished by fine-tuning pretrained
BERT models on sentiment analysis datasets. Let’s fine-tune BERT and see if we can
create a sentiment analysis model that’s more accurate than the bag-of-words model
presented earlier in this chapter. If your computer isn’t equipped with a GPU, I highly
recommend running this example in Google Colab. Even on a GPU, it can take an
hour or so to run.

If you run this code locally, make sure Hugging Face’s Datasets package is installed.
Then create a new Jupyter notebook. If you use Colab instead, create a new notebook
and run the following commands in the first cell to install the necessary packages in
the Colab environment:

!pip install transformers
!pip install datasets

Next, use the following statements to load the IMDB dataset from the Datasets pack‐
age. This is an alternative to loading it from a CSV file. Since we’re using Hugging
Face models, we may as well load the data from Hugging Face too. Plus, if you’re
using Colab, this prevents you from having to upload a CSV to the Colab environ‐
ment. Note that the dataset might take a few minutes to load the first time:

from datasets import load_dataset

imdb = load_dataset('imdb')
imdb

The value returned by load_dataset is a dictionary containing three Hugging Face
datasets. Here’s the output from the final statement:

DatasetDict({
    train: Dataset({
        features: ['text', 'label'],
        num_rows: 25000
    })
    test: Dataset({
        features: ['text', 'label'],
        num_rows: 25000
    })
    unsupervised: Dataset({
        features: ['text', 'label'],
        num_rows: 50000
    })
})

imdb['train'] contains 25,000 samples for training, while imdb['test'] contains
25,000 samples for testing. Movie reviews are stored in the text column of each data‐
set. Labels are stored in the label column.
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Next up is tokenizing the input using a BERT WordPiece tokenizer:

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased')

def tokenize(samples):
    return tokenizer(samples['text'], truncation=True)

tokenized_imdb = imdb.map(tokenize, batched=True)

Now that the reviews are tokenized, they need to be converted into TensorFlow data‐
sets with Hugging Face’s Dataset.to_tf_dataset method. The collating function
passed to the method dynamically pads the sequences so that they’re all the same
length. You can also ask the tokenizer to do the padding, but padding performed that
way is static and requires more memory:

from transformers import DataCollatorWithPadding

data_collator = DataCollatorWithPadding(tokenizer=tokenizer, return_tensors='tf')

train_data = tokenized_imdb['train'].to_tf_dataset(
    columns=['attention_mask', 'input_ids', 'label'],
    shuffle=True, batch_size=16, collate_fn=data_collator
)

validation_data = tokenized_imdb['test'].to_tf_dataset(
    columns=['attention_mask', 'input_ids', 'label'],
    shuffle=False, batch_size=16, collate_fn=data_collator
)

Now you’re ready to fine-tune. Call fit on the model as usual, but set the optimizer’s
learning rate (the multiplier used to adjust weights and biases during backpropaga‐
tion) to 0.00002, which is a fraction of Adam’s default learning rate of 0.001:

from tensorflow.keras.optimizers import Adam
from transformers import TFAutoModelForSequenceClassification

model = TFAutoModelForSequenceClassification.from_pretrained(
    'distilbert-base-uncased', num_labels=2)
model.compile(Adam(learning_rate=2e-5), metrics=['accuracy'])
hist = model.fit(train_data, validation_data=validation_data, epochs=3)

Plot the training and validation accuracy to see where the latter topped out:

import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set()

acc = hist.history['accuracy']
val = hist.history['val_accuracy']
epochs = range(1, len(acc) + 1)
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plt.plot(epochs, acc, '-', label='Training accuracy')
plt.plot(epochs, val, ':', label='Validation accuracy')
plt.title('Training and Validation Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.plot()

Here’s how it turned out for me:

With a little luck, validation accuracy topped out at around 93%—a few points better
than the equivalent bag-of-words model. Just imagine what you could do if you
trained the model with more than 25,000 reviews. One of Hugging Face’s pretrained
sentiment analysis models—the twitter-roberta-base model—was trained with 58
million tweets. Not surprisingly, it does a wonderful job of scoring text for sentiment.

Finish up by defining an analyze_text function that returns a sentiment score and
using it to score a positive review for sentiment. The model returns an object wrap‐
ping a tensor containing unnormalized sentiment scores (one for negative and one
for positive), but you can use TensorFlow’s softmax function to normalize them to
values from 0.0 to 1.0:

import tensorflow as tf

def analyze_text(text, tokenizer, model):
    tokenized_text = tokenizer(text, padding=True, truncation=True,
                               return_tensors='tf')
    prediction = model(tokenized_text)
    return tf.nn.softmax(prediction[0]).numpy()[0][1]

analyze_text('Great food and excellent service!', tokenizer, model)
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Try it again with a negative review:

analyze_text('The long lines and poor customer service really turned me off.',
             tokenizer, model)

Fine-tuning isn’t cheap, but it isn’t nearly as expensive as training a sophisticated
transformer from scratch. The fact that you could train a sentiment analysis model to
be this accurate in about an hour of GPU time is a tribute to the power of pretrained
BERT models, and to the Google engineers who created them.

Summary
Natural language processing, or NLP, is an area of deep learning that encompasses
text classification, question answering, text translation, and other tasks that require
computers to process textual data. A key element of every NLP model is an embed‐
ding layer, which represents words with arrays of floating-point numbers that model
the relationships between words. The vectors for excellent and amazing in embedding
space are close together, for example, while the vectors for butterfly and basketball are
far apart since the words have no semantic relationship. Word embeddings are
learned as a model is trained.

Text input to an embedding layer must first be tokenized and turned into sequences
of equal length. Keras’s Tokenizer class does most of the work. Rather than tokenize
and sequence text separately, you can include a TextVectorization layer in a model
to do the tokenization and padding automatically.

One way to classify text is to use a traditional dense layer to classify the vectors out‐
put from an embedding layer. An alternative is to use convolution layers or recurrent
layers to tease information regarding word position from the embedding vectors and
classify the output from those layers.

The use of deep learning to translate text to other languages is known as neural
machine translation, or NMT. Until recently, state-of-the-art NMT was performed
using LSTM-based encoder-decoder models. Today those models have largely given
way to transformer models that use neural attention to focus on the words in a phrase
that are most meaningful and model word context. A transformer knows that the
word train has different meanings in “meet me at the train station” and “it’s time to
train a model,” and it factors word order into its calculations.

BERT is a sophisticated transformer model installed with language understanding
when engineers at Google trained it with billions of words. It can be fine-tuned for
specific tasks such as question answering and sentiment analysis, and several fine-
tuned versions have been published for the public to use. These models can some‐
times be used as is. Other times, they can be further refined and adapted to domain-
specific tasks. Because fine-tuning requires orders of magnitude less data and
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compute power than training BERT from scratch, pretrained (and pre–fine-tuned)
BERT models have proven a boon to NLP.

Sophisticated NLP models are trained with millions of words or phrases, requiring a
substantial investment in data collection and hardware for training. Companies such
as Hugging Face publish pretrained models that you can leverage in your code. This
is a growing trend in AI: publishing models that are already trained to solve common
problems. You’ll still build models to solve problems that are domain specific, but
many tasks—especially those involving NLP—are not consigned to a particular
domain.

Downloading pretrained models isn’t the only way to leverage sophisticated AI to
solve business problems. Companies such as Microsoft and Amazon train deep-
learning models of their own and make them publicly available using REST APIs.
Microsoft calls its suite of APIs Azure Cognitive Services. You’ll learn all about them
in Chapter 14.
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CHAPTER 14

Azure Cognitive Services

As a child growing up in the 1960s, I idolized the Apollo astronauts. Swaggering out
to the launch pad and riding flame-breathing rockets into space, they were my super‐
heroes. But the group I really wanted to emulate—the people I wanted to be—were
the engineers in Mission Control. Seated in front of their CRT screens in white shirts
and black ties, chatting with the astronauts and poised to spring into action at the
first sign of trouble, they were the epitome of cool. They used computers less power‐
ful than today’s smartphones to put men on the moon—a scientific achievement that
is unsurpassed to this day.

Thanks to deep learning, computers today can perform feats of magic that the engi‐
neers in Mission Control could only have dreamed of. They can recognize objects in
images, translate text and speech to other languages, identify people in video feeds,
turn art into words and words into art, and more. But state-of-the-art deep-learning
models are too complex—and too costly—for the average engineer or software devel‐
oper to build. Microsoft reportedly spent hundreds of thousands of dollars training
the ResNet model that won the 2015 ImageNet Large Scale Visual Recognition Chal‐
lenge. Creating that model required a great deal of expertise, massive amounts of
GPU time, and millions of images.

A welcome trend in AI today is AI as a service. Microsoft, Amazon, Google, and
other tech giants employ professional data scientists who build sophisticated deep-
learning models. They train them at their own expense and make them available to
anyone who wishes to use them by means of REST APIs. If you can write code to
send an HTTP request over the internet, you can leverage these APIs to infuse AI into
your apps without taking time off from your day job to earn a PhD in deep learning.

Microsoft calls its suite of AI services Azure Cognitive Services. Amazon uses the
name AWS AI Services. Both offer a rich assortment of APIs served by deep-learning
models on the backend—models that are continually refined so that they become
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smarter over time. Need to caption photos uploaded to a website? Microsoft’s Com‐
puter Vision service can do that; so can Amazon’s Rekognition service. How about
building a screen reader featuring a lifelike human voice to help the hearing
impaired? Amazon Polly can handle that, as can Azure Cognitive Services’ Speech
service and Google’s text-to-speech API. These are just a few examples of the actions
cognitive services can perform, often with just a few lines of code.

You saw Azure Cognitive Services at work in Chapter 12 when you used the Custom
Vision service to train a custom object detection model. It’s one of several services
that comprise the Cognitive Services family. This chapter introduces others and dem‐
onstrates how to use them and how to build solutions with them. The focus on Azure
Cognitive Services isn’t meant to imply that they’re better than their counterparts
from Amazon and Google. I’m simply more familiar with them because I’ve worked
closely with Microsoft for more than two decades. Once you learn how to call Azure
Cognitive Services APIs, it’s a simple matter to apply that knowledge to cognitive
services from other vendors.

Ready to make some magic happen? Let’s get started.

Introducing Azure Cognitive Services
The lineup of services that comprise Azure Cognitive Services changes from time to
time as new ones are added and old ones are deprecated or matriculated into other
Microsoft product lines. Figure 14-1 shows the services that are currently offered and
divides them into four categories: vision, language, speech, and decision.

Figure 14-1. Azure Cognitive Services

Vision services bring deep neural networks to bear on computer-vision problems.
The Custom Vision service lets you build custom image classification and object
detection models. The Face service, which Uber uses to verify the identities of its
drivers, supports state-of-the-art facial recognition systems. The Computer Vision
service exposes a rich API featuring a plethora of ways to analyze images and extract
information from them. One application for it is captioning photos and generating
keywords characterizing their content. Figure 14-2 shows a web app I built called
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Intellipix. Intellipix captions images uploaded by users and stores keywords describ‐
ing them in a database so that users can easily pull up all images containing castles,
for example, or photos with water in the foreground or background.

Figure 14-2. Intellipix showing a computer-generated image caption

The language category includes services backed by deep-learning models trained to
perform natural language processing (NLP). The Language service provides APIs for
sentiment analysis, named-entity recognition, question answering, key-phrase extrac‐
tion, language understanding, and more. Among its many uses is building chatbots
that respond intelligently to queries regarding a company’s product or service offer‐
ings. There’s also a Translator service that translates text between more than 100 lan‐
guages and dialects. Volkswagen uses it to translate onscreen instructions in cars to
match the language in the owner’s manual and to ensure the quality of the documen‐
tation that they produce in more than 40 languages.
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The Language service is a unified service that subsumes the fea‐
tures of several older services, including the Text Analytics service,
the Language Understanding service, and QnA Maker. Microsoft
will continue to support the older services for some time, but new
development should target the Language service.

The Speech service provides APIs for converting text to speech and speech to text.
KPMG uses the latter to transcribe recorded calls and claims that doing so has saved
its customers millions of dollars in compliance costs. Airbus uses it to build voice-
enabled apps for pilot training. The Speech service also includes a speaker recogni‐
tion API that can identify a person’s voice, and a speech translation API that can
translate speech to dozens of other languages in real time.

Decision services include Anomaly Detector, which identifies anomalies in live or
recorded data streams and can aggregate inputs from hundreds of disparate sources,
such as temperature sensors and pressure gauges, and model relationships between
them. (See Chapter 6 for an introduction to anomaly detection.) Airbus uses Anom‐
aly Detector to analyze stresses and strains in aircraft; Siemens uses it to test medical
devices for flaws as the final step in production. The Content Moderator service uses
AI optionally supplemented by human intervention to flag offensive content in
images and videos, profane text, and other inappropriate (and potentially libelous)
content. Last but not least is the Personalizer service, which is perhaps best described
as a recommender system on steroids that provides personalized content and experi‐
ences to end users.

Keys and Endpoints
Azure Cognitive Services expose REST APIs that are called by transmitting HTTPS
requests over the internet. The APIs are language agnostic: they can be called from
any programming language that can put a call on the wire. That includes Python,
Java, C#, C, C++, JavaScript, Swift, Go, and virtually all other modern programming
languages. Calls can also be placed with tools such as Postman and the Linux curl
command.

Most Azure Cognitive Services are free up to a point, but they’re not altogether free.
For example, you can submit 5,000 text samples per month to the Language service
for sentiment analysis without incurring any costs. More than that, however, and
Azure has to know whose Azure subscription to charge. Consequently, before calling
an Azure Cognitive Service, you need:
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• An endpoint for the service—the URL that’s the target of calls
• A subscription key for the service, or some other means of authenticating calls

You can acquire both from the Azure Portal. As an example, suppose you wish to per‐
form sentiment analysis on a collection of tweets. You first open the Azure Portal in
your browser and log in with your Microsoft account. You then create a Cognitive
Services Language resource and specify to whom the Azure subscription costs should
be charged, the Azure region in which the service should be located, and a pricing
tier, as shown in Figure 14-3. A free tier is generally available if it doesn’t already exist
for the same service under the same subscription.

Figure 14-3. Creating a Language resource in the Azure Portal

Once the Language resource is created, you open it in the Azure Portal and click Keys
and Endpoint in the menu on the left side of the page. From there, you can retrieve a
subscription key and endpoint for the service (Figure 14-4). The key is a string of let‐
ters and numbers that uniquely identifies an Azure subscription. Treat it with care
because it can cost you money if it gets out. It’s considered a best practice to rotate the
key (replace it with a new one) periodically in case it falls into the wrong hands.
That’s why the portal includes Regenerate Key buttons. Why does the portal provide
two keys? So you have a valid key to use after regenerating the other one. With only
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one key, you’d have to regenerate it and then race to modify any apps that use it, and
there would be a dead period in which calls placed by those apps would fail.

Figure 14-4. Retrieving a key and an endpoint for an Azure Cognitive Services resource

The subscription key in this example is a single-service subscription key because it
works only with the Language resource that you created. If you create another Cogni‐
tive Services resource—for example, one for the Computer Vision service—you get a
separate key for it. So that you can avoid managing multiple keys for multiple serv‐
ices, most Azure Cognitive Services support multiservice keys that work with a range
of services. To get a multiservice key, simply create a Cognitive Services resource
rather than a service-specific resource and use the key and endpoint that the portal
provides.

Subscription keys aren’t the only way to authenticate calls to Azure Cognitive Serv‐
ices. Most Cognitive Services support Azure Active Directory (AAD) authentication,
which enhances security by combining AAD identities with role-based access control
(RBAC). AAD authentication is particularly compelling for apps that rely on Cogni‐
tive Services APIs and are themselves hosted in Azure. For more information, refer to
the article “Authenticate Requests to Azure Cognitive Services”.

Calling Azure Cognitive Services APIs
Once you have a subscription key and endpoint, you’re ready to roll. Here’s a snippet
of Python code that uses the Language service to evaluate “Programming is fun, but
the hours are long” for sentiment. KEY is a placeholder for the Language resource’s
subscription key, while ENDPOINT is a placeholder for the corresponding endpoint.
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The import statement imports the Python Requests package, which simplifies the
HTTP request-response protocol:

import requests

input = { 'documents': [
    { 'id': '1000', 'text': 'Programming is fun, but the hours are long' }]
}

headers = {
    'Ocp-Apim-Subscription-Key': KEY,
    'Content-type': 'application/json'
}

uri = ENDPOINT + 'text/analytics/v3.0/sentiment'
response = requests.post(uri, headers=headers, json=input)
results = response.json()

for result in results['documents']:
    print(result['confidenceScores'])

The result is as follows:

{'positive': 0.94, 'neutral': 0.05, 'negative': 0.01}

The service returns three scores: one for positive sentiment, one for neutral senti‐
ment, and one for negative sentiment. Observe that you can submit multiple text
samples in one call to the API because the documents item in the dictionary passed to
the call is a Python list.

It might not be obvious from the code, but input must be JSON encoded and sent in
the body of the request. The output comes back as JSON too. The Requests package
simplifies JSON encoding and decoding. requests.post encodes the input and trans‐
mits a POST request to the designated endpoint, while response.json converts the
JSON returned in the response into a Python dictionary.

To simplify matters, and to insulate you from changes to the underlying APIs as they
evolve over time, Microsoft offers free software development kits (SDKs) for most
Cognitive Services. The Python package named Azure-ai-textanalytics is the Python
SDK for sentiment analysis and other text analytics and is formally known as the
Azure Cognitive Services Text Analytics client library for Python. It can be installed
just like any other Python package—for example, with a pip install command.
Here’s the previous sample rewritten to use the SDK:

from azure.core.credentials import AzureKeyCredential
from azure.ai.textanalytics import TextAnalyticsClient

client = TextAnalyticsClient(ENDPOINT, AzureKeyCredential(KEY))
input = [{ 'id': '1000', 'text': 'Programming is fun, but the hours are long' }]
response = client.analyze_sentiment(input)
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for result in response:
    print(result.confidence_scores)

The output is exactly the same, but the JSON is hidden away, and you don’t have to
know what magic string to append to the endpoint because analyze_sentiment does
it for you. That method belongs to the SDK’s TextAnalyticsClient class, and it’s one
of several methods available for analyzing text.

Another benefit of using the SDKs is more robust error handling. Calls can and
sometimes do fail, and a well-written app responds gracefully to such failures. When
a call to Azure Cognitive Services fails, code in the SDK throws an exception that you
can catch in your code. The following example responds to errors by printing the
error message contained in the exception object:

from azure.core.credentials import AzureKeyCredential
from azure.ai.textanalytics import TextAnalyticsClient
from azure.core.exceptions import AzureError

try:
    client = TextAnalyticsClient(ENDPOINT, AzureKeyCredential(KEY))
    input = [{ 'id': '1000',
               'text': 'Programming is fun, but the hours are long' }]
    response = client.analyze_sentiment(input)

    for result in response:
        print(result.confidence_scores)
        
except AzureError as e:
    print(e.message)

AzureError is defined in Azure-core, which is a library shared by all Azure Cognitive
Services Python SDKs. It’s the parent class for other exception classes that correspond
to specific errors. If, for example, you pass a subscription key that’s invalid (perhaps
because the corresponding subscription is no longer active or payment is past due), a
ClientAuthenticationError exception occurs. You can include as many exception
handlers as you’d like to respond to specific types of errors. The preceding example
uses AzureError as a catchall.

Cognitive Services SDKs are available for a variety of programming lan‐
guages, including Python, Java, and C#. Here’s the same sample written in C# using
the Azure Cognitive Services Text Analytics client library for .NET, which comes in
the form of a NuGet package named Azure.AI.TextAnalytics:
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using Azure;
using Azure.AI.TextAnalytics;
using System;

try
{
    var client = new TextAnalyticsClient(
        new Uri(ENDPOINT),
        new AzureKeyCredential(KEY)
    );

    var response =
        client.AnalyzeSentiment("Programming is fun, but the hours are long");

    var sentiment = response.Value.ConfidenceScores.Positive;
    Console.WriteLine(sentiment);
}

catch (Exception ex)
{
    Console.WriteLine(ex.Message);
}

The output from the code is 0.94, which is the same positive-sentiment score output
by the Python examples. Different language, different SDK, but same result, and all
with very little effort. That’s what Azure Cognitive Services are all about.

Azure Cognitive Services Containers
Cognitive Services vastly simplify the process of—and lower the skills barrier for—
infusing AI into the apps that you write. But they have drawbacks too:

• Because Azure Cognitive Services run in the cloud, an app that uses them
requires an internet connection.

• Calls that travel over the internet incur higher latencies than calls performed
locally.

• Azure Cognitive Services APIs evolve over time and sometimes introduce break‐
ing changes, which means code that worked just fine yesterday could behave dif‐
ferently or be inoperative tomorrow.

• The deep-learning models on the backend are continually refined and improved,
with the result that the sentiment score for “programming is fun, but the hours
are long” could be 0.94 today and 0.85 tomorrow.

Changes to the APIs are rarely abrupt. Microsoft usually warns its customers months
in advance before making breaking changes to an API, and in many cases, you can
specify the version of the service or API you wish to use and insulate yourself from
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future changes. These issues might not be a big deal to small firms, but for enterpri‐
ses, which value stability and reliability above all else, they can be deal breakers.

Microsoft has addressed these issues by making most Azure Cognitive Services avail‐
able in Docker containers. A containerized service can run on premises or in the
cloud, and it locks in API versions and the models that back them. No changes occur
unless you update a container image or replace it with a newer version. You can learn
more and view the latest list of services that are available in containerized form in
“What Are Azure Cognitive Services Containers?”. Containerized services are also a
solution to security and privacy policies that require data to stay on premises. Micro‐
soft doesn’t store data passed to Cognitive Services, but the data does leave your com‐
pany’s domain.

Containerized services are not a way to do an end run around the billing department
and use Azure Cognitive Services for free. From the documentation:

The Cognitive Services containers are required to submit metering information for
billing purposes. Failure to allow-list various network channels that the Cognitive
Services containers rely on will prevent the container from working.

Containers send encrypted usage information back to Microsoft through port 443,
and Microsoft uses that information to bill an Azure subscription. Consequently,
containers have to be connected to the internet even if they’re hosted on premises.

There is one exception. If you want to use Azure Cognitive Services in apps that can’t
be connected to the internet for technical or compliance reasons, disconnected con‐
tainers can run absent an internet connection, and they don’t transmit metering
information to Microsoft. Not just anyone can use them, however. You have to sub‐
mit an application to Microsoft for approval, and one of the requirements is that your
organization have an Enterprise Agreement (EA) in place with Microsoft. See “Use
Docker Containers in Disconnected Environments” for more information and for an
up-to-date list of Azure Cognitive Services that are available for use in disconnected
scenarios.

The Computer Vision Service
By now you’re probably ready to stop talking about Azure Cognitive Services and
write some code. So am I. Let’s start with perhaps the most feature-rich cognitive ser‐
vice of all. The Computer Vision service is one of three vision services in Azure Cog‐
nitive Services. It exposes a set of APIs that support a variety of tasks, including:

• Captioning images
• Generating tags describing the contents of an image
• Identifying objects (and their bounding boxes) in images
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• Detecting sensitive or inappropriate content in images
• Extracting text from images
• Detecting faces in images (a subset of the Face service)
• Generating “smart thumbnail” images by using AI to identify the subject of a

photo and creating a thumbnail version that’s centered on the subject
• Performing spatial analysis on video streams

Spatial analysis is the latest addition to the Computer Vision service. Among other
things, it can track people in live video feeds, measure distances between them in real
time, and determine who’s wearing a mask (and who is not), as shown in Figure 14-5.
It’s currently in public preview, and you can read all about it in “What Is Spatial
Analysis?”.

Figure 14-5. Using spatial analysis to verify social distancing and masking (images ©
Microsoft; used with permission)

The best way to get acquainted with the Computer Vision service is to call a few of its
APIs. First install the Azure Cognitive Services Computer Vision SDK for Python.
(It’s in a Python package named Azure-cognitiveservices-vision-computervision.)
Next, download a ZIP file containing a few sample images and copy the images into
the Data subdirectory where your Jupyter notebooks are hosted. Use the Azure Portal
to create a Computer Vision resource and obtain a key and an endpoint. Then create
a new notebook and run the following code in the first cell after replacing KEY with
the key and ENDPOINT with the endpoint:

from azure.cognitiveservices.vision.computervision import ComputerVisionClient
from msrest.authentication import CognitiveServicesCredentials

client = ComputerVisionClient(ENDPOINT, CognitiveServicesCredentials(KEY))

The ComputerVisionClient class implements several methods that you can call to
invoke Computer Vision APIs. Most of those methods come in two versions: one that
accepts an image URL and one that accepts an actual image. The describe_image
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method, for example, accepts an image URL, while the describe_image_in_stream
method accepts a stream containing the image. My examples use the in_stream
methods, but you can easily modify them to pass image URLs rather than images.

Now load one of the sample images you copied from the ZIP file and use
describe_image_in_stream to caption it:

%matplotlib inline
import matplotlib.pyplot as plt

image = plt.imread('Data/dubai.jpg')
fig, ax = plt.subplots(figsize=(12, 8), subplot_kw={'xticks': [], 'yticks': []})
ax.imshow(image)

with open('Data/dubai.jpg', mode='rb') as image:
    result = client.describe_image_in_stream(image)
    
    for caption in result.captions:
        print(f'{caption.text} ({caption.confidence:.1%})')

Confirm that the output is as follows:

A man riding a sand dune (53.8%)

describe_image_in_stream returns zero or more captions, each with a score reflect‐
ing the Computer Vision service’s confidence that the caption is accurate. In this
example, it returned just one caption with a confidence of 53.8%.
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In addition to captioning images, the Computer Vision service can generate a list of
keywords (“tags”) describing an image’s content. One use for such tags is to make an
image database searchable. Use the tag_image_in_stream method to tag the image
captioned in the previous example:

with open('Data/dubai.jpg', mode='rb') as image:
    result = client.tag_image_in_stream(image)

    for tag in result.tags:
        print(f'{tag.name} ({tag.confidence:.1%})')

Here are the tags and the confidence levels assigned to them:

dune (99.5%)
sky (99.2%)
outdoor (98.7%)
clothing (98.2%)
desert (98.1%)
sand (97.9%)
aeolian landform (96.9%)
person (96.1%)
singing sand (95.8%)
erg (94.0%)
sahara (93.6%)
nature (93.4%)
footwear (90.9%)
landscape (88.0%)
sand dune (83.5%)
ground (77.5%)

The Computer Vision service can also detect objects in images. The following state‐
ments load an image and show all the objects that were detected along with bounding
boxes and confidence scores:

from matplotlib.patches import Rectangle

def annotate_object(name, confidence, bbox, min_confidence=0.5):
    if (confidence > min_confidence):
        x, y, w, h = bbox.x, bbox.y, bbox.w, bbox.h
        rect = Rectangle((x, y), w, h, color='red', fill=False, lw=2)
        ax.add_patch(rect)
        text = f'{name} ({confidence:.1%})'
        ax.text(x + (w / 2), y, text, color='white', backgroundcolor='red',
                ha='center', va='bottom', fontweight='bold',
                bbox=dict(color='red'))

image = plt.imread('Data/xian.jpg')
fig, ax = plt.subplots(figsize=(12, 8),
                       subplot_kw={'xticks': [], 'yticks': []})
ax.imshow(image)
        
with open('Data/xian.jpg', mode='rb') as image:
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    result = client.detect_objects_in_stream(image)
    
    for object in result.objects:
        annotate_object(object.object_property, object.confidence,
                        object.rectangle)

detect_objects_in_stream detected the people and the bicycles in the photo, as well
as a few other items:

Can the Computer Vision service detect faces in photos too? It certainly can. It can
also provide information about age and gender. The following example annotates the
faces in a photo with labels denoting age and gender. The ComputerVisionClient
class lacks a dedicated method for detecting faces, but you can call the general-
purpose analyze_image_in_stream method with a visual _features parameter
requesting facial info:

from azure.cognitiveservices.vision.computervision.models \
import VisualFeatureTypes

def annotate_face(face):
    x, y = face.face_rectangle.left, face.face_rectangle.top
    w, h = face.face_rectangle.width, face.face_rectangle.height
    rect = Rectangle((x, y), w, h, color='red', fill=False, lw=2)
    ax.add_patch(rect)
    text = f'{face.gender} ({face.age})'
    ax.text(x + (w / 2), y, text, color='white', backgroundcolor='red',
            ha='center', va='bottom', fontweight='bold',
            bbox=dict(color='red'))

image = plt.imread('Data/amsterdam.jpg')
fig, ax = plt.subplots(figsize=(12, 8), subplot_kw={'xticks': [], 'yticks': []})
ax.imshow(image)

with open('Data/amsterdam.jpg', mode='rb') as image:
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    result = client.analyze_image_in_stream(
        image, visual_features=[VisualFeatureTypes.faces])

    for face in result.faces:
        annotate_face(face)

Here’s the output:

The Face service can detect faces and identify ages, genders, emo‐
tions, facial landmarks, and more. It also has methods for compar‐
ing facial images, identifying faces, and building facial recognition
systems. Its API is a superset of the Computer Vision service’s face
API. As a result of Microsoft’s Responsible AI initiative, however,
the Face service is no longer available to the general public. For
more information about the Face service and how to apply for
access to it, refer to “What Is the Azure Face Service?”.

Suppose you’re the proprietor of a public website that accepts photo uploads and
you’d like to reject photos containing inappropriate content. Called as follows,
analyze_image_in_stream scores a photo for adultness (does the photo contain nud‐
ity?), raciness (does it contain bare skin?), and goriness (does it contain blood and
gore?) on a scale of 0.0 to 1.0. Here’s how it responds to a photo of a young girl cliff-
jumping in her bathing suit in Hawaii:

image = plt.imread('Data/maui.jpg')
fig, ax = plt.subplots(figsize=(12, 8), subplot_kw={'xticks': [], 'yticks': []})
ax.imshow(image)

with open('Data/maui.jpg', mode='rb') as image:
    result = client.analyze_image_in_stream(image,
             visual_features=[VisualFeatureTypes.adult])

    print(f'Adultness: {result.adult.adult_score}')
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    print(f'Raciness: {result.adult.racy_score}')
    print(f'Goriness: {result.adult.gore_score}')
    
    print(f'Is adult: {result.adult.is_adult_content}')
    print(f'Is racy: {result.adult.is_racy_content}')
    print(f'Is gory: {result.adult.is_gory_content}')

Here’s the output:

Adultness: 0.02214685082435608
Raciness: 0.4205135107040405
Goriness: 0.0016634463099762797
Is adult: False
Is racy: False
Is gory: False

The bikini in the photo yielded a moderate raciness score, but one that’s below the
threshold of 0.5 required for is_racy_content to be True. Based on the other scores
it returned, the Computer Vision service believes that the photo is neither “adult” nor
gory.

Yet another capability that the Computer Vision service lends to application develop‐
ers is using AI to extract text from photos. It’s perfect for digitizing printed docu‐
ments. Here’s an example:

def draw_box(bbox):
    vals = bbox.split(',')
    x = int(vals[0])
    y = int(vals[1])
    w = int(vals[2])
    h = int(vals[3])
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    rect = Rectangle((x, y), w, h, color='red', fill=False, lw=2)
    ax.add_patch(rect)

image = plt.imread('Data/1040-es.jpg')
fig, ax = plt.subplots(figsize=(12, 8), subplot_kw={'xticks': [], 'yticks': []})
ax.imshow(image)

with open('Data/1040-es.jpg', mode='rb') as image:
    result = client.recognize_printed_text_in_stream(image)
    
    for region in result.regions:
        for line in region.lines:
            text = ' '.join([word.text for word in line.words])
            draw_box(line.bounding_box)
            print(text)

Here’s the output, minus all the lines of text output by the print statement:

The recognize_printed_text_in_stream method only recognizes printed text. A
related method named read_in_stream recognizes handwritten text too. Let’s see
how it performs on the same scanned document:

import time
from azure.cognitiveservices.vision.computervision.models \
import OperationStatusCodes

def draw_box(bbox):
    x, y  = bbox[0], bbox[1]
    w = bbox[4] - x
    h = bbox[5] - y
    rect = Rectangle((x, y), w, h, color='red', fill=False, lw=2)
    ax.add_patch(rect)

image = plt.imread('Data/1040-es.jpg')
fig, ax = plt.subplots(figsize=(12, 8), subplot_kw={'xticks': [], 'yticks': []})
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ax.imshow(image)

with open('Data/1040-es.jpg', mode='rb') as image:
    response = client.read_in_stream(image, raw=True)
    
    location = response.headers["Operation-Location"]
    opid = location[len(location) - 36:]
    results = client.get_read_result(opid)
    
    while results.status == OperationStatusCodes.running:
        results = client.get_read_result(opid)
        time.sleep(1)
        
    if results.status == OperationStatusCodes.succeeded:
        for result in results.analyze_result.read_results:
            for line in result.lines:
                draw_box(line.bounding_box)
                print(line.text)

This example is a little more involved because read_in_stream returns before the call
has completed. We therefore loop until the call completes and then retrieve the
results. The call to sleep in each iteration of the while loop allows the user interface
to remain responsive while waiting for the call to complete. The results are worth the
wait:

Perhaps you’d prefer to extract only handwritten text from a document. You can do
that too, because for each line of text it detects, read_in_stream includes a style
attribute equal to “handwriting” for handwritten text. To demonstrate, replace the
final two lines in the previous example with these:

376 | Chapter 14: Azure Cognitive Services



if (line.appearance.style.name == 'handwriting'):
    draw_box(line.bounding_box)    
    print(line.text)

This time, only handwritten text is highlighted:

read_in_stream does a commendable job of converting the handwritten text into
Python strings too:

$ 100
Jeff
Prosise
111-22-0000
1313 Mockingbird Lane
Oak Ridge
TN
37830

A final note regarding the Computer Vision service is that it doesn’t accept images
larger than 4 MB. Anything larger produces a ComputerVisionErrorResponse
Exception. You can catch these exceptions (or AzureError exceptions, which are
higher up the food chain) and recover gracefully, or you can check an image’s size
before submitting it and downsize it if necessary.

The Language Service
The Computer Vision service employs deep-learning models similar to the ones you
learned about in Chapters 10, 11, and 12. The Language and Translator services use
models like the ones in Chapter 13. The latter two services embody NLP: sentiment
analysis, neural machine translation, question answering, and more. The Text
AnalyticsClient class in the Python text analytics SDK provides a convenient inter‐
face to many of the Language service’s features. You’ve already seen it used for
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sentiment analysis. Here’s another example that applies sentiment analysis to multiple
text samples with one round trip to the Language service:

from azure.core.credentials import AzureKeyCredential
from azure.ai.textanalytics import TextAnalyticsClient
 
client = TextAnalyticsClient(ENDPOINT, AzureKeyCredential(KEY))
 
input = [
    { 'id': '1000', 'text': 'Programming is fun, but the hours are long' },
    { 'id': '1001', 'text': 'Great food and excellent service' },
    { 'id': '1002', 'text': 'The product worked as advertised but is ' \
                            'overpriced' },
    { 'id': '1003', 'text': 'Moving to the cloud was the best decision ' \
                            'we ever made' },
    { 'id': '1004', 'text': 'Programming is so fun I\'d do it for free. ' \
                            'Don\'t tell my boss!' }
]
response = client.analyze_sentiment(input)
 
for result in response:
    text = ''.join([x.text for x in result.sentences])
    print(f'{text} => {result.confidence_scores.positive}')

Here’s the output:

Programming is fun, but the hours are long => 0.94
Great food and excellent service => 1.0
The product worked as advertised but is overpriced => 0.0
Moving to the cloud was the best decision we ever made => 1.0
Programming is so fun I'd do it for free. Don't tell my boss! => 1.0

Let’s say you’re writing an app that collects tweets referencing your company and ana‐
lyzes them for sentiment. The idea is that if sentiment turns negative, you can give the
marketing department a heads-up. It’s faster and more efficient to place one call to
Azure Cognitive Services and analyze 100 tweets than to make 100 calls analyzing
one tweet at a time.

Sentiment analysis is one of several operations supported by the TextAnalytics
Client class. Another is named-entity recognition. Suppose you’re building a system
that sorts and prioritizes support tickets received by your company’s help desk. The
recognize_entities method extracts entities such as people, places, organizations,
dates and times, and quantities from input text. It reveals the entity types as well:

documents = [
    'My printer isn\'t working. Can someone from IT come to my office ' \
    'and have a look?'
]

results = client.recognize_entities(documents)

for result in results:
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    for entity in result.entities:
        print(f'{entity.text} ({entity.category})')

The output from this example is as follows:

printer (Product)
IT (Skill)
office (Location)

A related method named recognize_pii_entities extracts personally identifiable
information (PII) entities such as bank account info, Social Security numbers, and
credit card numbers from text input to it, while the extract_key_phrases method
extracts key phrases:

documents = [
    'Natural Language Processing, or NLP, encompasses a variety of ' \
    'activities including text classification, keyword extraction,' \
    'named-entity recognition, question answering, and language '\
    'translation.'
]

results = client.extract_key_phrases(documents)

for result in results:
    for phrase in result.key_phrases:
        print(phrase)

Here’s the output:

Natural Language Processing
language translation
text classification
keyword extraction
question answering
NLP
variety
activities
recognition

This example is a simple one given that the text is so brief, but you could pass in hun‐
dreds of large documents and use the results to get a snapshot of each document’s
content, or group documents that contain similar keywords.

TextAnalyticsClient provides a wrapper around text analytics APIs. Other Python
SDKs unlock additional features of the Language service. For example, the question-
answering SDK provides APIs for answering questions from manuals, FAQs, blog
posts, and other documents that you provide. For more information, and to see this
aspect of the Language service in action, refer to the article titled “Azure Cognitive
Language Services Question Answering Client Library for Python”.
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The Translator Service
The Translator service uses state-of-the-art neural machine translation to translate
text between dozens of languages. It can also identify written languages. Suppose
your objective is to translate into English questions written in other languages and
submitted through your company’s website. First you need to determine whether the
source language is English. If it’s not, you want to translate it so that you can respond
to the customer’s request.

The following code analyzes a text sample and shows the language it’s written in.
Microsoft doesn’t currently offer a Python SDK for the Translator service, but you
can use Python’s Requests package to simplify calls. To demonstrate, create a Transla‐
tor resource in the Azure Portal and grab the subscription key (the one labeled “Text
Translation”), endpoint, and region. Then run the following code, replacing KEY and
ENDPOINT with the key and endpoint and REGION with the Azure region you selected
(for example, southcentralus):

import requests

input = [{ 'text': 'Quand votre nouveau livre sera-t-il disponible?' }]

headers = {
    'Ocp-Apim-Subscription-Key': KEY,
    'Ocp-Apim-Subscription-Region': REGION,
    'Content-type': 'application/json'
}

uri = ENDPOINT + 'detect?api-version=3.0&to=en'
response = requests.post(uri, headers=headers, json=input)
results = response.json()

print(results[0]['language'])

The output is fr for French. Now that you’ve determined the source language isn’t
English, you can translate it this way:

uri = ENDPOINT + 'translate?api-version=3.0&from=fr&to=en'
response = requests.post(uri, headers=headers, json=input)
results = response.json()

print(results[0]['translations'][0]['text'])

The translated text is:

When will your new book be available?

You can omit from=fr from the URL and allow the Translator service to detect the
language for you. You can also detect the language and translate the text with one call.
If you call the translate endpoint without a from parameter, the return value
includes a detectedLanguage item that identifies the language in the source text:
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[{'detectedLanguage': {'language': 'fr', 'score': 1.0}, 'translations': [{'text':
'When will your new book be available?', 'to': 'en'}]}]

If passed a list containing multiple text samples, the Translator service will translate
all of them in one call. It also supports transliteration: translating text to other alpha‐
bets. To see for yourself, use Google Translate to translate “When will your new book
be available” to Thai or Hindi. Then paste the Thai or Hindi text over the French text
in the previous example and run it again. Be sure to also change from=fr to from=th
or from=hi or simply remove the from parameter altogether.

When you create a Translator resource, you have a choice of creat‐
ing a global resource or one tied to a specific Azure region. The
preceding examples assume that you created it as a regional
resource. If you created a global Translator resource instead, you
can set the Ocp-Apim-Subscription-Region header to global or
omit the header altogether.

When you obtained an endpoint for the Translator service, did you notice that the
Azure Portal offered two endpoints—one for “Text Translation” and another for
“Document Translation?” That’s because the Translator service features a second API
for translating entire documents, including PDFs. There’s even a Python SDK to help
out. The only catch is that documents must first be uploaded to Azure blob storage.
For examples showing the document translation API in action, see “Azure Document
Translation Client Library for Python”. The API is asynchronous and can process
batches of documents in one call, so it’s ideal not just for translating individual docu‐
ments, but for translating large volumes of documents at scale.

The Speech Service
One of the more challenging tasks for deep-learning models is processing human
speech. Azure Cognitive Services includes a Speech service that converts text to
speech, speech to text, and more. It’s even capable of captioning recorded videos and
live video streams and filtering out profanity as it does. A Python SDK simplifies the
code you write and makes it remarkably easy to incorporate speech into your apps.

To demonstrate, install the package named Azure-cognitiveservices-speech contain‐
ing the Python Speech SDK. Use the Azure Portal to create a Cognitive Services
Speech resource and make note of the subscription key and service region. Then cre‐
ate a Jupyter notebook and run the following code in the first cell after replacing KEY
with the subscription key and REGION with the region you selected:
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from azure.cognitiveservices import speech

speech_config = speech.SpeechConfig(KEY, REGION)
speech_config.speech_recognition_language = 'en-US'

Now run the following statements, and when prompted, speak into your microphone.
This sample creates a SpeechRecognizer object and uses its recognize_once_async
method to convert up to 30 seconds of live audio from your PC’s default microphone
into text. Observe that the text doesn’t appear until you’ve finished speaking:

recognizer = speech.SpeechRecognizer(speech_config)

print('Speak into your microphone')
result = recognizer.recognize_once_async().get()

if result.reason == speech.ResultReason.RecognizedSpeech:
    print(result.text)

It couldn’t be much simpler than that. How about converting text to speech? Here’s an
example that uses the SDK’s SpeechSynthesizer class to vocalize a sentence. The
synthesized voice belongs to an English speaker named Jenny (en-US-JennyNeural),
and it’s one of more than 300 neural voices you can choose from:

speech_config.speech_synthesis_voice_name = 'en-US-JennyNeural'
synthesizer = speech.SpeechSynthesizer(speech_config)
synthesizer.speak_text_async('When will your new book be published?').get()

All of the “speakers” are multilingual. If you ask a French speaker—for example,
fr-FR-CelesteNeural—to synthesize an English sentence, the vocalization will fea‐
ture a French accent.

You can combine a TranslationRecognizer object with a SpeechSynthesizer object
to translate speech in real time. The following example takes spoken English as input
and plays it back in French using the voice of a native French speaker:

speech_config.speech_synthesis_voice_name = 'fr-FR-YvetteNeural'
synthesizer = speech.SpeechSynthesizer(speech_config)

translation_config = speech.translation.SpeechTranslationConfig(KEY, REGION)
translation_config.speech_recognition_language = 'en-US'
translation_config.add_target_language('fr')

recognizer = speech.translation.TranslationRecognizer(translation_config)

print('Speak into your microphone')
result = recognizer.recognize_once_async().get()

if result.reason == speech.ResultReason.TranslatedSpeech:
    text = result.translations['fr']
    synthesizer.speak_text_async(text).get()
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These samples use your PC’s default microphone for voice input and default speakers
for output. You can specify other sources of input and output by passing an Audio
Config object to the methods that create SpeechRecognizer, SpeechSynthesizer,
and TranslationRecognizer objects. Among the options this enables is using a file
or stream rather than a microphone as the source of input.

Putting It All Together: Contoso Travel
Imagine you’re a web developer and your client is Contoso Travel. To motivate its
customers to stay in touch, the travel agency wants its website to include a service
that translates signage. The idea is that a customer exploring a faraway land can snap
a picture of a sign, upload it to the site, and see a translation in the language of their
choice. No typing, no forms to fill out—just “Here’s a picture, tell me what it says.”

A few years ago, such a website would have been unthinkable for most small busi‐
nesses. Today it’s within the capabilities of anyone who can sling a few lines of code.
Let’s use Python’s Flask framework to build a website that makes your client happy.
We’ll use Azure Cognitive Services to do the heavy lifting of extracting and translat‐
ing text, and we’ll end up with the product shown in Figure 14-6.

Begin by making sure the required packages are installed, including Flask, Requests,
and Azure-cognitiveservices-vision-computervision. Then create a project directory
in the location of your choice on your hard disk. Name it Contoso or anything else
you’d like. Next, download a ZIP file containing a starter kit for the website and copy
its contents into the project directory. Take a moment to examine the files that you
copied. These files comprise a website written in Python and Flask. They include the
following:

app.py
Holds the Python code that drives the site

templates/index.html
Contains the site’s home page

static/main.css
Contains CSS to dress up the home page

static/banner.jpg
Contains the website’s banner

static/placeholder.jpg
Contains a placeholder image for photos that have yet to be uploaded
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Figure 14-6. The Contoso Travel website translating a road sign

The site contains a single page named index.html that’s displayed when a user navi‐
gates to the site. The code that displays it lives in app.py, and it includes logic for
uploading photos. You will modify app.py to extract and translate text from the pho‐
tos that users upload.

Does “Contoso” sound familiar? It’s the company name used in
countless Microsoft samples and tutorials. There’s a story behind
why it’s so popular. When you write content for Microsoft, you’re
not allowed to make up company names because doing so is likely
to get Microsoft sued. Contoso is one of several fictitious company
names Microsoft has trademarked over the years. Others that
might be familiar include Northwind Traders, Fabrikam, and
AdventureWorks.

Open a command prompt or terminal window and cd to the project directory. If
you’re running Windows, use the following command to create an environment vari‐
able named FLASK_ENV that tells Flask to run in development mode:

set FLASK_ENV=development

If you’re running Linux or macOS, use this command instead:

export FLASK_ENV=development
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Running Flask in development mode is helpful when you’re developing a website
because Flask automatically reloads any files that change while the site is running. If
you let Flask default to production mode and change the contents of an HTML file or
other asset, you have to restart Flask for the changes to appear in your browser.

Now use the following command to start Flask:

flask run

Open a browser and go to http://localhost:5000. When Contoso Travel’s home page
appears, click the Upload Photo button and select a JPG or PNG file on your com‐
puter. Confirm that the photo uploads without errors. At this point, no processing is
performed on the photo, so the only visual clue that the upload succeeded is that the
photo appears in the web page.

Next, use the Azure Portal to create a Computer Vision resource and a Translator
resource if you haven’t already. Open app.py in your favorite code editor and find the
following statements near the top of the file:

# Define Cognitive Services variables
vision_key = 'VISION_KEY'
vision_endpoint = 'VISION_ENDPOINT'
translator_key = 'TRANSLATOR_KEY'
translator_endpoint = 'TRANSLATOR_ENDPOINT'
translator_region = 'TRANSLATOR_REGION'

Replace VISION_KEY and TRANSLATOR_KEY with the services’ subscription keys,
VISION_ENDPOINT and TRANSLATOR_ENDPOINT with the endpoints, and TRANSLATOR
_REGION with the region selected for the Translator service. For Translator, use the
endpoint labeled “Text Translation.” Be sure to leave the tick marks delimiting the
strings intact.

Now add the following function for extracting text from a photo to app.py, placing it
right after the comment that reads “Function that extracts text from images” near the
bottom of the file:

def extract_text(endpoint, key, image):
    try:
        client = ComputerVisionClient(endpoint,
                                      CognitiveServicesCredentials(key))
        result = client.recognize_printed_text_in_stream(image)
        lines = []

        for region in result.regions:
            for line in region.lines:
                text = ' '.join([word.text for word in line.words])
                lines.append(text)

        if len(lines) == 0:
            lines.append('Photo contains no text to translate')
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        return lines

    except ComputerVisionErrorResponseException as e:
        return ['Error calling the Computer Vision service: ' + e.message]

    except Exception as e:
        return ['Error calling the Computer Vision service']

Then add the following function for translating text. Place it after the comment that
reads “Function that translates text into a specified language” near the bottom of
app.py:

def translate_text(endpoint, region, key, lines, language):
    try:
        headers = {
            'Ocp-Apim-Subscription-Key': key,
            'Ocp-Apim-Subscription-Region': region,
            'Content-type': 'application/json'
        }

        input = []

        for line in lines:
            input.append({ "text": line })

        uri = endpoint + 'translate?api-version=3.0&to=' + language
        response = requests.post(uri, headers=headers, json=input)
        response.raise_for_status() # Raise exception if call failed
        results = response.json()

        translated_lines = []

        for result in results:
            for translated_line in result["translations"]:
                translated_lines.append(translated_line["text"])

        return translated_lines

    except requests.exceptions.HTTPError as e:
        return ['Error calling the Translator service: ' + e.strerror]

    except Exception as e:
        return ['Error calling the Translator service']

Find the function named index in app.py. This is the function called when the home
page is requested or a photo is uploaded. Under the comment that reads “Use the
Computer Vision service to extract text from the image,” add the following line of
code to call extract_text with the photo that the user just uploaded:

lines = extract_text(vision_endpoint, vision_key, image)
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Under the comment that reads “Use the Translator service to translate text extracted
from the image,” add a line of code to translate the text returned by extract_text to
the specified language:

translated_lines = translate_text(translator_endpoint, translator_region,
                                  translator_key, lines, language)

Add the following statements immediately after the comment that reads “Flash the
translated text”:

for translated_line in translated_lines:
    flash(translated_line)

These statements use Flask’s message-flashing support to display the strings in
translated_lines in a modal dialog.

Finish up by saving your changes to app.py. Return to the browser in which the web‐
site is running and refresh the page. (If you closed it, open a new browser instance
and navigate to http://localhost:5000.) Select a language from the drop-down list at the
top of the page. Then upload a photo containing a road sign or any other image with
text in it.

Was the text extracted and translated? The app isn’t perfect, but it should work as
expected most of the time. If you’re not satisfied, try replacing calls to
recognize_printed_text_in_stream with calls to read_in_stream. The latter is
more aggressive at finding text in photos. While you’re at it, you could also use the
Translator service to translate error messages into the language the user selected or
the Speech service to vocalize translated text. With Azure Cognitive Services lending
a hand, the only limit is your imagination.

Summary
Azure Cognitive Services lower the bar for incorporating sophisticated deep-learning
models into the apps you write by providing REST APIs that any app with an internet
connection can call. Containerized versions of most services allow them to be hosted
locally or on premises and also provide an option for running in disconnected sce‐
narios. One of the benefits of containers is locking in a particular version of the mod‐
els you’re using or the APIs that access them so that changes to Azure Cognitive
Services won’t affect your apps.

The range of services offered by Azure Cognitive Services includes vision services for
extracting information from images and video streams, language services for translat‐
ing text into other languages and performing other NLP tasks, and speech services for
incorporating speech into your apps. Free SDKs are available for most services. They
simplify the code you write, and they’re available for a variety of popular program‐
ming languages including Python, Java, and C#.
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Machine learning and deep learning are making the world a better place one model at
a time. Soon both will be considered part of the essential skill set of every engineer
and software developer. Are you up to the task? My hope is that this book gives you
the confidence to say yes and the tools to make it happen. It’s too late to monitor
Apollo missions in Mission Control, but countless other frontiers are waiting to be
explored.
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A
accuracy measures

for classification models, 53, 56-60
confusion matrix, 58, 122-123
for neural network predictions, 201-204,

231
for regression models, 42-45
training versus validation accuracy, 210
validation accuracy (see validation accu‐

racy)
accuracy score, 56, 58, 65
activation functions, 179

ReLU, 181, 188
sigmoid, 188, 197-200, 223
softmax (see softmax activation function)
tanh, 188

Adam optimizer, 189
adaptive learning rate algorithms, 184
additive modeling, 39
additive smoothing, 89
agglomerative clustering, 19
AlexNet, 220
algorithm, 3
AlphaGo, 7
analyze_image_in_stream method, 372
analyze_sentiment, 366
anchors and anchor boxes, 292
annotate_image function, 297
anomaly detection, 140-150

bearing failure prediction, 145-150
credit card fraud detection, 141-145
multivariate, 150

Anomaly Detector, 362
anonymizing data, 135-137

ArcFace, 279, 287
arctic wildlife recognition, 58, 228-232,

240-243, 247-250
area under the curve (AUC), 58
argmax function, 207
artificial intelligence (AI)

history of, 8
versus machine learning (ML), 7-9

attention mechanisms, 337-340
AUC (area under the curve), 58
audio classification with CNNs, 251-258
AudioConfig object, 383
augmentation layers, 247
average pooling layer, 222
AWS AI Services, 359
Azure Cognitive Services APIs, 306, 359-387

calling APIs, 364-367
Computer Vision service, 219, 360, 368-377
containers, 367-368
Contoso Travel exercise, 383-387
Decision services, 362
keys and endpoints, 362-364
Language service, 361, 377-379
SDKs available, 365-367
Speech service, 362, 381-383
subscription setup, 306-314
Translator service, 380-381

Azure Portal, 363
AzureError, 366

B
backpropagation, 183-185, 189, 211
bag of words, 79
batch normalization, 233
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Bayes’ theorem, 87
bearing failure prediction, anomaly detection,

145-150
BERT (bidirectional encoder representations

from transformers), 349-357
building a question answering system,

350-353
sentiment analysis, 354-357

biases, neural networks, 179, 182, 194
bidirectional encoder representations from

transformers (BERT), 349-357
bilingual evaluation understudy (BLEU) scores,

346
binary classification models, 62-71

credit card fraud detection, 67-71
logistic regression (see logistic regression)
with neural networks, 197-204
Titanic passengers, 62-66

binary classifiers, in Viola-Jones face detection,
263

binary trees, 33
binary_crossentropy function, 198
BLEU (bilingual evaluation understudy) scores,

346
Boltzmann machines, 7
boosting, 38-41
bottleneck layers, 220, 223, 227, 237-239
bottom Sobel kernel, 221
bounding boxes, object detection, 290

ROI pooling, 292
RPN, 293, 310
Viola-Jones, 266
YOLO, 300, 302

breast cancer dataset, 112, 136

C
C parameter, SVMs, 102, 108-111
C#

building models with ML.NET, 165-169
using ONNX to work with Python, 161-165

California Housing Prices dataset, 42
Callback class, 213
callbacks, Keras, 213-216
CART (Classification and Regression Tree)

algorithm, 35
cascade classifiers, 263-266
CascadeClassifier class, 264-266
categorical data, 60-62
categorical values, 60

categorical_crossentropy function, 207
centroid, cluster, 10
Classification and Regression Tree (CART)

algorithm, 35
classification boundary, 20
classification models, 19-21, 53-77

accuracy measures for, 53, 56-60
audio classification, 251-258
binary classifiers, 62-71, 197-204
CNNs, 221, 223, 237-239
digit recognition model, 73-76
GBMs, 38-41
image (see images, classifying and generat‐

ing)
and k-nearest neighbors, 21, 24-28
logistic regression (see logistic regression)
MLPs for, 223
multiclass, 19, 24-28, 53, 71-73, 204-207
multilabel, 53
SVMs (see support vector machines)
text (see text classification and processing)

cleaning of text for vectorization, 80
closed-set versus open-set classification,

286-287
clustering algorithms, 9

agglomerative clustering, 19
DBSCAN, 19
k-means (see k-means clustering)
label encoding, 16-18, 60-62

CNNs (see convolutional neural networks)
COCO dataset, 295, 303
coefficient of determination (R²), 45, 196
collaborative recommender system, 94
Computer Vision service, 219, 360, 368-377
ComputerVisionClient class, 369
conditional probability, 87
confidence value, object detection, 302
confusion matrix, 58, 122-123
ConfusionMatrixDisplay class, 58, 92
confusion_matrix function, 58
consuming Python model from C# client,

158-160
container image, 160
container registry, 161
containerizing an ML model, 153, 160-161,

367-368
Content Moderator service, 362
content-based recommender system, 94
continual learning, 212
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Contoso Travel exercise, 383-387
Conv1D class, 330
Conv2D layers, 192, 224-226
convolutional kernels (kernels), 220-222
convolutional neural networks (CNNs), 178,

219-259
architectures, 233
arctic wildlife recognition, 228-232, 240-243
audio classification, 251-258
building with Keras and TensorFlow,

224-228
convolution layers, 220-222
data augmentation, 243-250
face detection, 266-270, 280-286
facial recognition, 273-286
GANs, 178
global pooling, 250-251
object detection with R-CNNs, 290-299
pretrained models, 232-237

corr method, 47-49
cosine similarity, 94-98, 280
CountVectorizer class, 80-83, 85-87, 91, 94, 155,

320
covariance matrix, 127
Cover’s theorem, 102
credit card fraud detection

anomaly detection, 141-145
binary classification, 67-71
with neural network, 200-204
PCA, 135, 141-145

cross-validation, 44-45, 56, 65
cross_val_score function, 44
CSVLogger class, 216
Custom Vision service, 306-314, 360
customer segmentation, 13-18
customers dataset, 13

D
Darknet, 301
data

overfitting of, 36, 108, 191
preprocessing of (see preprocessing data)
shuffling of, 190, 325
test set, 26, 42, 45
time series, 331
training set, 26
underfitting of, 108, 191
visualizing high-dimensional, 137-140

data augmentation, 243-250

data cleaning, 27, 80, 341
data normalization, 112-115
DataFrame, 61
Dataset.to_tf_dataset method, 355
Datasets library, Hugging Face, 354
DBSCAN (density-based spatial clustering of

applications with noise), 19
decision boundaries, 101, 104, 107-109
Decision services, 362
decision tree stumps, 39
decision trees, 33-37

CART training algorithm, 35
for classification, 54
GBMs, 38-41
and normalization, 112
random forests, 37-38, 69, 144
for regression, 54

DecisionTreeClassifier class, 35
DecisionTreeRegressor class, 35
decode_predictions function, 302
deep learning, 7, 177-185

(see also neural networks)
Deepset, 353
Dense layers, 190, 192
dense vector representation, 227
density-based spatial clustering of applications

with noise (DBSCAN), 19
dependent decision trees, 38
depthwise separable convolutions, 233
describe_image method, 369
describe_image_in_stream method, 369
detectMultiScale, 265
digit recognition model, 73-76
dimensionality reduction

and bottleneck layers, 220
classification layers, CNNs, 220, 223
Isomap, 139
PCA (see principal component analysis)
pooling layers, 222
t-SNE, 32, 139

disconnected containers, Azure Cognitive Serv‐
ices, 368

DistilBERT model, 349
docker build command, 161
Docker container, 153, 160
document translation, 381
dot product, 227
Dropout layers, 192, 210-211, 250

Index | 391



E
EarlyStopping class, 214, 345
eigenvectors and eigenvalues, 127
Elasticsearch, 353
elbow method to plot inertias, 12
Embedding class, 323
embedding layer, 319, 323-327
encoder–decoder models, 335-340
ensemble learning, random forests, 37-38, 69,

144
epochs, 189
estimators, 116, 155
Euclidean distance, 23
Excel, adding ML capabilities to, 169-172
expert systems, 7
explained variance, plotting, 130-133
extracting faces from photos, 270-272
extract_key_phrases method, 379

F
F1 score, 57
face detection, 261-272

with CNNs, 266-270, 280-286
Computer Vision service, 372
extracting faces from photos, 270-272
with Viola-Jones, 262-266

face embedding, 279
Face service, 360, 373
face verification, 280
FaceNet, 272
facial recognition, 272-287

closed-set versus open-set classification,
286-287

with CNNs, 273-286
neural networks, 207-210
and privacy, 261
with SVMs, 117-123
with transfer learning, 273-279

false positive rate (FPR), 58
Fast R-CNN, 292
Faster R-CNN, 292
feature columns, 4
feature maps, 220
filtering noise in images, 133-135
fit method

in Keras, 189, 216, 246
in Scikit-Learn, 26, 45

fit_on_texts method, 320
Flask framework, 153, 383

Flatten layer, 250, 324
flow method, 246
flow_from_directory method, 246
folds, 44
FPR (false positive rate), 58
fully connected layers, 179
functional API, Keras, 187, 343-348

G
gamma parameter, SVM kernels, 108-111
GANs (generative adversarial networks), 178
gated recurrent unit (GRU) layer, 332
GBDTs (gradient-boosted decision trees), 38-41
GBMs (gradient-boosting machines), 38-41
generative adversarial networks (GANs), 178
get_weights method, 211
Gini impurity, 35
global minimum, 184
global pooling, 250-251
GlobalAveragePooling2D layer, 250, 255
GlobalMaxPooling2D layer, 250
GlorotUniform initializer, 190
GloVe word vectors, 323
GPUs (graphics processing units), 8, 177, 232
gradient descent, 185
gradient-boosted decision trees (GBDTs), 38-41
gradient-boosting machines (GBMs), 38-41
GradientBoostingClassifier class, 39-41, 70
GradientBoostingRegressor class, 39-41, 50
graphics processing units (GPUs), 8, 177, 232
GridSearchCV, 110, 117, 120-122
GRU (gated recurrent unit) layer, 332
GRU class, 332

H
H2O framework, 165, 167
H5 file format, 212
Haar-like features, 263
handwritten text

building digit recognition model, 73-76
extracting from image, 376-377

HashingVectorizer class, 80, 83, 156
Haystack library, 353
hidden layers, 178, 180, 188
hidden state, layer, 331
high recall then precision pattern, 263
high-dimensional data visualization, 137-140
Hugging Face, 333, 348, 350-357
hyperparameter tuning, 108-111
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I
IDataView, 165, 167
ImageDataGenerator, 244-246
ImageNet dataset, 234
images, classifying and generating, 6-7

arctic wildlife recognition, 247-250
with augmentation layers, 247
caption generating, 360, 370-371
CNNs (see convolutional neural networks)
extracting text from photos, 374
face detection (see face detection)
facial recognition (see facial recognition)
generating with GANs, 178
with k-nearest neighbors, 24-28
object detection (see object detection)
tuning hyperparameters, 108-111

IMDB movie dataset, 83, 328, 354
impurity measures, 35
imputing missing values, 64
Inception, 233
incremental training, 212
inertias, plotting, 12
InferenceSession method, ONNX, 162
Input class, ML.NET, 167
input layer, neural network, 178, 180, 188
instance segmentation, 293-299
integral images, 264
Intellipix, 360
intersection-over-union (IoU) score, 290
inverse_transform method, 83, 128
Iris dataset, 24, 32
isolation forest, 141
Isomap, 139

J
JSON encoding or decoding, 365
Jupyter, xvi

K
k-fold cross-validation, 44-45
k-means clustering, 9-19

customer data, applying to, 13-19
segmenting customer data, 16-18
supervised learning, 19-28

k-nearest neighbors, 21-28, 112
Keras API, 185, 187

building neural networks with, 188-197
callbacks, 213-216

CNNs, 224-228
functional API, 187, 343-348
LSTM-based models, 335-337
MobileNetV2, 234
pretrained CNN models, 232-237
saving models, 211, 330
sequential API, 187-191
tensorflow.keras.callbacks.CSVLogger, 216
tensorflow.keras.callbacks.EarlyStopping,

214, 345
tensorflow.keras.callbacks.LearningRate‐

Scheduler, 216
tensorflow.keras.callbacks.ModelCheck‐

point, 214
tensorflow.keras.callbacks.TensorBoard, 214
tensorflow.keras.layers.Conv1D, 330
tensorflow.keras.layers.Conv2D, 192,

224-226
tensorflow.keras.layers.Dense, 188, 194
tensorflow.keras.layers.Dropout, 192,

210-211, 250
tensorflow.keras.layers.Embedding, 323
tensorflow.keras.layers.Flatten, 250, 324
tensorflow.keras.layers.GlobalAveragePool‐

ing2D, 250, 255
tensorflow.keras.layers.GlobalMaxPool‐

ing2D, 250-251
tensorflow.keras.layers.GRU, 332
tensorflow.keras.layers.Input, 327
tensorflow.keras.layers.LSTM, 332
tensorflow.keras.layers.MaxPooling1D, 330
tensorflow.keras.layers.MaxPooling2D,

224-226
tensorflow.keras.layers.MultiHeadAttention,

340
tensorflow.keras.layers.Rescaling, 247
tensorflow.keras.layers.TextVectorization,

322, 327-330
tensorflow.keras.losses.binary_crossentropy,

198
tensorflow.keras.losses.categorical_crossen‐

tropy, 207
tensorflow.keras.losses.sparse_categori‐

cal_crossentropy, 205, 209
tensorflow.keras.models.load_model, 212
tensorflow.keras.models.Sequential, 188,

194
tensorflow.keras.preprocess‐

ing.image.ImageDataGenerator, 244-246
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tensorflow.keras.preprocess‐
ing.sequence.pad_sequences, 321

tensorflow.keras.preprocessing.text.Token‐
izer, 320-322, 327, 342

tensorflow.keras.utils.to_categorical, 207
transformer-based NMT model, 340-348
and YOLO, 301-305

KerasNLP, 340-348
kernel tricks, 41, 105-107
kernels (convolution kernels), 220-222
kernels, SVM, 104-107
keyword extraction, 83
KMeans class, 11
KNeighborsClassifier class, 24-28
KNeighborsRegressor class, 24
Kubernetes, 160

L
L-BFGS (Limited-memory Broyden–Fletcher–

Goldfarb–Shanno) algorithm, 55
label column, 4
labeled data, 9, 19
Labeled Faces in the Wild (LFW) dataset, 7,

117, 128, 207, 272
LabelEncoder class, 60
labels

and classification models, 53
encoding in clustering, 16-18, 60-62
sentiment analysis dataset as labeled, 83
unlabeled dataset with PCA, 141, 146

language models (see natural language process‐
ing)

Language service, 361, 377-379
Laplace smoothing, 89
Lasso class, 31
lazy learning algorithm, 27
leaf node, decision tree, 34
learning algorithm, 3
learning rates, 39, 184
LearningRateScheduler class, 216
lemmatizing, 82
LFW (Labeled Faces in the Wild) dataset, 7,

117, 128, 207, 272
Librosa package, 253
Limited-memory Broyden–Fletcher–Goldfarb–

Shanno (L-BFGS) algorithm, 55
linear kernel, 104, 120-122
linear regression, 30-33, 180
LinearRegression class, 31, 49

LinearSVC class, 122
LoadFromTextFile method, ML.NET, 167
load_iris function, 25
local outlier factor (LOF), 141
logistic function, 55
logistic regression, 54-56

credit card fraud illustration, 68-69
digit recognition model, 74-76
multinomial, 72
sentiment analysis, 83-87
Titanic passenger survival example, 65-66

LogisticRegression class, 55
LogisticRegressionCV class, 56
logit function, 55
long short-term memory (LSTM) cell, 332
loss functions, 183, 207
loss landscape, 183
loss parameter, 189
LSTM (long short-term memory) cell, 332
LSTM class, 332
LSTM encoder-decoders, 335-337

M
machine learning (ML), 3-28

versus artificial intelligence, 7-9
operationalizing (see operationalizing ML

models)
programming resources, xv
spam filter example, 6
supervised models (see supervised learning

models)
and testing data, 26
types of learning, 9-28
unsupervised models (see unsupervised

learning models)
MAE (mean absolute error), 189, 191
make_blobs function, 10
make_pipeline function, 116, 155
Manhattan distance, 24
mAP (mean Average Precision), 312
Mask R-CNN, 293-299
masked language modeling, 349
Matplotlib, 10, 137
max pooling layer, 222, 224
MaxPooling1D class, 330
MaxPooling2D class, 224
max_df parameter, 83
MBGD (mini-batch gradient descent), 185
mean absolute error (MAE), 189, 191
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mean Average Precision (mAP), 312
mean squared error (MSE), 31, 189
metrics parameter, 189
MHA (multi-head attention), 339
Microsoft.ML.OnnxRuntime, 162
mini-batch gradient descent (MBGD), 185
MiniLM models, 350-353
Minkowski distance, 24
MinMaxScaler, 112, 114
minNeighbors parameter, 265
min_df parameter, 83
ML (see machine learning)
ML Operations (MLOps), 158
ML.NET, building models in C#, 165-169
MLContext class, 167
MLPClassifier class, 180
MLPRegressor class, 180
MLPs (multilayer perceptrons), 178, 223
MNIST dataset, 224, 228, 250
MobiFace, 272
MobileNetV2, 234, 255
ModelCheckpoint class, 214
movie recommendations, 96-98
Mplot3D, 138
MSE (mean squared error), 31, 189
MTCNNs (multitask cascaded convolutional

neural networks), 266-270, 280-286
multi-head attention (MHA), 339
multiclass classification models, 19, 24-28, 53,

71-73, 204-207
multicollinearity, 31
MultiHeadAttention class, 340
multilabel classification models, 53
multilayer perceptrons (MLPs), 178, 223
multinomial logistic regression, 72
MultinomialNB class, 90, 91
multiple linear regression, 32
multitask cascaded convolutional neural net‐

works (MTCNNs), 266-270, 280-286
multivariate anomaly detection, 150

N
n-grams, 81, 330
Naive Bayes learning algorithm, 87-90
named-entity recognition, 378
natural language processing (NLP), 319-358

and AI as a service, 361
Azure Language service, 361, 377-379
Azure Speech service, 362, 381-383

Azure Translator service, 361, 380-381
BERT, 349-357
combining with computer vision, 219
encoder-decoder network for machine

translation, 335-340
extracting text from photos, 374
neural machine translation, 334-348
sentiment analysis (see sentiment analysis)
text classification (see text classification and

processing)
text preparation, 320-322
word embeddings, 319, 322-323, 331-333

Natural Language Toolkit (NLTK), 82, 321
neural machine translation (NMT), 334-348

building a transformer-based model,
340-348

LSTM encoder-decoders, 335-337
transformer encoder-decoders, 337-340

neural networks, 177-182, 187-216
backpropagation, 183-185, 189, 211
binary classification with, 197-204
dropout, 192, 210-211, 250
facial recognition, 207-210
Keras callbacks, 213-216
multiclass classification with, 204-207
multilayer perceptrons, 178, 223
saving and loading models, 211-213
sizing, 192
taxi fare prediction, 193-197
training, 182-185

NimbusML, 166
NLTK (Natural Language Toolkit), 82, 321
NMS (non-maximum suppression), 290
NMT (see neural machine translation)
noise, filtering, 133-135
non-maximum suppression (NMS), 290
nonparametric models, 32, 37-41, 69, 144

(see also decision trees)
normalization, 32, 112-115, 209
NumPy, 227
NumPy arrays, 162
NuSVC class, 122
Nvidia GPU card, 177, 232

O
object detection, 289-317

bounding boxes, 266, 290, 292, 293, 300, 310
Computer Vision service, 371-373
custom, 305-317
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faces (see face detection)
R-CNNs, 290-299
YOLO, 299-305

objectness score, 292
occlusions, 311
OLS (ordinary least squares) regression, 31
one-class SVM, 141
one-hot encoding, 61
one-versus-all strategy, 72
one-versus-one strategy, 72
one-versus-rest strategy, 72
OneHotEncoder class, 61
ONNX (Open Neural Network Exchange), 154,

161-165, 295-297
open-set versus closed-set classification,

286-287
OpenCV library, 264-266
openmax output layer, 286
operationalizing ML models, 153-173

adding ML capabilities to Excel, 169-172
building models in C# with ML.NET,

165-169
consuming Python model from C# client,

158-160
consuming Python model from Python cli‐

ent, 154-157
containerizing an ML model, 160-161
ONNX to bridge language gap, 154, 161-165
versioning pickle files, 157

Optical Recognition of Handwritten Digits
dataset, 73, 137

optimizers, 183, 189
ordinary least squares (OLS) regression, 31
outlier detection (see anomaly detection)
outliers, 19, 31, 49, 141
Output class, ML.NET, 167
output layer, neural network, 178, 180, 188, 204
Output Network (O-Net), 267
overfitting of data, 36, 108, 191

P
pad_sequences function, 321, 327
pair plots, 32
pairplot function, 32
parallelism

and random forests, 37
region proposal network, 293

parametric learning algorithm, 32
(see also support vector machines)

PCA (see principal component analysis)
PCA transform, 127
Perceptron class, 180
Personalizer service, 362
personally identifiable information (PII), 379
pickle files, versioning, 157
pickle module, 154
pipelines

SVMs, 116-117
training and saving, 155-157

plot_confusion_matrix function, 59
polynomial kernel, 104, 108, 121
PolynomialFeatures class, 31
pooling layers, 222
popularity-based recommender system, 94
positional encoding (positional embedding),

339
Power BI, 58
precision and recall, classifier metrics, 57-58, 66
predict method, 27, 56, 94, 191
predictions, 4

accuracy measures, 201-204, 231
anomaly detection, 145-150
confusion matrix, 58, 122-123
decision trees, 33-37
k-nearest neighbors for image classification,

26
with neural network, 199-200
pipelining, 116
regression models, 45-50
taxi fares, 45-50, 193-197
word order in, 330-331

predictors, 38
predict_proba method, 56, 83, 94
preprocess function, Mask R-CNN, 298
preprocessing data

image preprocessing layers, 244-246
LabelEncoder, 16, 60
Mask R-CNN, 298
MinMaxScaler, 114
StandardScaler, 112, 115, 116, 209
text sequences, 320

preprocessor parameter, 82
pretraining and pretrained models, 232-237

ArcFace, 279
BERT, 349-357
text classification with, 333
VGGFace, 277-279
word embeddings, 323
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primary principal component, 126
principal component analysis (PCA), 32, 67,

125-151
anomaly detection, 140-150
anonymizing data, 135-137
credit card fraud detection, 135, 141-145
filtering noise, 133-135
high-dimensional data visualization,

137-140
privacy issue, and facial recognition, 261
probabilities, estimating, 5
Proposal Network (P-Net), 267
Python, xv

(see also Scikit-Learn)
Azure Cognitive Services packages, 365, 369
consuming Python model from C# client,

158-160
consuming Python model from Python cli‐

ent, 154-157
environment setup, xv
Excel UDFs converted to, 169
operationalizing machine learning models,

153

Q
question-answering modules, 350-353

R
R-CNNs (region-based CNNs), 290-299
R² (coefficient of determination), 45, 196
radius neighbors, 24
RadiusNeighborsClassifier class, 24
RadiusNeighborsRegressor class, 24
Rainforest Connection, 252
rainforest sounds dataset, 252
random forests, 37-38, 69, 144
RandomForestClassifier class, 37, 69, 70
RandomForestRegressor class, 37, 50
random_state parameter, 11, 43
RBF kernel, 104, 108-111, 121
RBMT (rules-based machine translation), 334
read_in_stream method, 375
recall and precision classifier metrics, 57-58, 66
recall_score, 60
receiver operating characteristic (ROC) curve,

58
recognize_once_async method, 382
recognize_pii_entities method, 379
recognize_printed_text_in_stream method, 375

recommender systems, 94-98
reconstruction error, 141
rectified linear units (ReLU), 179, 181, 188, 192
recurrent neural networks (RNNs), 178,

331-333
Refine Network (R-Net), 267
region of interest (ROI) alignment, 293
region of interest (ROI) pooling, 292
region proposal network (RPN), 292, 293
region-based CNNs (R-CNNs), 290-299
regression models, 19-21, 29-51

accuracy measures for, 42-45
and coefficient of determination, 45
decision trees, 33-37
GBMs, 38-41
and k-nearest neighbors, 22-23
linear regression, 30-33, 49
random forests, 37-38, 69, 144
softmax regression, 286
SVMs, 41
taxi fare prediction, 45-50

regularization, 31, 102, 122
reinforcement learning, 7
Rekognition service, 360
ReLU (rectified linear units), 179, 181, 188, 192
RepeatVector layer, 336
Requests package, 364
Rescaling layer, 247
residual layers, 233
residuals, decision trees, 39
ResNet-152, 220
ResNet-50V2, 234-237, 240-243
Responsible AI initiative, Microsoft, 373
REST APIs, and AI as a service, 359, 362
retriever-reader architecture, 353
Ridge class, 31
RNNs (recurrent neural networks), 178,

331-333
ROC (receiver operating characteristic) curve,

58
RocCurveDisplay class, 58, 92
roc_auc_score, 58
ROI (region of interest) alignment, 293
ROI (region of interest) pooling, 292
RPN (region proposal network), 292, 293
rules-based machine translation (RBMT), 334

S
SavedModel format, 212, 330

Index | 397



Scaper, soundscape synthesis, 252
scatter function, 10
Scikit-Learn, 10

hyperparameter optimizers, 110
versus ML.Net, 165, 167
multiclass classification feature, 71-73
Skl2onnx conversion, 162
sklearn.cluster.KMeans, 11
sklearn.datasets.fetch_california_housing,

42
sklearn.datasets.fetch_lfw_people, 118, 207
sklearn.datasets.load_breast_cancer, 136
sklearn.datasets.load_digits, 138
sklearn.datasets.load_iris, 25
sklearn.decomposition.PCA, 127, 138, 142,

146
sklearn.ensemble.GradientBoostingClassi‐

fier, 39-41, 70
sklearn.ensemble.GradientBoostingRegres‐

sor, 39-41, 50
sklearn.ensemble.RandomForestClassifier,

37, 69, 70
sklearn.ensemble.RandomForestRegressor,

37, 50
sklearn.feature_extraction.text.CountVec‐

torizer, 80-83, 91, 94, 155, 320
sklearn.feature_extraction.text.HashingVec‐

torizer, 80, 83, 156
sklearn.feature_extraction.text.TfidfVector‐

izer, 80, 83
sklearn.linear_model.Lasso, 31
sklearn.linear_model.LinearRegression, 31,

43, 49
sklearn.linear_model.LogisticRegression,

155
sklearn.linear_model.Perceptron, 180
sklearn.linear_model.Ridge, 31
sklearn.manifold.TSNE, 139
sklearn.metrics.ConfusionMatrixDisplay,

58, 92
sklearn.metrics.RocCurveDisplay, 92
sklearn.metrics.roc_auc_score, 58
sklearn.model_selection.GridSearchCV,

110, 117, 120-122
sklearn.model_selection.train_test_split, 26,

42-43
sklearn.naive_bayes.MultinomialNB, 91
sklearn.neighbors.KNeighborsClassifier, 26
sklearn.neural_network.MLPClassifier, 180

sklearn.neural_network.MLPRegressor, 180
sklearn.pipeline.make_pipeline, 116, 155
sklearn.preprocessing.LabelEncoder, 16, 60
sklearn.preprocessing.MinMaxScaler, 114
sklearn.preprocessing.OneHotEncoder, 61
sklearn.preprocessing.PolynomialFeatures,

31
sklearn.preprocessing.StandardScaler, 112,

115, 116, 209
sklearn.svm.SVC, 42, 101, 110
sklearn.svm.SVR, 42, 101
sklearn.tree.DecisionTreeClassifier, 35
sklearn.tree.DecisionTreeRegressor, 35
sklearn.utils.shuffle, 42

score method, 26, 42
scree plot, 131
segmentation masks, 293-299
selective search, 291
self-attention, 339
sensitivity metric, 60, 66
sentiment analysis, 5, 79

Azure Language service, 378
with BERT, 354
Hugging Face resources, 333
with ML.NET, 166
text classification, 83-87, 328-330
training and saving pipeline, 155-157

separable convolutions, 233
sequence-to-sequence model, 335
sequences, word embeddings, 319, 320
sequence_to_texts method, 320
sequential API, Keras, 187-191
set_weights method, 211
SGD (stochastic gradient descent), 185
shuffling data, 42, 190, 325
sigmoid activation function, 188, 197-200, 223
sigmoid kernel, 104
similarity matrix, recommender system, 96
simple linear regression, 32
sizing a neural network, 192
SMT (statistical machine translation), 334
soft mask, 297
softmax activation function, 72, 188

building CNNs, 223
closed- versus open-set classification,

286-287
in facial recognition, 209
LSTM encoder-decoders, 335
versus sigmoid activation, 205
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transformer-based LMT model, 344
softmax regression, 286
spam filtering, 6, 9, 87-94, 324-327
sparse_categorical_crossentropy function, 205,

209
spatial analysis, 369
specificity metric, 60, 66
spectrogram images, 253-255
Speech service, 362, 381-383
SpeechSynthesizer class, 382
SQuAD 2.0, 351
standardization, 115
StandardScaler class, 112, 115, 116, 209
statistical machine translation (SMT), 334
stemming, 82
stochastic gradient descent (SGD), 185
stop words, removing, 80, 87, 321, 322, 328
subsampling, 41
supervised learning models, 9, 19-28

binary classification, 62-71, 197-204
k-nearest neighbors, 21-28

support vector machines (SVMs), 41, 101-124
facial recognition with, 117-123
hyperparameter tuning, 108-111
kernels and kernel tricks, 104-107
normalization of data, 112-115
pipelining, 116-117

SVC class, 42, 101, 110
SVR class, 42, 101

T
t-distributed stochastic neighbor embedding (t-

SNE), 32, 139
tag_image_in_stream method, 371
tanh activation function, 188
task-specific weights to boost transfer learning,

277-279
Tatoeba project, 340
taxi fare prediction, 45-50, 193-197
tensor arrays, 187
tensor processing units (TPUs), 177
TensorBoard, 214
tensordot function, 227
TensorFlow, 185

(see also Keras API)
building neural networks with, 188-197
CNNs, 224-228
converting BERT tokenized inputs into, 355
saving models, 211, 330

TensorFlow Lite, 252
term frequency-inverse document frequency

(TF-IDF), 80
test set, 26, 42, 45
text classification and processing, 6, 79-99,

324-334
cleaning text, 80
datasets for working with text, 5
extracting text from photos, 374
factoring word order into predictions,

330-331
handwritten text, 73-76, 376-377
Naive Bayes learning algorithm, 87-90
NMT as extension of (see neural machine

translation)
pretrained models for, 333
recommender systems, 94-98
and RNNs, 331-333
sentiment analysis, 83-87, 328-330
spam filtering, 87-94
vectorization, 80-83, 327-330

TextAnalyticsClient class, 366, 378
texts_to_sequences method, 320
TextVectorization layer, 322, 327-330
TF-IDF (term frequency-inverse document fre‐

quency), 80
TfidfVectorizer class, 80, 83
time series data, forecasting, 331
TimeDistributed wrapper, 336
Titanic passenger classification dataset, 62-66
TokenAndPositionEmbedding class, 340, 344
tokenization, BERT, 351-355
tokenized words, 80
Tokenizer class, 320-322, 327, 342
tokens, word, 320
TPR (true positive rate), 58
TPUs (tensor processing units), 177
trainable parameters, 194
training set, 26
training versus validation accuracy, 210
train_test_split function, 26, 42-43, 190
transfer learning, 165, 237-243, 273-279
transformer models, 319, 337

attention mechanisms, 337-340
BERT-based question answering, 350-353
building an NMT, 340-348
DistilBERT, 349
encoder-decoders for NMT, 337-340
Hugging Face, 333, 348, 350-357
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TransformerDecoder class, 340, 344
TransformerEncoder class, 340, 344
translate_text function, 346
translation (see neural machine translation)
TranslationRecognizer object, 382
Translator service, 361, 380-381
true positive rate (TPR), 58
TSNE class, 139
2D to 3D space, kernel trick, 105-107

U
UDFs (user-defined functions), Excel, 169
underfitting of data, 108, 191
unit variance, normalizing data to, 115
universal approximation theorem, 180
unsupervised learning, 9

anomaly detection, 141
clustering (see clustering algorithms)
GANs, 178

UrbanSound8K dataset, 252
user-defined functions (UDFs), Excel, 169

V
validation accuracy, 191, 195-197

in building CNNs, 227, 232
callbacks to capture peak, 213-216
confusion matrix to visualize untrained

data, 202
and dropout technique, 210
and LSTMs, 333
in NMT, 345

validation_split function, 190, 194, 325
vanishing gradient problem, 192
vectorization, text, 80-83, 327-330
versioning pickle files, 157
VGGFace

detecting and recognizing faces in photos,
280-286

task-specific weights to boost transfer learn‐
ing, 277-279

Viola-Jones, face detection with, 262-266
Vision services

Computer Vision service, 219, 368-377
Custom Vision service, 306-314, 360
Face service, 360, 373

visualization of data
confusion matrix for untrained data, 202
high-dimensional for PCA, 137-140

vocabulary, word dataset, 320

W
weak learners, 38
web service, accessing Python through, 153,

158-160, 164
Weibull distribution, 286
weights, 179, 182, 190, 194, 277-279
word embeddings, 319, 322-323, 331-333
word order, factoring into predictions, 330-331
word vectors, 319, 331-333
WordPiece format, 351
wrapping a model, 153

X
Xception (Extreme Inception), 233
Xlwings library, 169

Y
You Only Look Once (YOLO), 299-305

Z
Z-score normalization, 115
Zeroes initializer, 190
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