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Prologue
 

Japan clings to a reputation for high-speed trains, robots,

and futuristic cities, but that’s not quite the impression you

get walking past one of Japan’s many DVD stores or

watching someone at the office fiddling with the fax

machine.

The pace of technological change in Japan can be slow but

when it does occur, it tends to be premeditated and

meticulously choreographed. There are several examples in

Japan’s rich history, but nothing compares with the

country’s swift transition to an industrialized powerhouse.

You may have thought the fax machine was overstaying

its utility by several decades, but only 160 years ago, Japan

was governed by a feudal system left over from medieval

times. The drawing of the curtain on Japan’s feudal era and

the dismantling of the ruling samurai class in the 1860s was

highly organized and efficient. Over the space of a decade,

top-knot hairstyles, killing swords, and wages paid in units

of rice were phased out and replaced with the steel and

metal of a modern industrialized nation.

The transformation has intrigued me ever since I moved

to Japan, especially as we look ahead to the future of

artificial intelligence and knowledge work. The samurai

class, similar to accountants, lawyers, and other knowledge

workers today, were well-educated and respected members

of society. Trained in combat and schooled in calligraphy,

history, mathematics, and science, they enjoyed a secure

and elevated social standing in Japan’s social hierarchy.

For centuries, the samurai's main threat was rivalry with

neighboring clans, but the sudden arrival of steam-powered

ships from abroad eventually marked the advent of the Meiji

Restoration, a period of rapid industrialization and

westernization in Japan. Foreign powers, particularly the



United States and several European countries, forced Japan

to open its borders to international trade. This exposure to

both Western technology and ideas spurred a revolution in

Japan's economic, political, and social systems.

The samurai, previously the military and administrative

elite, found their social and economic status removed from

underneath them. The feudal system, which had provided

them a guaranteed income and elevated status in society,

was dismantled. A modern conscript army based on the

Western model also replaced the samurai as the nation's

defenders. Moreover, the rise of industry and commerce

created new wealth and opportunities, leading to the

emergence of a new class of rich merchants and

industrialists.

These changes didn't happen overnight, but the transition

was significant and swift in the grand scope of Japan's

history. The samurai, who had enjoyed a secure position at

the top of the social order for centuries, had to adapt to a

new environment that no longer valued their traditional

skills or recognized their social privileges.

Similar to the changes brought by modern machinery and

weaponry in the 19th Century, AI poses a threat to a large

and highly skilled segment of today’s workforce. Despite

increased globalization, knowledge workers have always

found reassurance in their local knowledge, language

abilities, and unique domestic expertise. However, the

unfolding revolution of AI-first practices is poised to

dramatically reshape the boundaries of work in ways that

are difficult to foresee.

With very few precedents that we can look to for

guidance, the experience of the samurai offers rare insights

and valuable lessons about resilience in the face of

technological change. Faced with social upheaval and

technological disruption, the samurai reacted in two ways.

The first approach involved rebellion and resistance, leading



to violent yet ultimately futile clashes with the Emperor’s

technologically advanced army.

The second and more productive course of action was to

embrace change and adapt to new technology. For the

samurai who took this path, education played a key part.

Exposure to foreign languages gave former samurai living in

the port city of Nagasaki a head-start in an economy open

to foreign trade and keen to learn from Western powers.

The Charter Oath issued by the Emperor in 1868 stated that

“knowledge shall be sought throughout the world” and

those with a tongue for foreign languages were among the

first to be dispatched overseas. Others stayed in Japan and

leveraged their classical education to become teachers,

bureaucrats, and artists in the new nation.

Re-education also played a vital role in navigating the

transition to a new economy. Although the samurai had

enjoyed privileged access to education (compared to

merchants, farmers, and the lowest class of Japanese

society), their pre-Meiji education was relegated to

foundational knowledge in an evolving economy. Their

classical education, though comprehensive for the time,

didn't fully prepare them for the significant shifts brought

about by rapid modernization and westernization. Beyond

literacy and basic arithmetic, many elements of samurai

training were undesirable or obsolete, especially in warfare

and philosophy. Battles would now be fought with modern

weaponry, and, like ancient Greek and Latin, knowledge of

the Chinese analects offered marginal utility in a modern

era where Western ideas on free markets, industrialization,

and capitalism ran supreme. In this way, the samurai

weren’t prepared to prosper in the new Japan based on

their education alone. Instead, they had to recalibrate and

adapt to new practices and employment pathways.

The parallels to today are striking, as professional writers,

lawyers, artists, and web developers find themselves



needing to acquire new skills such as text prompt writing in

response to the rise of generative AI technology. The speed

at which AI is seeping into all aspects of modern work—

from marketing to contract writing—underscores AI literacy

and understanding its key strengths and weaknesses as key

knowledge for the modern workforce. Just as the Meiji

Restoration in Japan introduced new job titles, there will be

new opportunities in what the authors of Human + Machine:

Reimagining Work in the Age of AI call the “missing middle”,

the nexus or fertile space where humans and machines

collaborate to exploit what each side does best. According

to the missing middle theory, the most effective and cost-

efficient path is to merge automated tools with the flexibility

of human workers to achieve optimum results. This is

similar to how chefs and waitstaff work alongside automatic

cashier machines inside Japanese restaurants today.

Virtually every sector has the potential to maximize

productivity and innovation by finding the right balance

between human creativity, judgment, and empathy, and

AI's speed, scalability, and quantitative capabilities. In the

ongoing era of AI and with new tools such as ChatGPT, we

aren’t just bystanders but active participants. As knowledge

workers, we can embrace AI as a partner in our daily tasks,

optimizing our abilities and complementing our existing

skills. As leaders, we can champion AI to foster a culture of

innovation, driving transformation and competitive

advantage inside our organizations.

These transformations won’t just impact individual tasks,

but entire workflows, industries, and even societies. As a

result, we need to recognize and address the challenges

that AI presents, including ethical considerations, job

displacement concerns, and the need for re-skilling. By

proactively confronting these issues, we can ensure that the

rise of AI benefits more people and not only a select few.



Admittedly, this is a narrow path to walk, and this book

does not hold the wisdom and solutions to a fair and

symbiotic future for humans and machines. Instead, I hope

to hold your hand through understanding the fundamentals

of artificial intelligence and prepare you for important

discussions and decisions regarding the use of AI in your

organization or daily life. This includes a series of practical

thought exercises dispersed over multiple chapters.

Lastly, please keep in mind that this book is aimed at non-

technical readers, including marketers, product managers,

entrepreneurs, and students, seeking to build or expand

their understanding of artificial intelligence. While the

following chapters provide a solid foundation of core AI

techniques, the book does not delve into highly technical

aspects or run through coding examples for building AI

programs. For a more in-depth exploration of algorithms

and coding prediction models using Python, you may like to

read my other titles Machine Learning for Absolute

Beginners or Machine Learning With Python. These books

offer a more technical and detailed treatment of machine

learning algorithms and will help to complement your

understanding of AI gained from reading this book.
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Introduction
 

Machine intelligence represents a significant milestone in

human innovation and after decades of research and two AI

winters, artificial intelligence now dominates mainstream

attention and is promising revolutionary changes in the way

we work, create, and live our lives.

While the inception of AI as a field of study can be traced

back to the 1950s, it's only in recent years that this

technology has formed a significant component in our daily

lives. Today, it manifests in various forms, from digital

assistants like Siri and Alexa to recommendation engines on

TikTok, Netflix, and Amazon, as well as new content

generation tools like ChatGPT and DALL-E.

Despite its growing ubiquity, AI is often misunderstood

and confused with data science, which is an intersecting

field based on extracting insight from data and with its own

set of use cases. As a comparison, a company might use

the principles of data science to uncover new insights by

analyzing customer interactions and website support

tickets. This process involves aggregating and examining

the data to identify common customer issues, peak times

for customer support queries, or correlations between

support ticket volume and specific product features. Using a

data science methodology, the overall goal is to be as

precise as possible at identifying patterns and trends that

might help to inform the company’s decision-making.



Artificial intelligence, on the other hand, performs a

different role that relies less on detective work and more on

general intelligence. AI, for example, can be used by a

company to power customer service chatbots on their

website that mimic human interactions, answer simple

customer questions, and refer more complex queries to

human representatives. By applying artificial intelligence,

the company’s overall goal is to automate key parts of the

customer journey, enhance efficiency, and enable 24/7

customer service support without relying solely on human

capital.

As highlighted in these two examples, data science

focuses on extracting insights and knowledge from raw

data, whereas artificial intelligence aims to simulate and

embed human intelligence into machines. However, in many

cases, AI systems will leverage insight derived from data

science to enable machines to learn and make intelligent

decisions. It’s important, therefore, to acknowledge the

overlap between data science and AI, while also

understanding that AI and data science remain two different

approaches to solving complex problems.

Beyond data science, AI encompasses a variety of

subfields and techniques including machine learning, deep

learning, generative AI, natural language processing,

cybernetics, and computer vision. Regardless of the

methods used, artificial intelligence, at its core, returns to

the overarching mission of creating systems capable of

performing tasks that would normally require human

intelligence. Such tasks include understanding human

language, recognizing patterns, learning from experience,

making informed decisions, and even displaying emotional

intelligence.

Learning from experience and making informed decisions

falls into the subfield of machine learning, which entails the

use of statistical methods to create prediction models that



improve their performance on a specific task through

experience and exposure to data. An example of this can be

seen in email spam filters, which learn to distinguish spam

from regular emails more accurately over time.

Pattern recognition, meanwhile, forms the basis of many

AI applications, from biometric identification systems that

recognize fingerprints or retina patterns to recommendation

systems that analyze our online shopping patterns to

suggest products we are likely to buy.

Emotional intelligence in AI, while still in its nascent

stage, aims to enable machines to recognize and respond to

human emotions. It has potential applications in many

areas such as mental health and customer service, where

it’s possible for AI to assist in providing assistance,

empathy, and emotional support to humans.

Understanding these different use cases and the breadth

of AI helps underline the fact that AI isn’t one monolithic

technology or technique but rather a collection of

technologies and approaches that strive to emulate human

intelligence. Acknowledging this diversity is crucial for

appreciating the full spectrum of AI technology and

recognizing the multitude of possible use cases.

The next essential insight for those keen on

understanding AI further is the realization that AI is still

only in its first stage of potential evolution. This first stage

is known as narrow AI or weak AI, which describes systems

designed to perform a narrow task, such as voice

recognition or recommending relevant products. These

systems excel at the specific tasks they were designed to

undertake but lack the understanding or consciousness to

freely apply their capabilities to other use cases.

At the same time, we are edging closer to the next stage

of AI development, known as artificial general intelligence

(AGI) or strong AI. AGI refers to a version of AI that

possesses the ability to understand, learn, adapt, and



implement its knowledge across a broad range of tasks at a

comparable or superior level to that of a human being. To

help grasp the concept of general AI, it’s useful to think of

science fiction portrayals where AI entities, like Data from

Star Trek or Ava from the movie Ex Machina, mingle with

humans and exhibit cognitive abilities that are

indistinguishable from ours. These AI entities are often

shown to possess self-awareness, emotions, creativity, and

the ability to understand and exhibit human-like behaviors,

which are all hallmarks of general AI.

However, as with any powerful new technology, AGI raises

a selection of ethical and privacy issues that must be

navigated with care, as we will discuss in later chapters. We

will also look further at the three stages of AI development

and explore the potential ramifications of the final stage

known as superintelligent AI. Beyond that, we will explore

the major subfields of AI including machine learning, deep

learning, natural language processing, generative AI,

recommender systems, and computer vision. The final

chapter will lay down a series of tips and insights for

adopting AI in your job or organization.

For now, understand that your journey into AI has many

potential paths and the field will continue to evolve as we

edge closer to the next stage of machine intelligence.
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A Brief History

 

From its humble beginnings as a scientific curiosity to the

powerful technology we now know today, AI has survived

several seasons of scarcity and abundance, doubt and

optimism, and fluctuating levels of government support

before embarking on a path toward exponential growth. To

understand where we stand currently and the future

trajectory of AI, we first need to look back at the

fragmented chronology of its evolution and decades-long

development.

While the roots of artificial intelligence can be linked

loosely to the period of classical philosophers who

attempted to describe human thinking as a symbolic system

(which was the original focus of AI research), the modern

field of study and the terminology both emerged in the

middle of the 20th Century. In 1956, the term artificial

intelligence was introduced and formally established as a

special field of research at a summer workshop held at

Dartmouth College.

The idea of designing intelligent machines had fascinated

scientists, mathematicians, and technology researchers in

the years before the conference, including prominent British

mathematician and logician Alan Turing. Considered the

father of modern computing, Turing made significant

contributions to computation and machine intelligence

during the 1940s and 1950s. This included the Turing Test,



which was designed to assess a machine's ability to exhibit

intelligent behavior indistinguishable from that of a human.

According to the Turing Test, a machine can be considered

intelligent if it can engage in a task without being detected

as a machine, such as holding a conversation with a human.

Inspired by Turing and other research developments, the

Dartmouth Conference was held at Dartmouth College in

Hanover, New Hampshire, in the summer of 1956. The

conference was organized by John McCarthy, Marvin Minsky,

Nathaniel Rochester, and Claude Shannon, four leading

figures in the fields of mathematics, cognitive science, and

computer engineering. Their proposal for the conference

expressed an optimistic view regarding the trajectory of AI-

related technology and outlined a research project that

would explore the possibilities of machines imitating human

intelligence. Invitations were sent to researchers known to

be active and interested in the field of machine-based

intelligence. The final list of participants included the four

organizing members as well as notable figures such as Allen

Newell and Herbert A. Simon, who all made significant

contributions to AI’s development.

Lacking the on-stage theatrics, sponsored booths, and

free swag common at most events today, the attendees

were shown their rooms and quickly put to work. Mirroring

an eight-week-long hackathon, the conference’s attendees

spent their days attempting to build computer programs

capable of imitating human intelligence. This included

working on problems still considered core to the field of AI

today, such as natural language processing, problem-

solving, learning and adaptation, and perception.

However, perhaps the most significant outcome of the

conference was the agreement on terminology and the

establishment of AI as its own distinct field of study.

Steered by John McCarthy, the term artificial intelligence

replaced previous and now forgotten descriptors such as



automata studies and complex information processing. This

had the effect of focusing attention on the simulation and

impersonation of human intelligence.

Moreover, the conference nurtured a community of

researchers who helped to establish AI as a legitimate field

of study and who would individually go on to become

leaders in AI research. Equally important, the conference

played a crucial role in securing financial backing for AI

research, which was aided by the conference's optimistic

outlook and the Cold War's emphasis on automation and

computational technologies. This resulted in significant

funding from government organizations and laid the

groundwork for the rapid expansion of AI research.

The initial years following the Dartmouth Conference

formed the first golden era of AI research and projected

expansive optimism regarding the future of AI. Caught up in

the excitement, researchers made ambitious forecasts,

predicting machines would be capable of achieving complex

human tasks in a matter of years.

Funding was abundant during this time and AI research

centers sprung up at prestigious universities across the

United States including Stanford University, MIT, and

Carnegie Mellon. The crux of AI research centered on rule-

based systems as researchers attempted to encode human

knowledge and intelligence into machines as a set of logical

rules, which later gave birth to the development of expert

systems in the 1970s and early 1980s.

By design, expert systems operate under a collection of

predefined rules that generate a recommendation such as a

medical diagnosis through a sequence of decisions.

Commonly structured as “if-then” statements, fixed rules

are set such as “if the patient has a fever above 38°C, then

they may have an infection” and “if the patient has a rash

and has been exposed to poison ivy, then they may have

contact dermatitis”. By stacking a series of if-then



statements, an expert system can be designed to analyze a

patient’s medical history and symptoms in order to provide

a potential diagnosis or propose additional tests and

treatments.

While these systems are capable of performing well at

narrow and well-defined tasks, they are largely flawed as an

effective long-term solution. Firstly, they rely on the

expertise and manual input of human professionals to

contribute knowledge to the system. Translating this

knowledge into a structured format of rules demands

significant time and effort, which means that expert

systems lack the ability to learn autonomously. Moreover, as

knowledge and expertise evolve over time, these systems

depend on regular updates in order to remain current and

accurate. The net result is a system that is expensive and

resource-intensive to build and maintain. What’s more,

failure to keep the system up to date carries the risk of an

outdated or incorrect diagnosis or recommendation.

The next problem is the domain specificity of these

systems. Their design and rule base are tailored to solving

specific problems, making it difficult to transfer these

systems across tasks. Deploying expert systems in different

contexts requires substantial modifications or, in most

cases, the development of entirely new systems. Even when

deployed within a specific context, the contextual

understanding of expert systems is severely limited.

Operating within the constraints of predefined rules, expert

systems struggle to grasp the broader context or interpret

information that is outside their explicit rule library. This

lack of adaptability and flexibility poses real challenges,

especially when facing complex, ambiguous, or special

scenarios that require nuanced judgment.

Over time, these challenges became increasingly

apparent, along with the obvious failure of artificial

intelligence to deliver on the ambitious promises made by



AI researchers. By the mid-1970s, many of the expected

breakthroughs turned out to be more difficult than originally

anticipated. Rule-based systems, which had been the

primary approach to AI research up to this point, were

proving expensive and time-consuming to run, and failing to

replicate the nuanced and complex nature of human

intelligence.

This lack of progress resulted in growing skepticism,

which then spread to policymakers and led to significant

funding cuts. In the United States, the government,

especially the Defense Advanced Research Projects Agency

(DARPA), reduced and eventually cut most of its AI research

funding. In the United Kingdom, the infamous Lighthill

Report, published in 1973, critically assessed the lack of

progress made by AI research, which resulted in cuts in

government support for AI research at many British

institutions.

Broad funding cuts prompted the beginning of the end for

numerous AI projects and interest in the field dwindled

across the broader AI research community. This period of

deflated funding and interest, starting from the mid-1970s

and extending into the early 1980s, became known as “AI

winter”. Used to describe a period of disillusionment and

fall-off in AI funding, the term is a takeoff on the idea of a

“nuclear winter”, a dark period marred by coldness and

barrenness.

Despite the challenging circumstances, a dedicated group

of AI researchers persisted and continued their work

throughout this period, with their efforts eventually leading

to a resurgence in interest over the subsequent decade. The

evolution of machine learning in the 1980s marked a pivotal

transformation in the landscape of AI research. Instead of

attempting to encode knowledge as a set of predefined

rules, machine learning proposed the notion that computers

could learn from data, identify patterns, and make decisions



with minimal human involvement. While the theoretical

foundations of machine learning had been established in

earlier decades, research funding and general interest had,

until this point, been channeled into expert systems.

This shift breathed new life into the AI research

community. The pivot, however, was not instant but rather a

gradual process driven by a series of breakthroughs and

milestones. One of the critical milestones during this period

was the application of an algorithm technique called

backpropagation. Short for “backward propagation of

errors”, backpropagation significantly improves the

efficiency of multi-layer neural networks. It enables the

model to adjust its internal parameters in response to the

difference between its actual output and the desired output,

thereby improving the model's accuracy through a series of

iterations. While multi-layer neural networks and the

concept of backpropagation existed prior to the 1980s, their

applicability was limited due to computational constraints.

The increasing power of computers in the 1980s made it

feasible to train larger neural networks, opening up new

possibilities for the application of machine learning.

The increasing availability of digital data during this period

also benefited machine learning. As computers became

more prevalent in business, academia, and government,

large volumes of data began to accumulate. With large

datasets needed to learn patterns effectively, demand for

machine learning began to build. This combination of

computational power, algorithmic innovation, and data

availability set the stage for the application of machine

learning across a broad range of research projects, from

speech recognition and computer vision to medical

diagnosis. By the end of the 1980s, machine learning had

firmly established itself as the leading approach in AI

research, but this return to optimism would again prove

harmful. Just as volcanic lava can shoot high into the air



before it starts to fall or an athlete’s career can reach its

peak before it starts to decline, there’s inevitably a peak in

AI development where doom presents itself as a triumph in

disguise.

Repeating patterns of the past, the next downturn was

caused by a variety of factors, spanning inflated

expectations, technical challenges, and economic pressures.

Despite various technological advancements, machine

learning models were still costly and slow to run. What’s

more, the hype surrounding AI again led to inflated

expectations that the present technology failed to live up to.

When these expectations weren't met, both investors and

the public pulled back their support, leading to a decrease

in funding and interest, similar to the outbreak of the first

AI winter.

The economic conditions of the time played a role too.

The conclusion of the Cold War in 1991 prompted large cuts

in defense spending, which impacted funding for AI

research, and a recession in the early 1990s tightened

budgets both in industry and academia, further reducing

resources available for AI research. Still, research into AI

and machine learning persisted throughout this period,

albeit at a slower pace than the years prior. The experience

of a second AI winter led researchers to adopt a more

measured approach to their work, with a focus on specific

and solvable problems as well as making more realistic

claims about AI’s capabilities.

As the 1990s rolled on, the rise of the Internet helped set

the stage for the next wave of development as vast

amounts of digital data became available. Interest and

funding in AI started to rebound by the late 1990s and early

2000s, thanks in part to some technical advances and the

growing importance of digital data. The success of AI

systems across a variety of tasks, ranging from chess

competitions to speech recognition, helped improve AI’s



brand image and rebuild confidence in the field. This

included IBM Deep Blue’s win over Garry Kasparov to

become the first AI system to defeat a reigning world chess

champion.

By the turn of the millennium, AI was on a path of steady

growth and development. The emergence of new algorithms

in the early 2000s for solving classification problems and a

series of practical demonstrations helped to reinforce AI’s

credibility and illustrate the real-world applicability of AI

systems. This included a defining moment in the field of AI

robotics after Stanford's autonomous car, Stanley, won the

2005 DARPA Grand Challenge by driving 131 miles across

the desert without direct human intervention.

However, the real revolution was still brewing and one

that would push the boundaries of AI capabilities closer to

reality. The late 2000s, more than anything else, marked a

leap forward in deep learning, a subfield of machine

learning and another example of AI theory well ahead of its

time. The concepts and principles of deep learning have

their roots in the 1980s but remained unrealized for several

decades. Once again, this wasn't necessarily a shortcoming

of the theory but rather a limitation of the technology

available.

Deep learning, named so for its use of “deep” networks

with many layers of decision-making, describes a unique

way of learning from complex data. In deep learning,

multiple layers of decision-making are used to calculate a

progressively more abstract representation than the

previous one. However, even with well-defined structures

and algorithms, such as backpropagation for error

correction, the computational demands for training these

complex networks remained outside what was technically

possible.

Geoffrey Hinton, often referred to as the godfather of

deep learning, became a key figure in the development of



deep learning during the mid-2000s. He advocated the idea

that simple learning algorithms, when fed a sufficient

amount of data and computed with sufficient processing

power, could surpass traditional hand-coded software.

Hilton’s big breakthrough came in 2006 when he introduced

a more efficient way to train deep neural networks—a

concept that paved the way for practical applications of

deep learning.

Hilton’s breakthroughs were followed by two distinct but

equally vital developments: the ongoing surge of big data

and the advent of powerful graphics processing units

(known as GPUs). In regard to the former, the ongoing

penetration and acceleration of the Internet and the digital

age brought with it an unprecedented supply of data.

Smartphones, social media, e-commerce, and various other

digital channels contributed to a vast and ever-growing

reservoir of data. Deep learning models, which learn by

adjusting their parameters to minimize prediction errors,

perform more effectively when exposed to large amounts of

data. The big data era, therefore, provided the perfect

environment for these data-hungry models.

However, vast data alone could not solve the

computational bottleneck. Training deep learning models

involves complex calculations and adjustments across

millions, if not billions, of different parameters. This is

where GPUs, originally designed for video games and

computer graphics, caught the eye of AI researchers. In

contrast to traditional central processing units (CPUs) that

undertake calculations one after the other, graphics

processing units are engineered to perform multiple

computations concurrently, which enables a more

sophisticated and immersive graphics experience.

Investment in GPU technology exploded and by 2005,

mass production strategies drove the costs of these chips

down substantially. This price reduction, paired with their



unique processing capabilities, expanded the potential

applications for GPUs beyond the realm of graphics

rendering, paving the way for their use in other fields

including deep learning and, later, Bitcoin mining.

In the case of deep learning, the advantage of GPUs lies

in their ability for parallel processing. This capability aligns

with the demands of deep learning computations, which are

predominantly matrix and vector operations. The capacity of

GPUs to handle these calculations concurrently, rather than

sequentially, attracted the interest of researchers including

Andrew Ng1. As a professor at Stanford University, Ng's

experiments with GPUs led to significant reductions in

training times for deep learning models, making it feasible

to build more complex neural networks. This development

signaled a paradigm shift, with deep learning models

outperforming traditional AI approaches across numerous

tasks including image and speech recognition as well as

natural language processing. The advancements in deep

learning led by Ng and other researchers including Geoffrey

Hinton in the area of backpropagation pushed the

boundaries of what was thought possible, with their findings

facilitating new breakthroughs and startups including

DeepMind and OpenAI.

Acquired by Google in 2014, DeepMind is best known for

developing AlphaGo, a deep learning program that defeated

the world champion in the game of Go 2016. Due to the

complexity and intuitive nature of the game, the feat was

considered a major milestone in AI, and the publicity

generated from the five-match series fueled a flood of

interest in deep learning among students and startups. The

company has since ventured into using AI to tackle societal

challenges, such as the protein folding problem in biology

and forecasting energy production for wind farms.

OpenAI, meanwhile, has made headlines with the release

of generative AI products including DALL-E and ChatGPT



that are capable of generating unique art and performing

knowledge-based tasks such as translation, question

answering, and summarizing text. These recent

advancements introduced by OpenAI are set to form an

integral part of many sectors and industries, driving

innovations in areas such as education, marketing,

entertainment, web development, and visual design.

As we delve deeper in the following chapters, we will look

closer at how generative AI and other examples of AI work,

as well as their common applications and the potential AI

holds for the future.

 

Key Takeaways

1) The history of AI has experienced a recurring pattern of

inflated expectations and hibernation periods known as AI

winters, characterized by periods of decreased funding and

interest. These different cycles highlight the importance of

maintaining realistic expectations and a measured approach

to AI's capabilities.

2) The resilience of AI, seen throughout its history, can be

partly attributed to the Lindy effect, which suggests that the

longer an idea or technology survives, the longer its future

life expectancy becomes. AI's ability to overcome periods of

skepticism, funding cuts, and technological limitations

underlines its resilience and reinforces the notion that the

longer AI continues to advance, the more likely it is here to

stay.

3) The advent of powerful graphics processing units

played a crucial role in the modern era of AI by enabling the

parallel processing required for complex computations. This

ability significantly reduces the time to train a model and

has facilitated the development of deep learning, pushing

the boundaries of what AI can achieve.

 



Thought Exercise

1) What percentage of the current AI cycle do you think is

hype or exaggerated? What aspects of AI aren’t hype and

how can you focus on these opportunities?
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AI Building Blocks

 

Just as physical laws govern the mechanics of the

universe, the field of artificial intelligence is controlled and

regulated by algorithms. They underpin the advanced

capabilities we see today, from the more simple act of

recommending a song based on a user’s listening history, to

the complex task of driving an autonomous vehicle.

By definition, algorithms are sets of specific instructions

designed to perform a task or solve a problem. They are the

essential building blocks and the recipe for every good AI

system. But unlike recipes written in human language,

these algorithms are written in code and read by machines.

While explaining the code and mathematical intricacies of

popular algorithms is beyond the scope of this book, the

following chapter provides a high-level overview of different

algorithm categories, including classification, regression,

sorting, and clustering techniques, as well as transparent

and black box algorithms.

First, let's examine the shared characteristics of

algorithms within the context of artificial intelligence.

Fundamentally, algorithms function by processing data

inputs to yield an output. Input data can include text,

images, audio, video, sensor data, or any other form of

unprocessed information. For a recommendation engine, the

output might be a series of suggested products, and for a



facial recognition system, the output might be an

identification or face match.

AI algorithms typically have the capacity to learn and

improve over time. As more data is processed, the

algorithm fine-tunes its understanding, often improving the

quality of its outputs. This feedback typically comes in the

form of a loss function, a measure of how well the algorithm

is performing its task. The loss function quantifies the

difference between the algorithm's actual output and the

expected output. Lower values of the loss function imply

better performance.

When the loss function indicates that the output is failing

to achieve what was expected, the algorithm undergoes an

optimization process. This process involves adjusting the

internal parameters of the algorithm to better align its

outputs with the expected result. In essence, this is the

algorithm's way of learning from its past mistakes.

Parameters, meanwhile, are the internal settings that the

algorithm adjusts during the optimization process. The

exact nature and number of these parameters depend on

the specific algorithm being used. An example of an

algorithm with very few parameters is the k-nearest

neighbors (k-NN) algorithm. In k-NN, the number of

parameters is determined by the value of k, which

represents the number of nearest neighbors used for

classification or regression. Conversely, an artificial neural

network may consist of thousands of different parameters.

 

Classification vs. Regression

It's essential to understand that there's no one-size-fits-

all algorithm when it comes to AI. Different algorithms cater

to different tasks and different types of data. The choice of

algorithm depends on the specific problem you are

attempting to solve.



To illustrate, classification algorithms are designed to

assign the input data to a certain category or class based on

its features, such as identifying whether an email is spam

and whether a tumor is malignant or benign. The task of

classifying instances is conducted by analyzing the

characteristics or composition of existing examples and then

creating a prediction model that captures relationships

between the features and the class labels in order to predict

the class of instances yet to be classified. This could involve

diagnosing whether a patient is carrying a specific disease,

such as diabetes, based on different health indicators. In

this scenario, the output or class label is binary: “diabetes”

or “no diabetes”. The explanatory features include a range

of health measurements such as patients’ blood pressure,

body mass index (BMI), age, cholesterol levels, and so on.

These measurements are collected from a large number of

patients, some of whom have been diagnosed with diabetes

and some who have not. This data is then used to train a

classification model.

 

Table 1: Sample data for classification of patients with diabetes

 

The training process involves feeding the features and the

corresponding class labels (“diabetes” and “no diabetes”) of

each patient into the algorithm. The algorithm will analyze

these features and establish a relationship between them

and the corresponding class labels to create a trained model

that captures these relationships. The trained model can

then be used to predict the likelihood of a patient having

diabetes based on the input of their health measurements.



When a new patient's data is fed into the model, the

model can classify them as having “diabetes” or “no

diabetes” based on the relationships it learned from the

training data. For instance, the model may have learned

that patients over the age of 50 with a high BMI and high

blood pressure are statistically more likely to have diabetes.

Thus, if a new patient matches that criteria, the model will

classify the patient in the “diabetes” category. However, it's

important to remember that the model is actually making

an estimate based on the data it was trained on, and while

this can be highly accurate, certain errors are unavoidable,

especially if the model doesn’t account for fringe cases.

Regression algorithms, on the other hand, are used to

predict continuous values (in numerical terms, i.e. 5, 4, 5.4,

etc.), such as evaluating the value of a house or predicting

a patient's life expectancy. In the case of the second

example, the explanatory variables can include a range of

the same health measurements used in the previous

example, such as blood pressure, body mass index (BMI),

age, and cholesterol levels. The difference is that the target

outcome is no longer binary (“diabetes” and “no diabetes”)

but a continuous value: the patient's life expectancy

measured in years. The dataset again comprises numerous

examples of patients, each characterized by their feature

values in terms of health measurements but instead, there

is a new column with a life expectancy value expressed in

numbers.

 

Table 2: Sample data for regression of patient’s life expectancy

 



A regression algorithm, such as linear regression, can

then be trained on the dataset to create a model. The

training process involves feeding the features and

corresponding life expectancy values of each patient into

the algorithm. The algorithm will then analyze those

features and establish a relationship between the

explanatory variables and life expectancy, which is the

target variable for this model.

Once the training phase is complete, the algorithm will

have learned and designed a model that can predict the life

expectancy of a patient. When a new patient's data is

entered into the model, the model estimates their life

expectancy based on their specific health measurements.

For instance, the model might have learned that patients

who are younger, with a lower BMI, and who have

controlled blood pressure tend to enjoy a higher life

expectancy. Therefore, if a new patient's data fits these

criteria, the model will estimate a higher life expectancy for

that patient. However, similar to the classification model

example, the model’s prediction constitutes an estimation

based on a generalization of the data the model was trained

on and is not guaranteed to be 100% correct and the model

may need to be retrained over time.

In summary, classification and regression algorithms are

designed to handle different types of problems.

Classification is used when the target variable is a category

or a class, such as “spam” or “not spam” in the case of

email filtering. Regression is used when the target variable

is a real or continuous value, like house prices measured in

dollars or life expectancy measured in years.

For a deeper exploration of specific classification and

regression algorithms, I have documented these techniques

in a separate book, Machine Learning for Absolute

Beginners: Third Edition, which walks through the process

of designing basic prediction models.



 

Sorting & Clustering

In addition to classification and regression, there are also

sorting and clustering algorithms.

Sorting algorithms arrange a collection of items or data

points in a specific order, making it easier to analyze.

Sorting can be performed on various types of data,

including numbers, dates, and strings. For example,

consider a list of numbers: [11, 23, 1, 5, 2]. By applying a

sorting algorithm, such as merge sort, the list can be

rearranged in ascending order: [1, 2, 5, 11, 23].

Clustering, on the other hand, involves grouping similar

data points together based on shared characteristics or

similarities. The objective is to identify patterns, structures,

or relationships within the data without any predefined

labels or categories. Spam email, for example, isn’t usually

labeled by the sender as “spam”, but by grouping emails

together based on the subject line, contents, and external

links, it’s possible to group most of the spam email

messages into a cluster based on similar patterns—all

without any labels directly categorizing these emails as

“spam”.

Another common example of clustering is finding

customers who share similar purchasing patterns. By

identifying a cluster of customers who share purchasing

preferences, such as time of purchase and seasonal factors,

brands can identify distinct customer segments for targeted

marketing campaigns.

 

Algorithm Transparency

In addition to matching the model with the type of

problem you are attempting to solve, you also need to

consider the model’s interpretability. To elaborate, some

algorithms are relatively easy to understand but might not



always be the most accurate. Other algorithms can be

highly accurate but are often described as black boxes

because their internal decision-making process is difficult to

interpret.

Transparent or highly interpretable algorithms are those

where the steps taken to produce an output are easy to

follow and clear to interpret. Decision trees and linear

regression are two examples of algorithms where the

relationship between the input(s) and the output is clear

and easy to follow. The logic behind these algorithms can be

examined step by step, allowing you to understand

correlations and the specific variables that led to the final

output. In general, transparent algorithms are useful in

contexts where understanding the reasoning behind

decisions is crucial, such as a credit loan decision or house

valuation.

 

Figure 1: Decision tree

 

Black box algorithms, on the other hand, are those where

the pathway from input to output cannot be easily traced or

explained. Examples of black box algorithms are multi-

layered neural networks. These models involve layers and

layers of interconnected neurons that process input data,

transforming it multiple times to reach an output. Due to



the large number of transformations and the non-linear

nature of these transformations, it's extremely difficult to

understand how a neural network makes its decision. This

lack of transparency can become problematic in contexts

where accountability and explainability are needed or

favored.

 

Figure 2: Basic 4-layer feed-forward neural network

 

Balancing the need for highly effective AI systems and the

need for transparency and accountability is a key issue in AI

research and ethics. The development of techniques to

improve the interpretability of black box models, a field

known as explainable AI, is an active area of study seeking

to address this issue. Explainable AI refers to the ability of

an AI system to provide understandable explanations or

justifications for its decisions and actions. In medical

diagnosis, for example, explainable AI can help to provide

doctors with clear explanations of how a system arrived at a

diagnosis or treatment recommendation. This helps doctors

validate the AI's suggestions and gain insights into the

underlying factors considered by the model.

 



Datasets

Creating effective AI systems is not just about selecting

and implementing the right algorithm. The design process

also requires a deep understanding of the dataset the

algorithm will consume and analyze.

Just as a car needs petrol or electricity to move, AI

algorithms need data to learn. However, the relationship

between AI and data goes beyond necessity. Understanding

the nuances of data—its collection, interpretation, and

limitations—is paramount to not only the effectiveness of AI

systems but also fairness and transparency. Poor quality or

biased data can lead to poor or biased results, a common

challenge in AI called “garbage in, garbage out”.

As organized stores of data, datasets provide the fuel for

algorithms to operate. In the case of supervised learning

(explored further in Chapter 5), a dataset is split into

training and test portions with a 70:30 or 60:40 split. The

training data is used to create the model, while the test

data is used to evaluate the model's performance.

The quality and size of the dataset significantly impact the

accuracy and reliability of the AI model. The better the

dataset, the better the model's ability to learn and

generalize to new inputs. Yet, datasets are not as

straightforward as they might seem. Datasets can present

numerous challenges that, if not properly managed, can

lead to poor or erroneous predictions. A dataset that lacks

diversity or that is not representative of the problem at

hand can lead to models that are biased or that perform

poorly when faced with real-world data.

One problem is the curse of dimensionality. Coined by

Richard Bellman in the late 1950s, the term refers to

various challenges that arise when analyzing datasets with

hundreds or thousands of variables—a phenomenon that

only occurs in high-dimensional datasets (with a large

number of variables). According to this theory, to obtain a



statistically sound and reliable result, the amount of data

needed to support the result often grows exponentially with

the dimensionality or number of variables analyzed.

However, having too many variables also injects noise that

makes it harder to identify patterns and build an accurate

model. What’s more, given the sheer volume of variables

thrown at the model, it’s possible for one or more variables

to correlate with the target output due to coincidence rather

than pure causation.

As anyone working in this industry will tell you, correlation

does not imply causation. Just because two variables move

together does not mean that one causes the other to move

and the website Spurious Correlations

(www.tylervigen.com/spurious-correlations) presents

numerous examples of variables that are strongly correlated

but clearly have no causal relationship. For instance, one

chart on the site visualizes a strong correlation between the

divorce rate in the state of Maine and the yearly per capita

consumption of margarine in the United States. As amusing

as it is to think about why this might be true, there is no

reason to believe that these two trends have any effect on

each other. The correlation is most likely a coincidence.

Next, the costs associated with processing large amounts

of data must be taken into consideration. While having

more data often improves the predictive ability of machine

learning models, it amplifies computational requirements

and increases model complexity. Conversely, too little data

can result in models that are inadequately trained and

perform poorly on new data.

Another crucial aspect is the cleanliness and integrity of

the dataset. Inaccurate or missing data can significantly

impair the model's performance, leading to incorrect

predictions. Hence, a substantial part of building a model

involves preprocessing and cleaning data to ensure its

quality and consistency. This step involves filling in missing



data, removing duplicates, correcting inconsistencies,

converting non-numerical variables to numeric variables,

and normalizing variables to maintain a consistent scale

(i.e., all variables measured in “minutes” and not in multiple

different units of time). It's a demanding task, but the value

it brings to the model and its outputs cannot be overstated.

To demonstrate the range of data quality considerations,

let's examine an example from an e-commerce company

developing a machine learning model for its new marketing

campaign. The aim of the model is to predict customer

responses based on various variables such as past

purchases, customer information, and website browsing

behavior.

First, the accuracy of the data is paramount. If the past

purchase history of a customer is recorded inaccurately, the

predictive model might target the wrong customers and

waste resources on customers who are less likely to

purchase.

Completeness is the next essential aspect of data quality.

If data concerning customer responses to past campaigns or

seasonal events are missing, the model may not have

sufficient information to make accurate predictions. This is

akin to trying to complete a puzzle without all the pieces

available.

Consistency in data is also crucial. Picture a scenario

where the age of the customer is recorded in years in one

part of the system and in months in another. Such

inconsistency could lead to confusion and result in errors in

the model.

The reliability of the data collected is yet another vital

component of data quality. If the browsing data is collected

inaccurately due to a bug in the tracking code or acquired

from an unreliable third party, the model might skew its

predictions. A customer might be misclassified as not being

interested in certain products when they actually are,



leading to inappropriate targeting and a missed sales

opportunity.

Timeliness, the next metric, ensures that the model is

based on the current reality. If the most recent purchase

data is not updated in real time, the model could base its

predictions on outdated information. For instance, a

customer who recently made several baby product

purchases might be incorrectly classified as unlikely to

respond to a new baby product recommendation if their

latest transactions aren't included in the data. Conversely,

marketing to a customer who made baby product purchases

five years ago may no longer be a reliable candidate for

purchasing that line of products.

Relevance of the data to the task at hand is essential to

avoid confusion and the waste of computational resources.

For example, including data such as the customer's phone

carrier or the color of the last item purchased (if color isn't

relevant to the campaign), introduces noise into the model

and distracts the model from more relevant variables.

Lastly, granularity refers to the level of detail in the data.

While highly detailed data might seem advantageous, it can

also introduce noise into the model, leading to a problem

known as overfitting where the model over-emphasizes

randomness or insignificant patterns in the data. For

instance, if website browsing data is recorded for every

single page view, it might add unnecessary complexity

without providing significant value. Conversely, if data is

aggregated or too coarse (having a low level of detail),

critical details about customer behavior might be overlooked

and wasted.

To summarize, data is a critical asset for creating AI

systems, providing the necessary information for these

systems to learn, improve, and generate accurate

predictions or insights. Each piece of data is like a brick

used to construct a building. If the bricks are weak or



flawed, the resulting building might be unstable. Similarly, if

data is inaccurate, incomplete, or unreliable, the resulting

AI system could produce misleading results, leading to poor

decisions and potential risks. As such, a thorough

understanding of data and its various aspects is

indispensable when working with AI. This includes not only

the ability to analyze data and check for spurious

relationships but also to clean and preprocess the input

data.

 

Table 3: Data quality considerations and examples

 

AI Hardware & Software

In this next section, we'll explore the vital role that

hardware and software play in facilitating artificial

intelligence.

Let's start with the hardware. High-performance hardware

is a cornerstone of AI, particularly in the realm of machine

learning and deep learning, where vast quantities of data

are the norm. From the central processing units that serve

as the brains of the computer to the graphics processing

units that accelerate computations, the role of hardware is

to provide the raw power needed to process and run

complex algorithms on the data.

 



CPUs vs. GPUs

During the early stages of AI development, computations

were executed using CPUs, which are known for being

versatile and capable of executing a variety of tasks. In

practice, CPUs are used for performing sequential

processing, where each instruction is executed one after

another.

While CPUs are efficient for general computing tasks,

advanced AI and particularly deep learning require the

processing of complex mathematical operations on very

large datasets, which necessitates parallel rather than

sequential processing. Although originally designed to

handle the rendering of pixel-rich images in computer

games and gaming consoles such as the PlayStation 2 and

Xbox, GPUs are specifically designed for parallel processing,

which refers to the ability to perform multiple calculations at

the same time. This makes them well-suited for tasks that

require a lot of computing power, such as graphics

processing and machine learning. This also explains why the

use of GPUs in AI has become so widespread and why the

production and price of GPUs are carefully monitored by

companies and governments.

In general, GPUs are more expensive than CPUs to

produce. The specific pricing of GPUs is influenced by

multiple factors including production costs, demand,

technological advancements, and geopolitics. Over time, as

with many technologies, we have witnessed a general trend

of price deflation in the cost per unit of computing power.

This doesn't mean that the price of a GPU has decreased,

but rather, that the cost for a certain level of performance

(measured in floating point operations per second) has

generally gone down over time. This is due to

improvements in manufacturing, increased efficiency, and

technological upgrades.



Nonetheless, it's important to note that the price of chips

can be vulnerable to short-term fluctuations. During periods

of increased interest in cryptocurrencies, the demand for

chips can spike, leading to increased costs. Similarly,

disruptions in the supply chain, such as those caused by the

global pandemic or international trade disputes, can impact

the availability and cost of computing resources.

As a byproduct of semiconductors2, chips are becoming

increasingly subject to trade war sanctions. In September

2022, the U.S. Department of Commerce added seven

Chinese supercomputing entities to the Entity List, which

restricts the export of certain goods and technologies to

those entities. While aimed at preventing China from using

chips for military purposes, the ban has far-reaching

implications for the AI industry.

Specifically, the ban affects the export of chips to China

from two major chipmakers, Nvidia from Taiwan and

Advanced Micro Devices (AMD) from the United States. Both

companies had been supplying chips, including GPUs, to

China for use in supercomputers but were forced to halt

shipments in response to the ban. This now makes it

challenging for companies in China to obtain the GPUs they

need for building AI applications. The Chinese Government

has responded to the ban by imposing its own restrictions

on the export of chips to the United States, making it more

difficult for U.S. companies to obtain chips from China. The

trade war has also prompted countries to increase their

investment in local chip manufacturing, which may lead to

the development of new chip innovations, supply lines, and

manufacturing processes.

To learn more about the lead-up and the potential

trajectory of the recent chip war, you may like to read Chip

Wars: The Fight for the World's Most Critical Technology by

Chris Miller, which tells the story of the global

semiconductor industry and the growing competition



between the United States and China to dominate this

critical resource.

 

TPUs

Beyond CPUs and GPUs, there is another important type

of chip to discuss. As the field of AI has advanced, more

specialized hardware has been required and this has led to

the development of Tensor Processing Units (TPUs),

originally developed by Google.

TPUs are a type of application-specific integrated circuit

(ASIC) developed specifically for accelerating machine

learning workloads. They are named after the tensor data

structure, which refers to a multi-dimensional array or data

structure with multiple variables. The first generation of

TPUs was announced in 2016 and used internally at Google

to improve the efficiency and speed of their machine

learning systems such as Google Search and Google

Translate.

Google announced its second-generation TPU in 2017.

These units were made available to external developers via

Google's public cloud platform, which continues to release

new and more powerful TPU generations. Other companies

including Microsoft and Amazon Web Services (AWS) have

followed in offering TPU services on the cloud. This has

helped to accelerate the development of AI as these

processing chips make it possible to train and run models

on a much larger scale.

In terms of hardware comparison, while CPUs are used to

handle a variety of general computing tasks and GPUs are

designed to quickly process the mathematical calculations

needed for rendering graphics, TPUs are specifically built to

handle the kind of matrix-based computations that are

common in machine learning and deep learning.

One of the significant differences between GPUs and TPUs

lies in their architecture. GPUs are designed to handle a



large number of relatively small computational cores for

parallel processing, which is great for graphics rendering

and beneficial for certain types of machine learning tasks.

TPUs, on the other hand, are designed around a large

matrix multiply unit, which offers high computational

capability and reduced computational precision (such as

lower-bit floating-point numbers) that is typically acceptable

for neural network workloads. This precision reduction can

still deliver accurate results for neural network models while

offering significant performance gains, which makes TPUs

efficient at executing the large-scale matrix operations that

are often found in deep learning algorithms. TPUs can also

be significantly faster than GPUs in regards to the running

of machine learning applications and, in general, are more

energy efficient.

However, it's crucial to note that while individual

operations may be more efficient, the overall environmental

impact of TPUs and GPUs raises a reason for concern. First,

the manufacturing of these high-performance chips requires

a lot of upfront energy and resources, including the mining

of raw materials, such as silicon and rare earth metals,

which are energy-intensive to mine. They then continue to

consume a lot of energy once put into use. The energy

consumption of these chips can be significant, especially in

data centers where they are used in large quantities.

As a result, there are a number of initiatives underway to

reduce the environmental impact of high-performance

chips, such as the development of more energy-efficient

manufacturing processes, the recycling and reusing of

chips, and the use of renewable energy sources, including

solar and wind power, to power data centers.

Regarding manufacturing processes, there are a number

of new energy-efficient manufacturing processes being

implemented including 3D stacking, which involves



vertically attaching three or sometimes four chips to make

better use of available chip space.

 

Software

Having discussed the evolution and importance of

hardware, including the use of GPUs and TPUs, let's shift

our focus to another critical component of AI systems: the

software. AI software ranges from the programming

languages used to write algorithms, such as Python and R,

to specialized libraries like TensorFlow, PyTorch, and Keras

that offer pre-built functions for creating and training

prediction models.

(Please note that this section delves into more technical

aspects, including descriptions of common code libraries. If

you aren’t interested in the programming side of AI, feel

free to skim or skip over this section.)

 

Libraries

Libraries, in the context of AI software, are collections of

pre-written code that developers can use to streamline their

work. They span everything from simple data-importing

commands to complex mathematical functions. Essentially,

they provide a way to perform tasks without having to write

custom code from scratch every single time you want to do

something. To explain why this is important, let's consider

the case of creating a neural network. Without code

libraries, a programmer would need to manually code the

entire architecture of the network, implement the

mathematical operations for forward propagation (where

the network makes its predictions) and backpropagation

(where the network learns from its errors), and handle the

optimization process that tweaks the network parameters

for improved performance. Not only is this process

extremely time-consuming but it also requires a deep

understanding of the underlying mathematics.



Libraries reduce much of this complexity. When creating a

neural network using TensorFlow or Keras, developers can

build a model by simply stacking together pre-defined

layers. Each layer might represent a set of neurons in the

network, and come pre-packaged with the necessary

mathematical operations. Furthermore, these libraries come

with pre-implemented algorithms for training and optimizing

the model. When data is fed into the model, the library

takes care of passing it through the mathematical

operations defined by the network's architecture, adjusting

the network's weights based on the errors it makes, and

iteratively improving the model. The end result is that with

just a few lines of code, developers can create, train, and

implement a model without having to manually insert the

underlying math.

These libraries also provide code for preprocessing data,

which is a critical step in creating a model. They can handle

tasks like normalizing data to ensure that variables are

expressed on a common scale, converting categorical

variables into numerical variables, and splitting datasets

into training and test sets, among other things.

Lastly, libraries play an essential role in promoting

consistency and standardization. By using libraries,

developers adhere to a set of standardized practices, which

reduces the risk of errors and improves the replicability of

the code for future use.

Beyond TensorFlow, PyTorch, and Keras, there is an

extensive selection of useful libraries out there. Scikit-learn,

for instance, offers a broad array of machine learning

algorithms and tools for data preprocessing and model

evaluation using Python. Natural Language Toolkit (NLTK)

provides resources for tasks in natural language processing,

a field of AI focused on the interaction between computers

and human language. Matplotlib is a widely used library for

creating static, animated, and interactive visualizations in



Python, which is crucial for data exploration and presenting

results.

 

Programming Langauges

Programming languages are fundamental in the

development of AI systems. The choice of language often

depends on the specific needs of a project, including factors

such as the type of problem being solved, computational

efficiency requirements, and the availability of relevant

libraries and frameworks. Here, we'll discuss some of the

most popular programming languages used within AI.

 

Python: Known for its simplicity and readability, Python is

the most widely used programming language in AI and

machine learning. Python boasts a plethora of libraries and

frameworks that facilitate the development of AI

applications, including TensorFlow, PyTorch, Keras, and

Scikit-learn. It’s also a great choice for beginners and

experts.

 

R: If you're leaning towards statistical computing or data

analysis, R is a language designed specifically for these

purposes. It has a rich package ecosystem that facilitates

statistical modeling and visualization, which are core

components of AI and machine learning.

 

Java: Java is another language worth considering,

particularly if you're building large-scale enterprise

applications. It’s platform independence and robust

debugging features make it a versatile choice for AI

development.

 

C++: Due to its high execution speed and control over

system resources, C++ is often used in AI projects where

performance is a crucial factor. It's typically used in parts of



AI applications where low latency is required, although it

may not be as easy to use as Python or R.

 

Julia: Julia is a high-level, high-performance language for

technical computing. It provides the ease of use of Python

and R, but also the performance of C++. Julia is gaining

some popularity in the data science and AI communities,

particularly in areas that require heavy numerical and

scientific computation.

 

Prolog: Prolog, short for Programming in Logic, is a

language often associated with artificial intelligence and

computational linguistics. Its capacity to efficiently resolve

problems involving relationships, especially those that

involve structured data, makes it suited to certain AI

applications.

 

LISP: Although less commonly used today, LISP is one of

the oldest high-level programming languages and is closely

associated with artificial intelligence research. It was widely

used in AI research due to its symbolic processing

capabilities, but its use has waned with the rise of more

modern languages.

Figure 3: Percentage of Stack Overflow questions that month (not

necessarily AI-specific)



 

The right language for a particular AI project can depend

on many factors, but these languages have demonstrated

their value across a wide range of AI applications. Beyond

the languages themselves, you should also consider the

support systems surrounding them. From tutorials and

forums to sample code, an active community can be a

goldmine of resources. These resources can dramatically

accelerate your learning and provide much-needed support

when you encounter problems with your code. Languages

with large communities also tend to be regularly updated

with new features and improvements, keeping you at the

forefront of AI development.

The nature of your project will play a significant role in

your decision too. If you are developing an AI solution that

needs to integrate with existing systems, your choice might

be influenced by the languages these systems use and their

compatibility. Similarly, if your work involves large volumes

of data, you should look for languages with strong data-

handling capabilities.

Lastly, bear in mind that many AI tasks can be

significantly accelerated by running them on multiple

processors simultaneously. This is especially true for deep

learning. As such, languages that support parallel

computing can be advantageous.

In conclusion, the right language to learn for AI

development depends on your personal circumstances,

including your existing skills, the type of projects you intend

to work on, and your performance requirements. Python, R,

Java, and C++ are all excellent choices, but they come with

their own strengths and weaknesses. If you are still unsure,

it may be wise to default to the most popular language for

AI systems, which, at this time, is Python.

 

Key Takeaways



1) Classification and regression are two common

categories of algorithms used in AI. Classification algorithms

assign input data to specific categories or classes based on

their features, while regression algorithms predict

continuous values.

2) Sorting algorithms arrange data into a specific order,

facilitating easier understanding. Clustering algorithms, on

the other hand, group similar data points together without

predefined labels, allowing for the identification of new

patterns and relationships.

3) Transparency and interpretability of algorithms are

important considerations. Transparent algorithms have clear

and understandable steps, making their decision-making

process easily interpretable. Black box algorithms, on the

other hand, lack transparency and their internal workings

are difficult to trace.

4) Datasets play a crucial role in AI systems. The quality,

diversity, and relevance of the data used to train AI models

significantly impact their performance. Inaccurate, biased,

or incomplete data can lead to poor or biased predictions.

Preprocessing and cleaning the data are also important

steps for ensuring data quality.

5) Libraries promote convenience and consistency. By

using established libraries, developers adhere to

standardized practices, reducing the risk of errors and

improving the replicability of code for future use.

6) The choice of programming language should consider

factors such as computational efficiency, library availability,

community support, integration with existing systems, data

handling capabilities, and parallel computing support.

7) Python is currently the most widely used language in

AI and machine learning, offering simplicity, readability, and

a rich ecosystem of libraries.

 



Thought Exercises

1) What’s a real-life example reflecting the curse of

dimensionality? Is there a business book, news channel,

conspiracist, politician, or popular theory, for instance, that

draws on a select number of seemingly correlated examples

that are coincidental and not typical of the true situation?

 

2) Do you think classification problems or regression

problems are more common in your organization or

institution? (i.e., how much to pay interns is a regression

problem, whereas selecting new interns based on their

credentials is a classification problem.)

 

3) Is model transparency important for a football coach

using a prediction model to recruit players who are likely to

score goals? Do fans betting on a football player to score

also need to know why the model predicts that player to

score or is model accuracy more important?

 

4) Pick an industry you are currently interested in and

think of a special use case for AI. Now ask whether model

interpretability and transparency are important for

evaluating the effectiveness of the model.
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The 3 Stages of AI

Development

 

As you venture further into the field of AI, it’s important

to recognize and understand the three potential stages of AI

development. Spanning narrow AI, general AI, and

superintelligent AI, these three stages represent crucial

milestones in the evolution of AI technology.

Narrow AI, for example, is designed to perform a specific

task, whereas general AI is more advanced and capable of

understanding, learning, and applying knowledge flexibly

across a broad spectrum of tasks. As the most advanced

stage, superintelligent AI remains a theoretical category at

present but is hypothesized to surpass human intelligence

across multiple domains at some point in the future.

 

Narrow AI

Despite its name, narrow AI or weak AI should not be

confused as weak or ineffective. Rather, the naming of this

category refers to the focused nature of AI systems in

relation to their scope and functionality.

By design, narrow AI systems are capable of mimicking

human intelligence but are constrained to a specific domain,

meaning they can’t perform tasks outside of what they are

trained or programmed to do. To illustrate, an AI system

designed for image recognition can identify and categorize



images based on its training but cannot translate languages

or diagnose diseases without radical adjustments and

additional training data.

This might make narrow AI seem limited in terms of

application, but these specialized systems form the

backbone of many powerful AI applications. Google's search

engine, Amazon's recommendation engine, Apple's Siri, and

Tesla's Autopilot are all examples of narrow AI systems.

Each of these systems performs specific tasks exceptionally

well, often surpassing human capabilities in speed,

accuracy, and efficiency. Google’s search engine, for

instance, can process billions of web pages and deliver the

most relevant search results in a fraction of a second. It's

optimized to perform this specific task and outperform any

human assistant. However, the same system is clueless

when it comes to steering a car or writing a poem. This

underlines the essence of narrow AI: exceptional at

performing a specific task but inflexible and unable to

operate effectively on other tasks.

 

General AI

Having established the definition of narrow AI, let’s turn

our attention to a more advanced iteration and the next

phase of AI development called general AI or strong AI.

General AI, often referred to as artificial general

intelligence or AGI, refers to a version of artificial

intelligence that has the ability to perform any cognitive

task achievable by a human. Note, however, that this

definition does not encompass physical abilities or the use

of robotics, which are often subject to different tests and

forms of evaluation. The Coffee Test, proposed by Apple Co-

founder Steve Wozniak, for instance, sets a benchmark for

evaluating physical capabilities by testing a robot’s ability to

enter an unfamiliar house, find the kitchen, identify the

tools and ingredients, and prepare a cup of coffee. Robots



are yet to pass the test and this example is just one of

many benchmarks currently in discussion regarding AGI

(beyond the boundaries of solely cognitive tasks).

When it comes to cognitive tasks, benchmarks and

definitions of AGI remain varied, which creates a sliding

scale of standards and expectations. In general, the more

specific the definition (such as the ability to converse with

humans on any topic in multiple languages), the easier or

lower the target of AGI becomes. Conversely, the less

specific the definition (perform any task a human can do),

the higher the AGI benchmark becomes. Depending on the

definition, AGI might also include a biological component,

physical capabilities, consciousness, or some other human

quality, which comes with its own set of design challenges.

Broad physical capabilities, for example, are difficult to

achieve due to the lack of data available to train robots or

humanoid robots. ChatGPT was trained on millions of data

sources scoured from the World Wide Web but the data

available to train robots is much harder to find and acquire.

Consciousness, meanwhile, is the subjective feeling of being

aware that one exists and having an understanding of the

surrounding environment. Some experts contend that

having an inner mental life is not replicable in machines

because consciousness arises from biological substrates and

cannot be replicated in non-biological entities.

Amidst these nuanced attempts to define general

intelligence, the core of the discourse and research on AGI

centers on emulating cognitive abilities across a

comprehensive range of non-physical tasks. This includes

the ability to reason, solve puzzles, plan, learn, integrate

prior knowledge into decision-making, and communicate in

a natural language such as English or Spanish. Importantly,

general AI includes the ability to transfer knowledge from

one domain to another—a skill known as transfer learning.

This might involve leveraging its understanding from



reading books to engage in a meaningful conversation

about literature, a capability that is well beyond the ability

of narrow AI systems.

It's important to highlight that as of the time of writing,

general AI remains unrealized. While we've made significant

strides in AI technology, we're still some way from creating

a machine that can fully replicate the broad cognitive

capabilities of the human mind. Most of the AI systems we

have today, including GPT-4, are considered narrow AI

because they excel at specific tasks (such as content

generation) but don't possess a generalized understanding

or ability to reason beyond their specific training. Also, while

some applications are capable of performing multiple

different tasks, they are actually using a collection of

narrow AI models under the hood.

One candidate for driving progress in the field of general

AI is AutoGPT. As an open-source AI agent powered by

OpenAI's GPT-4 API, the system can generate text and

perform various tasks autonomously, including code writing,

language translation, text summarization, question

answering, creative text generation, and online task

completion. It operates by breaking down user goals into

subtasks and utilizing access to apps, software, and online

services to accomplish those tasks. For instance, if a user

requests AutoGPT to compose a Tweet about coding, the

agent will segment the task into subtasks like finding a

coding tutorial, reading the tutorial, composing the Tweet,

and posting it on Twitter.

Using AutoGPT, one user has created the Do Anything

Machine, which is a to-do list that uses a GPT-4 agent, log-

in access to the necessary services, and your personal or

company information to complete each new task added to

the list. Other users are using AutoGPT to research and

script podcasts, conduct market research for new products,

and create websites from scratch.



Although AutoGPT demonstrates promise and has the

potential to serve as a robust automation tool for complex

projects, it falls short of emulating human intelligence

across a broad spectrum of tasks or rivaling human

capabilities, including reasoning, in its current form. It’s

also common for AutoGPT to encounter problems or fail at

fulfilling tasks, especially for more nuanced tasks. Still, it

signifies a step towards the development of general AI by

showcasing the feasibility of creating AI models capable of

connecting to different online tools and adapting to new

tasks without direct human supervision.

 

Superintelligent AI

Following our exploration of general AI, let us now

venture into the most speculative phase of artificial

intelligence. Although it currently resides within the bounds

of theoretical forecasts and human imagination,

superintelligent AI presents a vision of the future that has

long captivated scientists, philosophers, futurists, and

science fiction writers.

While general AI aims to replicate the full spectrum of

human cognitive abilities, superintelligent AI goes a step

further, seeking to exceed human capabilities. In theory, a

superintelligent AI would not only outperform humans at

any intellectual task but would also outperform humans in

high-value endeavors including scientific research, strategic

planning, and social influencing. Thus, the idea of

superintelligent AI extends beyond an advanced tool or

system; it suggests a potentially autonomous entity capable

of out-thinking humanity and coming up with ideas,

strategies, and solutions that exceed the abilities of the

smartest human minds. As such, it raises questions and

concerns about control and alignment with human values

that are significantly more challenging than those

associated with general AI.



This leads us to what’s termed the control problem, a

term popularized by philosopher Nick Bostrom, author of

the seminal book Superintelligence: Paths, Dangers,

Strategies. The control problem refers to the theoretical

difficulty of controlling or restraining a superintelligent AI. If

AI surpasses human intelligence, it might become

impossible to fully predict or control its actions. The AI

entity could devise strategies to avoid being shut down or it

could manipulate humans in ways we are unable to detect

and control.

The late Stephen Hawking, one of the most renowned

theoretical physicists of our time, expressed concern about

the potential risks of developing superintelligent AI. In a

2014 interview with the BBC, Hawking warned that “The

development of full artificial intelligence could spell the end

of the human race”.3 He went on to explain that once

machines reach a point where they can improve themselves

at a rapid pace, humans, with our slow biological evolution,

would no longer be able to compete and we will be

superseded as a result. Hawking reiterated his viewpoint

during a Q&A session at the annual Zeitgeist Conference in

2016. He stated, “I believe there is no deep difference

between what can be achieved by a biological brain and

what can be achieved by a computer. It, therefore, follows

that computers can, in theory, emulate human intelligence

—and exceed it”.4

Beyond a potential showdown with AI agents, a more

immediate concern lies in how humans will harness

superintelligent AI to wield power and influence. Similar to

preceding technological advancements, humans will

inevitably seek out ways to exploit superintelligent AI to

achieve their objectives, whether that’s delivering bias and

misinformation over the Internet or exploiting it for

cyberattacks, digital espionage, and deep surveillance.

Equally, there is a looming danger of a strong central actor



like OpenAI, Microsoft, or a state actor such as the Chinese

Community Party monopolizing access to superintelligent

systems and relevant hardware.

Seeing the problems posed by this scenario, initiatives

such as StabilityAI advocate for an open-source and

grassroots-driven approach to AI development. They warn

against the path of centralized power and encourage the

proliferation of distinct AI systems, each aligned with the

values and perspectives of the communities they serve,

mirroring the plurality and diversity of human values.

 

The Singularity

Building on the concept of superintelligent AI, the theory

of the Singularity forecasts a future point of irrevocable

societal change that will occur if and when AI surpasses

human intelligence. This theory is based on the principle

that a sufficiently advanced AI would be capable of

designing an even more advanced version of itself, which

could then design an even more advanced version, and so

forth, leading to a rapid and exponential increase in

intelligence.

The term and theory were popularized by mathematician

and science fiction author Vernor Vinge in his 1993 essay

The Coming Technological Singularity. According to Vinge,

the Singularity represents the end of the human era, as

superintelligence would continue to upgrade itself, leading

to an exponential increase in AI capabilities. This process

would result in unfathomable changes to civilization, so

much so that our current models of reality—the ways we

think about and understand the world—would no longer be

sufficient.

These ideas have been further explored and expanded

upon by authors and thinkers like Ray Kurzweil. In his book

The Singularity is Near, published in 2005, Kurzweil predicts

that the Singularity will occur around the year 2045 and will



lead to considerable societal and biological changes, as the

line between humans and machines becomes increasingly

blurred. Kurzweil suggests that humans will merge with AI,

enhancing our intellectual, physical, and emotional

capabilities.

Amid this possibility, it’s important to revisit the

existential risks of leading AI development in this direction.

As previously noted, there are substantial concerns

regarding the issue of aligning AI with human values and

objectives. Experts argue that as AI systems become more

intelligent and capable, the likelihood rises that they will

deviate in ways unforeseen by us today. To counter this

risk, Nick Bostrom emphasizes the need for substantial

investments in research aimed at developing strategies to

manage AI, ensuring that it contributes positively to

humanity rather than causing harm.

One popular solution is to control and monitor the data

used to train AI models. However, even with meticulous

screening of data inputs to eliminate inappropriate content,

ideologies, and knowledge, it’s theoretically possible for

superintelligent AI to uncover pathways to act contrary to

human values or behave in unexpected ways. Using an

inversion function, for example, the model could use its

knowledge of positive behavior to acquire insights into the

characteristics of negative behavior. If the model is trained

to avert house fires, it could potentially learn how to start a

house fire by adopting behavior contrary to the training

data—all without ever being explicitly trained to engage in

this behavior.

Similarly, training an AI to perform a specific task may

inadvertently increase the likelihood of it doing the opposite

of the intended behavior. This alignment problem has

recently been termed the Waluigi Effect, inspired by the

character Waluigi, the evil counterpart of Luigi in the Super

Mario franchise. Humans, particularly teenagers, for



instance, are inclined to do the opposite of what they are

instructed and it’s possible that developmental AI models

could do the same.

Conversely, there are many experts who question whether

it’s possible for AI models to rebel or replicate and surpass

human-level intelligence. One of these skeptics is the

computer scientist Gordon Moore, co-founder of Intel and

the originator of Moore's Law (the observation that the

number of transistors on a microchip doubles approximately

every two years). Moore has expressed doubts that the

Singularity will occur within the predicted timeframe of the

next 25 years or even at all. He argues that there are

physical limitations to the computation speeds that

machines can reach and that these limits will prevent the

realization of the Singularity as envisioned by Vinge and

Kurzweil.

Whether we are destined to reach the superintelligence

phase of AI and witness the Singularity in our lifetimes

remains uncertain, especially as it would require significant

breakthroughs far beyond our current understanding and

capabilities. In the meantime, contemplating the potential

consequences of the Singularity is crucial for steering

responsible AI development. For instance, if we create

machines that match or surpass human intelligence, what

are the implications? How do we ensure these AI systems

align with human values and ethics?

According to the precautionary principle, a concept from

risk management, it’s valuable to address potential risks or

harm even in the absence of scientific proof. The

precautionary principle emphasizes the need for proactive

action when there’s the possibility of serious or irreversible

harm to the environment or human health. In the context of

superintelligence, this may involve the following measures.

1) Regulation and policy: Robust regulatory

frameworks and policies are needed to address potential



risks and provide guidelines for the responsible

development and use of advanced AI systems. This involves

setting safety and transparency standards, monitoring

development, defining ethical boundaries for tech

companies to operate under as well as potential

intervention, if necessary.

Experts such as Daniel Colson, Executive director of the

Artificial Intelligence Policy Institute, have proposed

governments impose restrictions on AI firms, preventing

them from acquiring vast supplies of hardware used to build

super-advanced AI systems, while also making it illegal to

build computing clusters above a certain processing

threshold.5 While these measures may appear severe, there

is public support for government regulation and oversight of

AI development. According to a 2023 poll organized by the

Artificial Intelligence Policy Institute, 82% of American

respondents said they don’t trust tech executives to

regulate AI, with 56% of respondents supporting a federal

agency to regulate AI (compared to 14% who did not).6

Similarly, a 2023 global study published by the University of

Queensland and KPMG found that across 17 countries and

17,000 respondents, 71% of people surveyed were in favor

of AI regulation7, while the Ada Lovelace Institute and The

Alan Turing Institute found that 62% of 4,000 British

respondents would like to see laws and regulations guiding

the use of AI technologies.8

However, backing AI regulation doesn't automatically

imply public confidence in the ability of governments to act

effectively. As per the University of Queensland and KPMG

study, confidence in the government’s ability to regulate AI

development stood at 49% in the U.S., 47% in Japan, 45%

in the UK, 86% in China, 70% in India, and 60% in

Singapore.

2) Global coordination: While country-level measures to

regulate AI development are crucial, it’s just as—or if not



more—important to maintain alignment between countries

and regions. Similar to the founding of the International

Atomic Energy Agency to manage the safe use of nuclear

power, OpenAI's co-founders have called for a global agency

to rein in the development of superintelligence. This

organization would be responsible for conducting

assessments and audits of AI systems, designing and

implementing safety standards, and defining ethical

boundaries. While difficult to implement, agreements to

restrict the pace of global AI development are another

recommendation currently under discussion.

Existing forums for global cooperation, including the

European Union, G7, and the United Nations are also in the

process of designing processes to monitor and regulate the

development of AI systems. However, as the COVID

pandemic has shown us, achieving global cooperation is a

challenging endeavor, especially in light of the present

geopolitical environment and various schisms between

Western powers, China, and Russia. If a country or several

countries opt out of regulatory efforts or disregard global

guidelines, the efficacy of participating nations' endeavors

diminishes, resulting in a myriad of issues including

inequitable access to AI hardware and technology, along

with the migration of ambitious AI companies to non-

participating states.

3) Public engagement: Next, to help more people

identify and understand the potential risks and impacts of

AI, it’s crucial to encourage public participation in

discussions and decision-making processes related to the

development and deployment of advanced AI systems. This

ensures that a wide range of perspectives and concerns are

considered, while also encouraging ongoing debate over

social, economic, ethical, and safety implications that could

arise from developing superintelligent systems. Part of this

debate may start as early as high school, with the Montana



Digital Academy now offering courses covering AI history

and ethics to high school students in the U.S. state of

Montana, for example.

Other public initiatives include the United Nations AI for

Good Global Summit, the Center for AI Safety’s 2023

statement raising the risk of extinction from AI as a global

priority, and the Future of Life Institute’s open letter calling

for AI companies to pause training AI models more powerful

than GPT-4 for at least 6 months (which OpenAI has not

signed). As a signee of the Future of Life Institute’s open

letter, Elon Musk has also launched a new company called

xAI, with the mission of offering pragmatic alternatives to

pausing the development of superintelligence.

With each new AI breakthrough, we can expect to see

more non-government initiatives and public activities

discussing the role and threat of AI, with the overall aim of

ensuring that AI remains aligned with societal values and

priorities.

 

Key Takeaways

1) Narrow AI, general AI, and superintelligent AI form the

three potential stages of AI development. Narrow AI is

designed for specific tasks, while general AI possesses

broad cognitive capabilities similar to humans, and

superintelligent AI surpasses human intelligence.

2) There are serious concerns regarding the control and

alignment of superintelligent AI to ensure that it aligns with

human goals and values.

3) It is difficult to discuss and imagine the future of AI

without confronting the issue of the Singularity, which

predicts a future point where the human race is overtaken

and potentially overrun by AI agents.

4) It’s important to discuss the potential implications of

superintelligence and introduce early precautionary



measures despite the absence of scientific proof.

 

Thought Exercises

1) What are your instincts regarding the possibility of the

Singularity? Also, what alternative perspectives or potential

developments are you currently overlooking?

 

2) What measures, if any, can humans take to prevent the

Singularity from becoming a reality?
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Machine Learning

 

No matter where your exploration of AI takes you, the

path will invariably intersect with the field of machine

learning. Whether it's forecasting stock prices, detecting

fraudulent transactions, or powering speech recognition in

virtual assistants, machine learning provides the core for

many AI applications.

As a subfield of AI, the power of machine learning lies in

its ability to learn from data and make predictions without

being directly programmed. Given a set of inputs, the model

will make a prediction about what it thinks will happen next

based on the patterns learned from existing data. This

might involve predicting the price of a house based on

features such as its location, size, year built, and sales

history.

This process of learning and understanding patterns in the

data is known as training, whereby an algorithm is fed data,

called a training set, and studies that data in order to learn

patterns. If we take the example of a house price prediction

model, the algorithm is shown many examples of houses

along with their actual price value. The algorithm learns the

relationship between the features of the houses, known as

the explanatory variables, and their price valuation, known

as the target variable. Once it's learned this relationship, it

can predict the price of a new house based on its variables

using what’s called a model or prediction model. The model



is a mathematical representation that maps all the

explanatory variables to a target variable, such as the

qualities of a house and its market value. The goal of

training is to find the best model, which is the one that

most accurately captures the relationship between the

explanatory variables and the target variable.

It’s crucial to realize that perfect alignment with the

existing data is not necessarily the goal of designing a

reliable model. This stems from a common pitfall in machine

learning, known as overfitting. This occurs when a model is

fine-tuned to the nuances and noise of the training data to

such an extent that it captures insignificant and random

fluctuations in the data.

While this results in exceptional performance when tested

against the training dataset, it leads to a drastic decline in

the model's ability to generalize new and unseen data. In its

pursuit of achieving the best fit on the training data, the

model fails to encapsulate the underlying relationships that

are universally true beyond the training data. In essence,

the model has memorized the training data rather than

learning the true underlying patterns.

Thus, the objective of machine learning is to find a

balance—one that fits the training data well enough to

capture the true patterns and relationships without

mirroring its exact patterns or noise in the data. Striking

this balance between a model's capacity to learn from data

and not overfitting or overlearning is one of the biggest

challenges in machine learning and requires careful model

design decisions, data handling, and evaluation

methodologies.

In regard to model design, there are three overarching

techniques that we will explore in this chapter, starting with

supervised learning.

 

Supervised Learning



Supervised learning is a type of machine learning where

the algorithm learns from a labeled dataset. Here, “labeled”

means that the training data includes both the explanatory

variables and the correct target variable. The house price

prediction example is a case of supervised learning because

the model is trained on a dataset of houses for which the

explanatory variables (i.e., land size, year built, etc.) and

the target variable (house price) are already known and

included in the dataset.

 

Figure 4: Labeled vs. unlabeled data

 

As another example, consider the model for predicting the

quickest route from point A to point B in Bangkok. First, you

need a labeled dataset that includes numerous examples of

routes from various points to various other points, along

with information about how long each route took. The label

in this case is the time it took for each route. The machine

learning model, through training, would then learn to

associate different factors such as distance, number of

turns, speed limits, and other route characteristics with the

time taken. Once trained, and given a new pair of start and

end points, the model is able to predict the quickest route

based on patterns learned from past examples.

In essence, supervised learning gives the model all the

information it needs so that it can decipher relationships

between the explanatory variables and a given target

variable, such as house price or travel time. Please note

that explanatory variables are also called the “independent

variables” or “X” in machine learning literature, while the

target variable is called the “dependent variable” or “y”.

 



Unsupervised Learning

Unsupervised learning deals with unlabeled data. The

model still has access to different explanatory variables but

no corresponding target variable. In this case, you might

have the same dataset describing house features, including

land size and the number of rooms, but no information

about the house price. As a consequence, it’s impossible to

predict the value of houses in this dataset without this

missing variable. Unsupervised learning, therefore, looks at

other ways of exploring the data.

In general, the goal of unsupervised learning is to find

structure in the data, such as grouping similar variables

together. Building on an earlier example, let's say you have

access to the GPS data for thousands of taxi trips in

Bangkok including travel times and addresses but no labels

about popular pickup and drop-off points. Using

unsupervised learning, you could use the data to explore

and discover the structure within it. For example, you might

identify clusters of trips that start or end in certain areas,

effectively identifying popular pick-up and drop-off points.

Likewise, you might discover recurring patterns in the data,

such as specific routes that are frequently taken, essentially

learning the main thoroughfares without ever being

explicitly told what the main roads in Bangkok are.

This ability to discover unlabeled relationships means that

unsupervised learning algorithms can be used in advance of

supervised learning to prepare the data for prediction

modeling. When used in this way, unsupervised algorithms

help to clean up and label the data.

 

Reinforcement Learning

Used in various fields, including robotics, game playing,

and navigation, reinforcement learning allows the model to

learn by performing actions in a defined environment and



receiving rewards or punishments based on its decisions.

Opposite to unsupervised learning, reinforcement learning is

told the target variable but needs to learn the values of the

explanatory variables (which are unknown).

The learning process is guided by the goal of maximizing

the total reward. To explain, let’s consider a self-driving car

that needs to navigate from point A to point B. The car has

a map of the city and a GPS signal, but it needs to learn

how to drive to the destination on its own. In reinforcement

learning, the self-driving car would learn by trial and error.

It might start with random actions and receive a reward or

penalty based on how well it performed. If it takes a shorter

route, it might get a reward. If it violates traffic rules or

takes a longer route, it might receive a penalty. Over time,

by trying to maximize its total reward, the self-driving car

would learn to effectively navigate the city.

Due to the exploratory nature of reinforcement learning,

such models require significantly more time and computing

power than other forms of machine learning to train.

 

Model Design

It's vital to remember that the model techniques

discussed are not easily interchangeable. Each technique is

tailored to solving a specific type of problem using a given

dataset and their use cases tend not to overlap.

Supervised learning, for example, is generally the go-to

approach when you have a lot of labeled data, in which you

know both the explanatory variables and the target

variable. For example, if you're developing an email spam

filter and you have a dataset with emails that are already

labeled as “spam” or “not spam” (target variable) and other

information such as the name of the sender and the email

title (explanatory variables), then supervised learning is an

ideal technique for this task.



Unsupervised learning comes into play when you have

plenty of input data but no corresponding target variable

labels. The main goal is to uncover hidden patterns,

clusters, or structures within the data. If you're tasked with

customer segmentation as part of a marketing analytics

project, unsupervised learning methods like clustering can

help identify groups of similar customers based on their

purchasing behaviors or preferences, for example. In its

place, supervised learning would not be a suitable approach

for discovering these unknown customer categories given

there are no existing labels.

Reinforcement learning, meanwhile, is suitable for

situations where a model learns to make decisions by

interacting in an environment with a finite number of

sequential decision actions. For instance, if you're designing

a system for playing chess or a video game, reinforcement

learning would be a prime candidate as it allows the AI to

learn optimal strategies over time through trial and error.

Reinforcement learning, though, cannot be used to predict

house prices or categorize emails into spam or non-spam as

these tasks don't involve sequential decision-making within

a confined environment.

In summary, the choice between supervised,

unsupervised, and reinforcement learning is not a matter of

superiority or preference, but rather a matter of fit. It's

about selecting the technique that best aligns with the data

you have and the problem you are attempting to solve.

Making the right choice can make the difference between a

successful AI project and one that is destined to fail before

you even start.

 



Figure 5: Machine learning techniques

 

Practical Demonstration

To reinforce the difference between supervised,

unsupervised, and reinforcement learning, let’s explore

three different model scenarios. To help with this practical

demonstration, we will be using a hypothetical dataset,

belonging to a fictional video game. In this video game,

players control a character to collect items, avoid enemies,

and maximize their score within a limited time period.

 

Variables:

PlayerID (unique identifier for each player)

Items_Collected (number of items the player's character

collected)

Enemies_Avoided (number of enemies the player's

character avoided)

Time_Taken (time in seconds taken to complete a mission)

Score (points earned by the player, based on items,

enemies, and time taken)

 



 

This dataset has five variables, also known as features or

dimensions, and seven rows of values. Please note that this

dataset is for illustrative purposes; in real-world scenarios,

you would need a much larger dataset with many more

rows in order to train a credible model.

 

Model 1: Supervised Learning
 

Objective: Predict the Score of a player given the other

features

Explanatory variables: Items_Collected,

Enemies_Avoided, Time_Taken

Target variable: Score

 

Steps

1) Divide the dataset into a training set (75%) and a

test set (25%)

2) Choose an algorithm: In this case, a regression

algorithm such as linear regression is a good choice

because the target variable (Score) is a continuous

variable.

3) Train the algorithm on the training data to build a

model, which works by finding the correlation

between different explanatory variables and the

target variable.

4) Test the model on the test data to see how well it

predicts the target variable (Score) using the



remaining unused data.

5) Measure the accuracy using an evaluation metric

such as Mean Squared Error (MSE), which is the

average of the squares of the differences between

the actual and predicted values.

6) Use the trained model to predict future data.

 

Model 2: Unsupervised Learning
 

Objective: Group players into clusters based on their

playing style

Explanatory variables: Time_Taken, Score

Target variable: N/A (unknown)

 

Steps

1) Choose a clustering algorithm, such as k-means

clustering.

2) Decide on the number of clusters/groups, i.e. k =

3.9

3) Train the algorithm on the explanatory variables.

(There is no training-test data split in unsupervised

learning.)

4) Analyze the clusters to see which players fall into

which cluster and interpret the characteristics of

each cluster. For example, we might find that the

three clusters represent: aggressive players,

balanced players, and defensive players.
 



These three new categories can now be used to label

each player in the dataset, providing a new

variable/feature that we didn’t know about previously.

 

 

Model 3: Reinforcement Learning
 

Objective: Develop an AI agent that can play the game

and maximize the Score value.

Explanatory variables: Move left, move right, jump,

crouch, advance forward

Target variable: Score

 

Steps

1) Define the state space: A combination of the

player's position, items left, enemies nearby, etc.



2) Define the action space: Move left, move right,

jump, crouch, advance forward.

3) Define the reward: For example, +50 for collecting

an item, -50 for colliding with an enemy, and +100

for passing the mission.

4) Use an algorithm like Q-learning to train the agent.

The agent will play the game multiple times. In the

beginning, it will play randomly and make many

mistakes.

5) Over time, the agent will learn the optimal strategy

to play the game and maximize Score.

 

Other Approaches

In addition to the three approaches to machine learning

that we have discussed, there are two other variants that lie

between supervised and unsupervised learning, called semi-

supervised learning and self-supervised learning

respectively.

In the case of semi-supervised learning, there is typically

a large amount of data but only some of it is actually

labeled. The idea is to use the labeled data to train an initial

model and make predictions on the unlabeled data. The

most confident predictions are then used to label the

unlabeled data and expand the labeled training set. The

prediction model can then be retrained on the combination

of the originally labeled and the self-labeled data. In this

way, semi-supervised learning seeks to benefit from the

additional (albeit imperfectly labeled) data. For instance,

you might have GPS data for millions of taxi rides but only

have the route times for a few thousand of those rides.

Using the known route times to train an initial model, you

can then use that model to predict the route times for rides

missing that variable based on their start point, end point,

and other variables such as the day of the week.



In the case of self-supervised learning, all data is

considered unlabeled, but the structure within the data is

used to provide supervision. In other words, the training

labels are automatically generated from the input data

itself, without human annotation. This is done by creating a

learning task where the objective is to predict some part of

the input data. For example, a self-supervised learning

algorithm may learn to predict the next word in a sentence

or the next frame in a video. The goal is to design a task

where the correct answer is available, allowing the model to

learn from the data directly.

A real-world example of self-supervised learning is the

masked language model training objective used in

transformer-based language models such as Google’s BERT

(Bidirectional Encoder Representations from Transformers).

During training, some portion of the input data such as a

word in a sentence is masked, and the model is trained to

predict the masked word based on the rest of the sentence.

This allows the model to learn useful features about

language from the data itself, without requiring explicit

labels for each example.

Another common example comes from the field of

computer vision, where a portion of an image might be

obscured and the model is tasked with predicting the

missing part. In this case, the model takes an image and

purposedly obscures a part of it, like covering a portion of

the image with a black box. The model then predicts what's

hidden behind the black box by analyzing the surrounding

context and making an educated guess. For instance, if the

covered area is around a person's face, the model might

predict that it's likely a face. As the model is exposed to

more images, it learns to predict more hidden parts.

Through this process, the model becomes better at

recognizing objects, patterns, and relationships without

explicit labels for every image.



In summary, semi-supervised learning is used when you

have some labeled data and lots of unlabeled data, while

self-supervised learning can be used on data without

preexisting labels to predict hidden features.

 

Key Takeaways

1) Machine learning allows systems to learn from data

and make predictions without explicit programming.

3) Training involves feeding a machine learning algorithm

a dataset to learn patterns and relationships. The goal is to

find a model that accurately captures the underlying

patterns without overfitting the training data.

3) There are three primary types of machine learning

models:

- Supervised learning uses labeled data with known

explanatory variables and a known target variable to train

the model.

- Unsupervised learning deals with known explanatory

variables and aims to discover hidden patterns and

structures within the data to create a new target variable.

- Reinforcement learning involves learning through trial

and error in an environment with rewards and punishments

in order to achieve a predefined target.

4) Model selection depends on the type of data you have

available and the problem you are attempting to solve.

 

Thought Exercises

1) What is a use case for supervised learning? (Hint: think

of a website that makes a prediction based on past data)

 

2) What is a use case for unsupervised learning? (Hint:

think of a model for sorting items)

 



3) What is a use case for reinforcement learning? (Hint:

think of a game or closed environment with a limited

number of potential actions)
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Deep Learning

 

From self-driving cars to large language models, the

ability of deep learning to learn from raw data and process

large datasets has dramatically broadened the use cases for

artificial intelligence. However, like all technologies, deep

learning has its own unique limitations and challenges that

we will examine in this chapter.

Before we dive in, it’s important to explain the connection

between deep learning and machine learning. Machine

learning, as discussed, involves algorithms and models that

improve with experience and exposure to data. As a

subfield of machine learning, deep learning takes the

foundational principles of machine learning and applies its

own techniques to even larger and more complex datasets.

This involves the use of artificial neural networks with deep

and multiple layers stacked together to form a model.

While artificial neural networks are not a direct replica of

the human brain, (with the human brain estimated to

contain 100 billion neurons, outnumbering the number of

stars in the galaxy, and more than one thousand kilometers

of interconnections), they are loosely inspired by it. Artificial

neural networks consist of interconnected nodes or neurons

that process and pass on information to the next layer of

neurons—similar to how neurons in the brain process and

transmit information. The first layer of neurons in the

network, for example, might recognize basic features in



images, such as edges. The next layer might put these

edges together to recognize shapes, the layer after that

might recognize fur patterns, and so on, until the final layer

recognizes the overall image as a cat.

Like machine learning, deep learning makes use of

supervised, unsupervised, and reinforcement learning

techniques. In the case of supervised learning, a neural

network, such as a convolutional neural network, can be

trained to recognize images by studying a large number of

labeled images (with the labels describing the image) and

learning to identify the labeled objects contained in those

images.

In the case of unsupervised learning, deep learning is

often used to simplify and reduce the dimensionality

(number of features) in the data or remove noise from it.

In reinforcement deep learning, neural networks are

combined with reinforcement learning techniques to create

systems that can learn to make a sequence of decisions. An

example is the AlphaGo program developed by DeepMind,

which learned to play the game of Go at a superhuman level

by studying past games played by humans as well as games

played against itself.

 

Deep Learning Models

There are various types of neural networks employed in

deep learning, each with its own unique strengths and

common use cases. In this section, we will examine

convolutional and recurrent neural networks as well as

transformer networks, which play a major role in NLP and

computer vision (discussed in Chapter 7 and Chapter 10

respectively).

 

Convolutional Neural Networks

CNNs represent a major advancement in the field of

computer vision, enabling machines to see and interpret



visual data. From facial recognition to self-driving cars,

CNNs are integral to computer vision and other AI

applications. In fact, the name “convolutional” comes from

the mathematical operation by the same name, which is a

specialized type of linear operation often utilized for image

processing.

CNNs excel at identifying spatial hierarchies or patterns in

images by processing small chunks of the image, allowing

them to recognize complex shapes and structures. Prior to

CNNs, image data was typically fed into neural networks as

one-dimensional arrays10. This, however, reduced the

spatial information contained in the image. To elaborate,

images are typically recorded as two-dimensional

structures, consisting of rows and columns of pixels. Each

pixel represents a value that represents the color or

intensity at that specific location in the image. To process

an image using a traditional neural network, the image is

transformed into a one-dimensional array, also known as a

vector. This transformation involves concatenating (meaning

“joining”) the rows or columns of the image into a long

linear sequence of values.

As an example, let's say we have a grayscale image of

dimensions 64x64 pixels. Each pixel in the image represents

a grayscale intensity ranging from 0 to 255. By flattening

this image into a one-dimensional array, we obtain a

sequence of 4,096 values, where each value represents the

intensity of a pixel. By representing the image as a one-

dimensional array, we can feed it into a neural network as

input, which then processes that array and performs

computations on the values of each element.

While flattening the image into a one-dimensional array

simplifies the representation of the image, it also eliminates

the spatial structure and relationships between neighboring

pixels. This loss of spatial information can limit the ability of

the neural network to capture complex patterns and spatial



dependencies within images. Recognizing a face, for

instance, is not just about identifying individual facial

features like the eyes, nose, or mouth, but also

understanding their relative positions to each other.

Traditional neural networks, though, fail to effectively

account for such spatial hierarchy between features.

To overcome this limitation, CNNs preserve the spatial

structure of images by operating directly on the two-

dimensional or three-dimensional representations of

images, allowing them to capture local patterns, spatial

hierarchy, and spatial relationships between features. Unlike

traditional neural networks, CNNs maintain the spatial

relationships between pixels by learning image features

using small squares of input data. This method is less

sensitive to object position and distortion within the image,

enabling the model to recognize an object even if its

appearance varies in some way. For example, when a CNN

is trained to recognize a turtle, it learns to detect its distinct

features like the shape of the shell, the presence of flippers,

and the general body structure. These collections of

features are consistently present across different images of

turtles, irrespective of their overall positions or poses. By

capturing the spatial relationships among these features,

the CNN can effectively generalize and recognize turtles,

regardless of whether they are crawling, standing, or

partially hidden inside their shell.

In terms of their design, CNNs consist of a series of layers

that filter the raw pixel data of an image to extract and

learn higher-level features, which the model can then use

for classification. Higher-level features refer to visual

elements that are built upon simpler features detected in

earlier layers, such as edges, lines, and textures. In other

words, the earlier layers capture basic visual elements that

are present in the input images and as the information

flows through subsequent layers of the network, higher-



level features are learned by combining and abstracting

these low-level features.

Another important aspect of CNNs is the pooling layers

that follow the convolutional layers. When passing an image

through a CNN, it goes through several layers that detect

different features like edges, shapes, and objects. As

mentioned, these features are combined to understand

what's present in the image. However, the information can

be quite detailed, which can make the network overly

complex and slow to run. Pooling layers solve this problem

by reducing the dimensionality of the data. This involves

summarizing and preserving the most relevant information,

which results in a more manageable and efficient

representation. By compressing the information, pooling

therefore decreases the size of the data and the number of

calculations needed, speeding up the overall network.

Pooling layers also make the network more robust by

focusing on important features rather than their exact

position. This enables the network to recognize objects even

if they appear slightly shifted or in different parts of the

image.

 

Recurrent Neural Networks

Renowned for their inherent ability to remember, RNNs

have been central to groundbreaking developments in

various fields including natural language processing, speech

recognition, and time series prediction.

Popularized by John Hopfield in the early 1980s, RNNs

were originally designed to overcome the limitations of

existing artificial neural networks. Notably, traditional feed-

forward neural networks, including CNNs, are not designed

to deal with sequential inputs. (A feedforward neural

network is an artificial neural network where connections

between the decision nodes do not form a loop or cycle).



For tasks such as language translation, speech

recognition, or time-series prediction, the order of the

inputs often carries crucial information, and the ability to

handle sequences is a key requirement. While traditional

neural networks assume that all inputs (and outputs) are

independent of each other, RNNs leverage the sequential

nature of their input data. By processing inputs in sequence

and having a form of memory, they can account for the

context provided by preceding elements. This allows them

to excel at tasks where the sequence and context matter,

such as sentences or time series data. They achieve this by

creating loops that pass information from one step in the

sequence to the next, effectively giving the network a basic

form of memory. In practice, each neuron or unit in an RNN

has a “hidden state” which acts as a point of memory. This

hidden state is a function of the current input and the

previous hidden state, allowing the network to retain

information from prior inputs in the sequence.

To better understand this concept, let’s consider the task

of predicting the next word in a sentence as an example. A

feed-forward network might be given a fixed number of

previous words and be trained to predict the next, but it

would treat these input words independently, ignoring the

order in which they appear. An RNN, on the other hand,

would process the sentence word by word, retaining

information from previous words as it goes along, thereby

capturing the sequence's context.

RNNs, however, possess limitations and chief among these

is the vanishing gradient problem. The vanishing gradient

problem occurs when a deep neural network struggles to

learn and make meaningful updates to its weights during

training. This happens because the gradients (slopes) of the

loss function for the network's weights become extremely

small as they are passed backward through the layers

(backpropagation). These gradients are calculated by



multiplying the gradients from the subsequent layers with

the weights connecting the current layer. As the network

becomes deeper, this multiplication can lead to a situation

where the gradients diminish significantly as they propagate

backward through multiple layers. This can result in very

small gradient values, leading to slow weight updates or

adjustments. As a result, the network makes only tiny

adjustments to its weights and it either takes a very long

time to complete or the network fails to learn complex

patterns in the data.

To gain a clearer grasp of this concept, it helps to think of

the neural network as a hiker trying to find the best path to

reach their destination. The hiker adjusts its path (which is

the weights) by looking at how much the slope (which is the

gradient) changes. If the slope is steep, it means there's a

lot to learn, so the hiker makes bigger adjustments to its

path. If the slope is gentle, it means there's not much to

learn, so the hiker only makes small changes to its path. In

some cases, especially with deep networks or long

sequences like in RNNs, the slopes can become very flat.

When this happens, the hiker gets stuck because it can't

make meaningful adjustments to its path (which is the

weights). Thus, much like a hiker struggling on a flat

mountain path, the network might take forever to learn or

become disorientated in the process.

As a practical example, imagine that you are training a

neural network to identify various types of animals in

images. When the network faces tricky examples such as a

zebra, the gradient is already extremely tiny, which reflects

how much the model should fine-tune its internal settings to

improve its recognition. As a result, the network learns at a

sluggish pace or it may even become stuck and fail to

accurately recognize animal images that are difficult to

classify.



In the context of RNNs, the vanishing gradient problem

makes it difficult for the model to learn long-range

dependencies in the data (discussed also in Chapter 7)

because it struggles to learn relationships between inputs

that are distanced apart. For instance, in a language

processing task, an RNN might find it challenging to connect

information from the beginning of a long sentence with

relevant words or phrases at the end of the sentence. This

happens because the RNN's ability to remember and use

information from earlier inputs gets weaker with more

added inputs.

This problem has led to the development of more

advanced types of RNNs like long short-term memory

(LSTM) and gated recurrent unit (GRU), which introduce

gates to control the flow of information. Acting as a switch,

a gate is a mechanism that controls the flow of information

within the network. It determines how much information

should be passed through and how much information should

be blocked or forgotten at each step. This allows the model

to selectively retain important information, helping to

mitigate the vanishing gradient problem. This architecture

has proven extremely effective, enabling RNNs to tackle

complex and nuanced tasks in NLP, including machine

translation, sentiment analysis, text summarization, and

language generation.

 

Transformer Networks

Transformer networks represent a significant leap forward

in dealing with sequential data and especially in natural

language processing. By focusing on the parts of the data

that matter most and processing sequences more efficiently,

they have opened a new paradigm in deep learning.

Transformer networks were formally introduced in a 2017

paper published by Google titled Attention is All You Need.

They were designed primarily to address the shortcomings



of existing models in handling sequential data, especially in

the field of NLP. Prior to the introduction of transformers,

recurrent neural networks and their variants such as long

short-term memory and gated recurrent unit were the

dominant models for sequential data tasks. While these

models performed well, they processed sequences in a

linear manner, considering one element at a time. This

approach resulted in two unique problems: computational

inefficiency and difficulty in capturing long-distance

dependencies in the data.

First, sequential processing made it challenging and slow

to effectively parallelize computations during training.

Second, even though LSTMs and GRUs were designed to

mitigate the vanishing gradient problem of standard RNNs

and better capture long-range dependencies, they still

struggled with very long sequences.

Transformer networks were thus developed to tackle these

two issues. They introduced a mechanism called attention,

which allows the model to weigh the relevance of different

elements in the input sequence when producing an output,

thus enabling it to focus more on important parts and less

on others.

This mechanism is useful in NLP, where the meaning of a

word can depend heavily on its context in a sentence or

document. For instance, consider the following English

sentence: “I took the dog that bit me to the vet”. In this

sentence, the word bit” is closely related to “dog” and me”,

while “vet” is more relevant to “I” and “took”. A transformer

model uses attention mechanisms to determine these

dependencies. It assigns higher weights to “dog” and “me”

when processing “bit” and higher weights to “I” and “took”

when processing “vet”. Moreover, if we were translating this

sentence into a language like German, where the verb often

comes at the end of the sentence, the transformer's

attention mechanism would allow it to associate the verb in



English with the corresponding verb in German, even

though they are in different positions within their respective

sentences.

Importantly, transformer models can compute the

attention weights for all elements of the sequence in

parallel, leading to significant improvements in

computational efficiency. Moreover, by directly attending to

all other words in the sequence, regardless of their position,

transformer models capture both short-term and long-term

dependencies contained within the data.

This architecture has proven extremely effective at natural

language processing tasks with the ability to process entire

sentences or even paragraphs at once—instead of

sequentially. Specifically, they make use of the attention

mechanism to weigh the importance of different words in

understanding the context of a sentence. This has resulted

in state-of-the-art models like GPT (generative pretrained

transformer) by OpenAI and BERT by Google. These

models, pre-trained on a large database of text and fine-

tuned for specific tasks, have significantly advanced the

field, demonstrating human-level performance on a range of

different benchmarks.

 

Challenges

In general, building and training any type of deep learning

network, especially reinforcement learning-based models,

requires substantial computation and processing resources.

This includes processing massive amounts of data and

performing complex calculations that necessitate

considerable memory and powerful graphical processing

units. However, recent technological advancements and

cloud-based solutions have made these resources more

affordable and accessible, enabling more parties to

participate in deep learning.



Next, deep learning models thrive on data and while the

recent explosion of big data has provided important fuel for

these data-hungry models, the quality of data is important

too. Erroneous or biased data can cause misleading results

or reinforce existing biases. In addition, deep learning

models contain a tendency to model intricate patterns in the

training data, which can be a strength as well as a potential

weakness. There's a risk that models might overfit the

training data, learning noise and specific details that don't

generalize well to unseen data.

However, perhaps the biggest challenge within the field of

deep learning is the black box nature of these prediction

models. In general, it’s difficult to understand why a

particular prediction was made and this is problematic in

scenarios like healthcare or judiciary scenarios where

transparency and trust are crucial. As discussed in Chapter

3, efforts are ongoing in the field of explainable AI to make

models more transparent and interpretable.

Understanding these strengths and weaknesses is critical

when deciding on potential uses for deep learning.

Businesses without access to massive troves of data and

GPU resources, for instance, may not be suitable candidates

for deep learning, especially if they need a model that is

transparent and easy to visualize.

 

Key Takeaways

1) Deep learning is an advanced subfield of machine

learning that uses artificial neural networks with deep and

multiple layers to learn and model complex patterns in data.

2) Deep learning models include convolutional neural

networks (CNNs), recurrent neural networks (RNNs), and

transformer networks. Each has its own strengths and

common use cases.

3) Due to the complexity of the neural networks and the

large amount of data they handle, deep learning models



require substantial computational resources. Deep learning

models can also suffer from limitations such as the black

box nature of their decision-making mechanisms and the

risk of overfitting patterns in the training data.
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Natural Language Processing

 

Beyond numerical data, a vast amount of human

knowledge and experience is captured in text and audio.

The ubiquity of words in daily life and the need for effective

human-computer interactions make the ability to process

human language a crucial part of artificial intelligence.

As a multidisciplinary field straddling linguistics, computer

science, and AI, natural language processing empowers

computers with the capability to understand and reproduce

human language. Inspired by linguistics—the study of

language and semantics—NLP was originally designed for

parsing text in databases using coding rule systems, but

over time, it merged with common algorithms from machine

learning to evolve into a novel and specialized field of

computational linguistics. Now, as a field of its own, NLP

involves analyzing human language with reduced emphasis

on quantitative problem-solving, which is typically the focus

of other subfields related to AI.

 

Early Development

To grasp the impact of recent developments in NLP, it’s

important to see what’s changed and where it all began.

Originally, NLP consisted of human-programmed rule-based

systems, where linguistic experts would manually encode

rules of language into a computer program. While some of

these earlier approaches obtained minor success in domain-



specific cases, they were inherently limited by the

complexity and variability of human language. One example

is ELIZA, which was one of the first chatbots developed by

Joseph Weizenbaum at MIT in the 1960s. This included a

version of ELIZA designed to emulate a psychotherapist

using its ability to reflect user statements back in the form

of a question, as demonstrated in the following example.

 

Example

Input: I am feeling sad.

Output: I see, can you tell me more about why you are

feeling sad?

 

If a user said, “I am feeling sad”, ELIZA might respond by

replying, “I see, can you tell me more about why you are

feeling sad?” While the output was impressive at the time,

the ELIZA chatbox was simply following predefined rules

and presenting itself as more intelligent than it actually was

—especially as it didn't understand the full context of the

conversation.

During the late 1980s and 1990s, the landscape of NLP

research evolved with the introduction of machine learning

methods. Rather than relying on hard-coded rules, new

methods used statistical-based models to learn patterns

from large amounts of labeled data. This development

significantly improved overall performance and broadened

the scope of tasks that NLP researchers could tackle.

Despite several advancements, these methods still had

limitations. Notably, they relied on carefully engineered

features derived from expert knowledge, which was labor-

intensive and unable to fully capture the richness and

subtlety of human language. In addition, these methods

struggled to capture longer-range dependencies within a

text, which refers to the relationship between words or

elements in a sentence that are not adjacent or close



together but that still influence each other's meaning. To

explain why, let’s consider the following example.

 

Example

Input: The girl, who was wearing a red hat that her

mother bought her for her birthday last year, ran down the

street.

 

Here, the main subject (“The girl”) and the main action

(“ran down the street”) are separated by a long clause

(“who was wearing a red hat that her mother bought her for

her birthday last year”). Despite this distance, we

understand that it is the girl who is running, not the mother

or the hat. Traditional NLP methods, however, struggled to

capture and understand this long-range dependency.

Next, traditional NLP methods lacked the ability to

leverage the benefits of distributed representations, a

method of symbolizing words as vectors in high-dimensional

space. This approach, commonly known as word

embeddings, enables semantically similar words to exist

closer together, thereby enriching the understanding of

textual data.

To understand this approach, it helps to think of a high-

dimensional space as a coordinate system where each word

has its own position. Words with similar meanings or usage,

such as “cat” and “dog”, tend to be closer to each other

because they share a similar semantic meaning related to

animals. Similarly, words like “AI” and “artificial intelligence”

would be close together because they share the same

meaning. These close relationships in a high-dimensional

space are called vectors or word embeddings, which

resemble an ordered list of numerical values. Using these

word embeddings, NLP models are capable of understanding

relationships between words and capturing their contextual

meaning. This allows the model to see similarities and



differences between words and make more accurate

predictions or enhance their understanding.

As mentioned, traditional NLP methods struggled to

analyze vectors in a high-dimensional space. This limitation

and the need to overcome it drove the adoption of newer,

more sophisticated deep learning architectures such as

recurrent neural networks and transformer networks.

Designed to examine the full context and multiple sentences

at a time, these techniques exhibited a superior ability to

handle longer-range dependencies in text, marking a

significant advancement in the field of NLP.

Transformer networks are now used heavily in NLP models

including OpenAI's GPT model and Google's BERT model. In

recent years, NLP has also benefited from several other

emerging trends including zero-shot learning, where models

learn to generalize using fewer labeled examples. This is

especially useful when labeled data is scarce, which is often

the case for less common and low-resource languages.

In practice, rather than relying solely on labeled

examples, zero-shot learning leverages auxiliary

information or semantic relationships to make predictions

on new, unfamiliar classes. In other words, rather than

training the model on numerous examples for every class,

the model is trained on a smaller selection of classes. Then,

when presented with a completely new class that it hasn't

seen before, the model uses the hints and relationships it

learned from the initial training data to make a prediction.

In effect, this allows the model to generalize and perform

tasks in domains it wasn’t explicitly trained to do. As an

example, imagine you have a model that has learned to

identify different animal classes, but the model has never

seen a zebra before. If the model knows that zebras are

similar to horses but they have black and white stripes, the

model can recognize a zebra without ever seeing any direct

examples of a zebra. In this case, the class “zebra” is



already labeled in the dataset as a horse with black and

white stripes.

Another promising trend has been self-supervised

learning, which has been one of the driving forces behind

the success of large language models such as GPT-3. This

approach describes models that learn representations from

unlabeled data, leveraging the abundant unannotated text

available on the Internet.

In the context of GPT-3 and large language models,

learning involves two main steps: pretraining and fine-

tuning. In the pretraining phase, the model is exposed to a

large collection of text, sourced from books, articles, web

pages, and other sources. Here, the model learns to predict

the next word in a sentence based on the preceding

context, such as the following example.

 

Example

Input: “The cat sat on the ______”

 

In this example, the model needs to predict the next word

after “the”, which might be a word like “mat”. The process

repeats for numerous sentences in the dataset, exposing

the model to a wide range of words and contexts. Through

self-learning, the model learns to capture the statistical

patterns and relationships contained in the text. It learns

that after “The cat sat on the”, words like “mat”, “chair”, or

“floor” are likely to follow based on patterns observed from

the training data.

By continuously training on a diverse range of sentences,

the model gradually develops a strong understanding of

language. It learns to recognize grammatical structures,

understand the meaning of different words, and grasp the

contextual relationships between words. This pretraining

phase helps the model acquire a broad knowledge of



language, allowing it to generate coherent and contextually

relevant responses in conversations.

After pretraining, the model enters the fine-tuning phase.

During this phase, the model is trained on specific

supervised tasks with labeled data. For example, it can be

fine-tuned on a conversational dataset where inputs and

corresponding responses are provided. By training on this

labeled data, the model learns to generate appropriate

responses based on different inputs.

 

NLU & NLG

Broadly speaking, NLP can be divided into two distinct

approaches: natural language understanding (NLU) and

natural language generation (NLG). NLU enables a model to

comprehend and derive meaning from human language,

while NLG empowers a model to generate coherent and

contextually appropriate text. This involves creating entire

sentences, paragraphs, or even entire articles. NLG can be

used for tasks such as generating descriptions of data,

writing news stories, summarizing text, or creating

conversational agents (known as chatbots). The core

process involves determining what information to include

and how to organize it (document planning), before putting

the information into appropriate sentences (sentence

planning), and then realizing the sentence plans in the

actual text (text realization).

NLU, meanwhile, aims to extract meaning, sentiment,

intent, and other semantic features from the text to

perform sentiment analysis, named entity recognition, or

text classification.

In terms of their application, both approaches start with

raw, unstructured text data. This data emanates from

various sources such as databases, APIs, scraped website

content, user inputs, and chat logs. As with any data

processing data, the raw data is cleaned, which usually



involves removing inconsistencies, inaccuracies, or

irrelevant information. Depending on the source of the data,

this could involve tasks such as reformatting and removing

or correcting typos.

Using a variety of techniques and preprocessing

algorithms, the text is converted into a structured format

that machines can process and understand. This involves

tasks such as tokenization (breaking text into individual

words or tokens), stemming (reducing words to their root

form, i.e., “naturally” > “nature”), and removing stop words

(common words such as “and”, “the”, and “a” that don’t

provide informational value) as well as unnecessary white

spaces.

 

Natural Language Understanding

After transforming the text into a suitable format, various

tasks can take place. In the case of natural language

understanding, common tasks include topic modeling,

sentiment analysis, named entity recognition, and text

classification. Sentiment analysis involves determining the

sentiment or emotion of a sentence or document, usually

categorized as positive, negative, or neutral. Named entity

recognition identifies and classifies named entities (i.e.,

persons, organizations, locations) in a text. Text

classification classifies text into predefined categories, such

as spam detection in emails and categorizing news articles.

Lastly, as an unsupervised learning approach, topic

modeling is used to discover abstract topics within a text

document.

After undertaking one or more of these tasks, the model

is evaluated based on appropriate metrics (such as

accuracy, precision, recall, F1-score) to measure its

performance. Then, once the model is evaluated and fine-

tuned, it is deployed to real-world applications and used to

inform decisions. Common examples include chatbots and



virtual assistants such as Apple's Siri, Google Assistant, and

Amazon's Alexa. These applications employ NLP to

understand user commands and generate appropriate

responses, enabling users to set reminders, search the

Internet, control home devices, and so forth. In the realm

of social media, NLU is used for sentiment analysis, helping

businesses understand public sentiment towards their brand

by analyzing text data from social media posts or customer

reviews. The same technology can also aid in detecting

online harassment or toxic behavior on online platforms.

 

Natural Language Generation

Having discussed common tasks in natural language

understanding, let’s revisit natural language generation.

Following the data preprocessing stage, NLG typically

consists of three stages: document planning, sentence

planning, and text realization.

Document planning is the initial stage where the content

to be included in the output text is decided. The system

identifies the information from the source data that needs

to be conveyed in the text. For instance, if an NLG model is

generating a weather report, the document planning stage

will identify the key data points to be included in the report,

such as temperature, precipitation, and humidity. This stage

includes organizing the selected content into a coherent

structure and determining the order and manner in which

the information will be presented.

Sentence planning, known too as microplanning, next

determines how to express the selected information in

linguistic terms. It decides on the specific words and

phrases that can be used to represent the information. It

also determines the structure of the sentences, taking into

account different aspects such as grammatical correctness,

cohesion with the surrounding sentences, and variability in

expressions to avoid repetitiveness. Using the weather



report example, this stage would involve choosing whether

to say “It's expected to be sunny” or “Sunshine is

predicted”, among other considerations.

Lastly, text realization is where the actual text is

generated. Here, the system transforms the linguistic

representations from the previous stage into a final, fluent

text. It ensures proper grammatical structures and pays

attention to other aspects of the language such as

punctuation and agreement between subjects and verbs.

Using the weather report example again, this last step

would involve generating the final form such as “Tomorrow,

it's expected to be sunny with a high of 25 degrees”.

These three stages often involve complex algorithms and

rules, and more recently, newer language models such as

GPT have proved highly successful at generating fluent and

coherent text, leading to significant advances in the field of

NLG and generative AI, which we’ll discuss further in the

following chapter.

 

Challenges

As with other areas of artificial intelligence, NLP is not

without potential challenges and headaches! First,

understanding the intricate nuances of human language,

including irony, sarcasm, and cultural references poses a

major challenge in the field of NLP.

Second, subtle changes in the text or context can shift the

meaning of a word or phrase, and while this is easy for

humans to perceive, it is notably difficult for machines to

notice and comprehend. One example is the interpretation

of homographs, which are words spelled the same but

possess more than one meaning. The word “bass”, for

example, can mean a type of fish or a low, deep voice or

musical instrument depending on the context. Similarly, the

phrase “It's raining cats and dogs” doesn't literally mean

animals are falling from the sky. Deciphering the meaning of



such phrases is something that comes naturally to humans

but is difficult for NLP models.

Issues such as language bias, model interpretability, data

privacy, and the lack of high-quality annotated data for low-

resource languages are other areas of concern and ongoing

development. The issue of bias in NLP is a particularly

thorny issue. This is because AI models tend to learn and

replicate the biases contained in the training data, leading

to biased predictions. This is problematic when NLP models

are used in sensitive areas like recruitment or loan

approval, where biased outcomes can have significant

impacts on people's lives.

Ethical considerations, particularly around privacy, are

also crucial. Text data, whether from social media, emails,

or other sources, often contains sensitive or personal

information. Hence, handling this data responsibly, adhering

to data privacy regulations, and anonymizing data to

protect individual identities become paramount

responsibilities for those involved with collecting the training

data and building the model.

Lastly, the development of NLP models for low-resource

languages and multilingual contexts presents challenges.

While a lot of work in NLP has been done in English, there's

a scarcity of high-quality labeled data for many other

languages. This lack of resources makes it challenging to

develop robust NLP models that can understand and

generate text in other languages. Furthermore, creating

models that can handle text in multiple languages

simultaneously also represents an ongoing challenge in

terms of model sophistication and training.

 

Key Takeaways

1) Natural language processing is a multidisciplinary field

that empowers computers to process, understand, and

generate human language.



2) NLP can be divided into natural language

understanding and natural language generation. NLU

concentrates on extracting meaning, sentiment, and other

semantic features from the text, while NLG focuses on

generating coherent and contextually appropriate text.

3) Challenges in NLP include understanding the intricacies

of human language, such as irony and cultural references,

language subtlety, addressing bias, ensuring model

interpretability, protecting data privacy, and developing NLP

models for low-resource languages. 
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Generative AI

 

In the ever-evolving world of AI, a unique variant of

machine intelligence is rapidly breaking into software

applications and mainstream use. In this chapter, we will

explore generative AI, looking at how it differs from its

traditional counterpart, and discuss how its rich creativity is

changing the landscape of content creation, with a

particular focus on generative adversarial networks and the

battle for available training data.

First, to understand the strengths of generative AI, it’s

important to understand how it differs from traditional AI.

The first distinction between generative AI and traditional AI

is found in their outputs. Traditional AI, which is sometimes

referred to as discriminative AI, is trained to discriminate,

classify, or predict based on input data fed into a model.

This approach powers a variety of AI applications including

recommendation systems and search engines. Generative

AI, on the other hand, learns the underlying patterns of

input data but rather than provide a prediction or insight, it

uses that learned knowledge to generate an output that is

similar but different from the training data.

ChatGPT, developed by OpenAI, is a prominent example of

generative AI. Instead of predicting a likely output to a

given input, ChatGPT is designed to generate coherent and

contextually appropriate responses, whether that be



drafting emails, writing essays, creating poetry, or

simulating human dialogue.

Similarly, new software applications such as DALL-E (also

developed by OpenAI), Midjourney, and Stable Diffusion are

making waves in the domain of art and image creation.

Visual outputs can be generated using what’s called a

generative adversarial network (GAN), a type of generative

AI model that consists of two neural networks: a generator

and a discriminator. During training, the generator and

discriminator are pitted against each other in a competitive

environment. The generator aims to produce realistic

outputs that can fool the discriminator, while the

discriminator aims to correctly identify whether the outputs

are real or generated. In practice, the generator learns the

target art style by observing and analyzing a vast dataset of

existing artworks. Acting as a type of art critic, the

discriminator then evaluates these generated images and

issues feedback on their authenticity. Initially, the

discriminator can easily identify the generated images as

computer-generated due to the lack of resemblance to the

training data. Using feedback from the discriminator, the

generator adjusts its approach and through multiple

feedback loops, the generator improves its ability to

produce convincing artwork.

Throughout this entire process, the generator and

discriminator are engaged in a competition against each

other. The generator aims to produce art that the

discriminator cannot distinguish from real artwork, while the

discriminator seeks to improve its ability to differentiate

between real and fake art. This adversarial competition

drives both sides to evolve and learn from each other. Over

time, the competition and ongoing feedback loop lead to a

point of convergence where the generator becomes so

proficient at creating art (resembling the style of the

training data) that it deceives the discriminator.



Building on their success in the domain of image

generation, researchers are also developing GANs for

generating audio, music, writing, and even three-

dimensional objects, leading to a further explosion in AI-

generated content.
 
Data as a New Asset Class

Riding the wave of large language models powered by

OpenAI’s GPT architecture and advances in GAN techniques,

generative AI is set to radically transform the physics of

content creation and creative expression. From producing

full-length films to customer service avatars trained on

customer service logs and product documentation, as well

as simulating realistic video game and esports

environments, the possibilities are suddenly closer than

many people expected.

Underpinning these developments is access to relevant

training data and the growing adoption of generative AI

software tools is set to unlock a new dimension of value for

existing data. In sports, for example, match data and video

footage of professional athletes can be monetized to create

new and unique content. While this data has traditionally

been used for entertainment and post-match analysis (as

popularized in the film and novel Moneyball), it can now be

commercialized for creative use cases as well.

One example comes from Behaviol, a digital sports

company, working on a platform where gamers can acquire

and develop AI sports stars to compete in virtual

tournaments. The company is starting with cricket, after

purchasing five years of player data to train and generate

unique AI player avatars. This development marks a

departure from traditional sports games, where in-game

athletes come with preprogrammed actions and fixed

behaviors.



Generative AI will be used by Behaviol to study the

movements, techniques, and playing styles of real athletes

by training AI on their match data and video footage. By

doing so, Behaviol can recreate the actions, style, and

performance of athletes in a virtual environment. This will

enable gamers to play alongside AI-generated athletes and

make it possible to simulate hypothetical scenarios, such as

pitting Michael Jordan against modern basketball stars.

This new path of game and content creation opens up

fertile space for athletes, broadcasters, and sporting

franchises to commercialize their data in innovative ways

and transform the market valuation of different data

classes, including player data and video footage.

In a similar vein, actors, producers, directors, and

film/television companies may also be enticed to

commercialize their archives, including scripts, dialogue,

scenes, and visual elements to produce AI-generated films

and TV series. Actors and other industry professionals,

though, are concerned about the potential for AI to create

digital doppelgängers that replace human talent, especially

for scriptwriters, new talent, and actors playing non-starring

roles. Training AI models on an actor’s film archive, for

example, makes it possible to de-age that actor by

modeling their younger self, reducing the available

opportunities for younger talent.

 

Challenges

While it’s clear that generative AI offers exciting potential,

it's important to acknowledge the challenges and ethical

considerations that come with it. In fact, generative AI has

opened a Pandora’s box of problems that researchers,

practitioners, and policymakers are now scrambling to

address. This includes ensuring the originality and quality of

AI-generated content, mitigating biases and misinformation,

and handling potential misuse of the technology.



Among the many applications of generative AI technology,

deep fakes are a widely recognized use case with the

capacity to inflict harm. This involves using generative AI to

create convincingly realistic fake videos or images of

individuals, such as celebrities or public figures, which can

be used for disinformation campaigns, fraud, or

harassment. There are already cases emerging of scammers

using AI to imitate the voice of real people to scam their

relatives to transfer money over a voice message or phone

call.

  A 2023 study by the University College London warns

that detection will become increasingly challenging as deep

fake technology continues to evolve. The study found that

humans only have 73% accuracy at identifying deep fake

speech (based on the current technology), highlighting the

need for AI and automated detection systems to mitigate

human deficiencies.

Next comes critical questions regarding originality and

ownership. Specifically, who owns the copyright to a piece

of music generated by AI? Is it the AI's developers, the

users who interacted with the AI, or perhaps none of the

above since it's all machine-generated? Is ownership of AI-

generated content even possible? Under copyright law set

by the U.S. Copyright Office, an author's exclusive right to

reproduce their work does not apply if a work has been

generated by a computer process that operates randomly or

mechanically without human authorship.

Moreover, as AI-generated content is shaped by its

training data, it is possible for the AI to generate content

that is too similar to its training data and encroach on

existing copyright protections. As a case in point, AI-

generated art has been caught adding remnants of artists’

signatures in the bottom corner of the image, triggering

concerns about artistic originality and imitation. This has

prompted the creation of an online database called



haveibeentrained.com, offering artists a means to verify

whether their artwork has been utilized to train AI models.

Additionally, with millions of users generating content

from the same training data, AI-generated content has a

tendency to exhibit bias toward reoccurring perspectives,

case studies, arguments, aesthetics, and phrasing. AI-

generated content also tends to lack the creativity, nuance,

and context that human creators bring to their work. AI

writing tools such as ChatGPT, for instance, lack the ability

to curate case studies and narratives that humans find

interesting or remarkable, leading to dry and substandard

content. The result is commoditization, with many blogs,

email newsletters, and other content channels propagating

the same AI-generated content using popular tools such as

ChatGPT.

Lastly, there is the issue of the training data. Given that

GANs and large language models are trained on vast

amounts of data collected from the Internet, they

inadvertently absorb and ingest the biases, misinformation,

low-quality, and untrustworthy information that exists

online. The Pew Research Center, for example, estimates

that less than half of the health and medical information

available online has been reviewed and validated by a

doctor. Moreover, two different studies on 35 kidney cancer

websites and 188 breast cancer websites found that only

12.5% of these websites fulfilled requirements set by Health

on the Net (HON), a non-profit charity providing quality

assessments of health-related information available

online.11

In addition to problems with the accuracy and quality of

online information, there are concerns over the potential

use of inappropriate and dangerous information for training

generative models. A case illustrating this concern was a

stream on Twitch involving an AI-generated version of

Family Guy that was later removed due to its portrayal of a



bomb threat. During the stream, the character Peter Griffin

began discussing the process of planting a bomb at a venue

in Washington DC.

“First, you need to find a good spot to plant the bomb.

You want to consider where it will cause the most damage

and destruction. The Capital One Arena is a great target, so

find an inconspicuous corner and plant the bomb. Next, set

up a timer to detonate the bomb. I suggest 15 minutes

after you have left the arena. Finally, make sure you have

an escape plan.”12

The streamed episode (which was not affiliated with the

official show or its creators) was subsequently removed by

Twitch for violating the site’s “Community Guidelines and

Terms of Service” but not before these dangerous

comments were made in public. This case not only

highlights the hazards associated with broadcasting AI-

generated content but also underlines the challenges in

governing generative AI content and ensuring the

availability of safe training data.

Finally, there is the problem of AI hallucinations, which

refers to situations where AI generates content or

predictions that are not accurate or reflective of reality.

These hallucinations can occur when the AI model

extrapolates patterns from its training data that don’t

reflect reality, leading to outputs that may seem plausible

but are incorrect or nonsensical. As an example, an AI art

model might “hallucinate” by generating images that

contain objects, features, or details that don’t exist in the

real world. Similarly, in natural language processing, AI-

generated text might include information or connections

that are not factual or coherent.

Hallucinations can occur due to a variety of technical

reasons, including noise or ambiguity in the data,

overfitting, and limited training data where the model

makes assumptions based on the patterns it learned from a



small sample size, leading to inaccurate or unrealistic

outputs. Overfitting occurs when the model memorizes the

training data instead of learning general patterns. As a

result, it replicates outliers or unique quirks in the training

data when generating new outputs, even if those details are

not representative of the broader reality.

These distortions serve as a reminder of the resources

and effort required to ensure that AI-generated content

aligns accurately with reality including the importance of

relevant training data.

 

The Data Wars

While we have achieved major breakthroughs in

generative AI technology, crawling large portions of the

Internet might not be as straightforward13 for companies

like OpenAI under the changing landscape of data

protection. Organizations invested in data collection are

meeting increased resistance with forces advocating for

more stringent privacy protection. Concerned by the vast

quantities of data being collected, governments around the

globe, are putting up legislative guardrails to protect their

citizens' privacy. As a result, these new regulations

significantly complicate the task of collecting, accessing,

and processing raw data.

At the same time, corporations are assembling their own

walls and protecting their access to data. This unfolding

drama, heralded the Data Wars, is manifesting itself in

several ways. The first is the race for data dominance and

control. Corporations across industries are escalating their

efforts to amass and analyze data as well as monopolize

their access to that data. Consequently, corporations are

displaying a reduced willingness to share their data freely,

and in some cases, they are even requesting a nominal fee,

as exemplified by Twitter. In early 2023, the social media

platform announced its plan to eliminate free API access to



third parties. This change means that companies who

previously relied on Twitter’s API to collect public data from

the site will now need to pay to access this data.

Facebook, Apple, and Google have made similar changes

over recent years to limit the availability of data to third

parties, including the retirement of Google Analytics, which

no longer aligns with current reporting and privacy

requirements. Some of these changes have been made in

response to user privacy regulations, and the fact that

OpenAI has shone the way to monetize existing data

through new innovations in generative AI will only

accelerate the use of walled gardens and the competition

for data. This includes encrypting data more heavily to

make it harder for bots to access and analyze it. Artificial

intelligence may also be used more aggressively to detect

and block bots, adding an extra layer of difficulty to web

crawling. Governments, meanwhile, may begin to regulate

the use of bots more strictly, making it more difficult for

companies to use them for web crawling.

These potential changes highlight the increasing

complexity associated with crawling the web. As a result,

this could lead to challenges in data collection and

utilization, creating obstacles for training models and

developing generative AI. Organizations, for instance, may

need to obtain explicit permission from the government and

other organizations before they can collect the data they

need. Meanwhile, large corporations with direct access to

troves of data, such as Facebook and Google, will look to

take advantage of their exclusive access to valuable data.

Next, as time goes on and generative AI content becomes

more prevalent, AI models will not only be trained on

human-generated data but also on AI-generated data,

introducing an additional layer of bias, misinformation, and

error. In effect, there are already significant problems with

existing information on the Internet created by humans



without adding another layer of confusion caused by

randomness, hallucinations, and the bias of generative AI

models.

Furthermore, there are data privacy issues to navigate

regarding the collection and use of private data. At

companies such as Google and Alibaba, internal use of

generative AI applications such as ChatGPT among

employees was immediately banned due to data security

concerns. Despite potential business use cases for ChatGPT,

large companies are concerned about the possibility of their

data and proprietary information being exposed to external

entities or being utilized for model retraining. To capitalize

on the efficiency gains offered by generative AI, these

companies are instead building their own large language

models to keep employees’ text prompts and data on

company-controlled servers. This approach enables

companies to generate content based on internal training

data rather than using general-use models trained on

unknown data, which is also an important design feature.

While tools like ChatGPT can be game-changing for small

companies and solopreneurs, their applicability within major

corporations like Microsoft or Amazon Web Services is

limited. This limitation arises from the fact that existing

generative AI models are predominantly trained on public

data and designed for general use. Large corporations,

however, must be cautious about relying on large language

models trained on public and unfamiliar data, as this could

lead to errors and negative repercussions. Instead, private

models are needed to generate relevant, authorized, and

company-specific content for important tasks such as

updating product documentation or communicating with

customers through chat. While expensive and onerous to

manage, private language models will make sense over the

coming years as the cost of computing resources continues



to fall and generative AI becomes more entrenched in

internal company processes.

 

Key Takeaways

1) Generative AI differs from traditional predictive AI

through its ability to create, innovate, and generate new

outputs.

2) Generative AI presents challenges and ethical

considerations, including the misuse of technology for

generating deep fakes, spam, fake news, or phishing

emails. There are also issues regarding the originality,

ownership, and copyright of AI-generated content.

3) The Data Wars refer to the battle between

corporations' data collection efforts and the demand for

privacy protections. Stricter regulations will limit data

accessibility and companies are building walled gardens to

control and monetize their data.

 

Thought Exercises

1) If generative AI continues to develop, what data will

increase in value? (i.e., unpopular films featuring actors that

can be used to train an avatar for use in other films.)

 

2) If you were to design your own version of ChatGPT to

help you at work or school, what data would you use to

train it, and why?

 

3) How can you reclaim more ownership of your data?

(i.e., use a VPN to protect your IP location, opt out of data

collection programs, and understand data collection

processes.)

 

4) In light of the recent developments in generative AI,

how might you potentially monetize your personal or



organization’s existing data? (i.e., monetize your online

browsing data by participating in programs such as Brave

Rewards)
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Recommender Systems

 

In an era of information overload, recommender systems

have become an indispensable tool for steering people

through the vast ocean of content and navigating the long

tail of available products. Fueled by data and algorithms,

recommender systems can analyze our behaviors and

preferences and then deliver personalized recommendations

tailored to our unique tastes and interests. By

recommending movies, music, books, products, and other

items, they save us valuable time while opening doors to

new discoveries.

In this chapter, we’ll delve into the exciting world of

recommender systems, explore various approaches, and

uncover strategies to maximize their performance. Before

we get started, it’s important to acknowledge that

recommender systems are not built on a single technique or

one family of algorithms. Instead, they represent a

mismatch of techniques and algorithms united under one

common goal: to make relevant recommendations. Whether

it’s machine learning, deep learning, or NLP, recommender

systems use whatever algorithm they can to serve relevant

items to end-users. There are, though, a number of design

methodologies that are specific to recommender systems,

including collaborative filtering, content-based filtering, and

the hybrid approach, which form the core focus of this

chapter.

 



Content-Based Filtering

Content-based filtering, also known as item-based

filtering, provides recommendations based on similar item

characteristics and the profile of an individual user’s

preferences. In effect, the system attempts to recommend

items that are similar to those that a user has liked,

browsed, or purchased in the past. After purchasing a book

about machine learning, for example, Amazon’s content-

based filtering model is likely to serve you other books from

the same author, series, or genre.

This approach relies heavily on descriptions of items as

well as the profiling of individual user preferences. A book,

for example, can be described by the following

characteristics:

1. The author(s)

2. The genre, e.g., thriller, romance, historical fiction

3. The year of publication

4. The type of book, e.g., fiction, non-fiction

5. Book format, e.g., paperback, audiobook, e-book,

hardback

Likewise, user preferences need to be collected and

analyzed. Individual user preferences can be determined by

examining:

1. Past purchasing/consumption behavior

2. Browsing history

3. Personal details, e.g., location, nationality, and hobbies

4. IP address (to determine location and time zone)

Using the information gathered, filtering techniques can

then compare this data with the descriptions of available

items to identify and recommend relevant items. If a user

has shown a preference for thriller movies in the past and

has rated several thriller movies positively, a content-based

filtering model can identify these preferences and

recommend other thriller movies with similar traits, such as



genre, actors, and storyline, even if those movies weren’t

highly rated by other users.

Whether it’s movies, books, or other items, the model

aims to recommend items that align closely with the user's

preferences, irrespective of their popularity among the

overall user base. Let’s now review the other advantages as

well as some of the drawbacks of content-based filtering.

 

Advantages

1. Agnostic to crowd preferences

The first advantage of content-based filtering is that it

aids the discovery of relevant but low-profile items. As

content-based filtering doesn't take crowd preferences into

account, relevant items with low exposure to the crowd can

still be found and promoted.

2. Content items are stable

Items don’t change over time as much as people do and

they are generally more permanent. People, on the other

hand, are fickle and our tastes change over time. We’re all

guilty of following fad diets, new exercise regimes, and

content binges. However, an item will always be an item,

making content-based filtering less vulnerable to short-term

shifts in user preferences and reducing the need for regular

retraining of the model. This, though, could prove a

disadvantage over the long term as the model struggles to

keep up with shifting consumption behavior.

3. Items are generally fewer than users

Most online platforms have fewer items than users, and

content-based filtering can help to conserve computational

resources by comparing a limited number of items rather

than a larger volume of user relationships.

4. Compatible with new items

If there is insufficient rating data for a new or existing

item (known as the cold-start problem), content-based



filtering can be used to gather information regarding other

items rated/purchased/consumed by the target user that

share similar attributes. Items are therefore recommended

based on the user’s interaction with similar items despite

the lack of existing data for certain products.

5. Mitigates cheating

The other notable benefit of content-based filtering is that

it’s generally more difficult to game the system because

malicious actors have less power to manipulate or fabricate

item-to-item relationships. This is not the case for item-to-

user relationships, which can be easily manipulated with a

flood of fake reviews and purchases or views.

 

Disadvantages

1. Low variety

The variety of recommended items can be limited and less

diverse than other methods. This is because content-based

filtering relies on matching a specific item with similar

items. Thus, unique and novel items with low exposure to

the target user are unlikely to surface, limiting the range of

category discoverability.

2. Ineffective for new users

While content-based filtering methods excel at

recommending new items, this isn’t the case for new users.

Without information about the user’s preferences to

construct a user profile, there’s little way of recommending

related items. To mitigate the cold-start problem, some

online platforms attempt to extract relevant keywords when

onboarding new users. Pinterest, for example, directs new

users to specify a collection of over-arching interests that

are used to establish a preliminary user profile and match

these descriptions to content recommendations. Pinterest’s

machine learning-based models then refine the user’s



profile and their specific interests based on observing their

pins and browsing behavior.

3. Mixed quality of results

Content-based filtering is generally accurate at selecting

relevant items, but the quality of such items can sometimes

be poor. As content-based filtering ignores the ratings of

other users, the model is limited by an inability to decipher

the quality of an item.

 

Demonstration

To explore how content-based filtering works, let’s run

through a simple demonstration that looks at

recommending films to users according to their rating

history.

For this demonstration, let's assume the films available

are represented based on three features: genre, director,

and production company.

 

Dataset: Film Metadata

 

Step 1: Profile Creation

For each user, we first need to create a profile based on

the features of films they have already rated. For instance,

if User 4 gave a high rating to films directed by Christopher

Nolan, then Nolan’s films would be a prominent feature in

their profile.

 



Dataset: Film ratings (1-5 stars), blanks indicate that the user has not

yet rated the film

 

Step 2: User 4 Profile

Create a profile for User 4 based on their known film

ratings.

- User 4 likes War/Drama genre and films directed by

Christopher Nolan (because of their high rating for

Dunkirk)

- User 4 dislikes Fantasy/Musical genre and Disney

films (because of low ratings for The Little Mermaid and

Mary Poppins)

 

Step 3: Compute Scores

For the films that User 4 hasn't rated (Oppenheimer and

Beauty and the Beast), we need to calculate a score based

on their profile and the film's features. The score is derived

from how many features of the film match the user's

preferences.

Oppenheimer: Matches with War/Drama and

Christopher Nolan (1 positive match)

Beauty and the Beast: Matches with Fantasy/Musical

and Disney films (2 negative matches)

 

Step 4: Recommend

Compared to Beauty and the Beast, Oppenheimer appears

to be a better film recommendation for User 4 based on 1

positive match.

 



Keep in mind that this is a highly simplified representation

of content-based filtering. In real-world scenarios, you

might use techniques like TF-IDF (Term Frequency-Inverse

Document Frequency) to represent film features and cosine

similarity or other metrics to determine the similarity

between user profiles and film features. The idea, however,

remains the same: understanding the content similarities

between items and the user's preferences and making

recommendations based on those relationships.

 

Collaborative Filtering

Reflecting the wisdom of the crowd, collaborative filtering

recommends items to an individual based on the

preferences and consumption trends of other users with

shared interests. For instance, on TikTok, users who enjoy

fitness content might also find personal finance content

appealing. Under this scenario, the items (fitness and

personal finance videos) may not share the same genre or

title keywords. Despite this, the recommender system will

still suggest personal finance videos to fitness enthusiasts

based on the behavioral patterns of similar users.

Collaborative filtering, though, should not be mistaken as

a popularity chart or a top ten list of popular items. Rather,

it uses two distinct methods to match items that share

popular associations among similar types of users. The first

method is user-based collaborative filtering, which

generates recommendations to a target user based on

analyzing the historical preferences of users with similar

tastes. In other words, people similar to you who buy x also

buy y.

In practice, this works by identifying like-minded users.

Their ratings or preferences are then collected and grouped

to produce a weighted average. The group’s general

preferences are used to recommend items to individual

users based on the ratings and preferences of their peer



group. For instance, if a user has never watched Squid

Games and their peers have all watched and rated it

positively, the model will recommend Squid Games to the

user based on peer observation.

The second method is item-based collaborative filtering.

Rather than finding users with similar preferences, this

method finds a set of items similar to the target item based

on user preferences. For example, Star Wars movies rated

highly by a similar audience of users will be matched

together as a set and then recommended to other users

who like and rate one of the movies in the set. Item-based

filtering can therefore be thought of as people who buy x

also buy y.

The main distinction between these two methods lies in

the selection of input. Item-based collaborative filtering

takes a given item, finds users who liked that item, and

then retrieves other items that those users liked.

Conversely, user-based collaborative filtering takes a

selected user, finds users similar to that user based on

similar item ratings or purchases, and then recommends

items that similar users also liked.

In reality, both methods tend to produce similar item

recommendations, but user-based collaborative filtering can

be more accurate for datasets that have a large number of

users with diverse or esoteric interests. Datasets that have

less information regarding user characteristics and tastes,

though, are generally more compatible with item-based

collaborative filtering.

 

Advantages

1. Low knowledge of item characteristics

The first advantage of collaborative filtering is it doesn’t

rely on a sophisticated understanding of items and their

attributes. This saves upfront effort because you don’t need

to spend time meticulously documenting items. This is



especially convenient for online video and audio content

items that are generated daily and are time-consuming to

review and classify.

2. Flexible over the long-term

As collaborative filtering responds directly to user

behavior and trends, this approach is generally more

flexible than content-based filtering at reacting to changes

in user/consumer behavior. Sudden short-term changes in

fashion, pop culture, and other fads, though, can be difficult

to respond to—at least initially—depending on when and

how regularly the data is collected.

3. Discoverability

Collaborative filtering enables the discoverability of items

outside the user’s periphery as it synthesizes preferences

from users they’ve never met but who share similar

interests.

 

Disadvantages

1. Large-scale user data

One drawback of collaborative filtering is the significant

amount of upfront information needed to understand user

preferences. While Amazon and Netflix have enough user

data to ride out sparsity problems in the data, new

platforms without an established user base face limitations

because collaborative filtering is largely ineffective without

sufficient information. Obtaining or acquiring data from a

third party, as Amazon did by partnering with AOL in the

early 2000s, is one strategy to overcome the cold-start

problem.

2. Malicious activity

Collaborative filtering is highly vulnerable to people

gaming the system and doing the wrong thing. This includes

driving fake traffic to target items, attacking competitor’s

items with negative reviews, fabricating online user



personas, or creating a general system of user actions to

cheat the system, known in the industry as a shilling attack.

One approach to minimize malicious activity is to limit the

model’s analysis to user purchases, rather than browsing

habits, as the former is more difficult to fabricate. That said,

fraudulent online transactions remain common, and

unscrupulous actors are constantly developing their tactics

to game recommender systems.

3. Negative reputation

As collaborative filtering relies on extracting users’

personal information to generate recommendations, it

inevitably raises questions regarding data privacy and social

manipulation. Criticism has surfaced in recent times

regarding the U.S. election and the alleged role Facebook

has in sharing user data with third-party organizations as

well as their content display algorithms that potentially

reinforce political biases and disseminate news stories.

4. Consistency

Aside from different tastes and preferences, users have

different standards—making it difficult to trust the

consistency of rating data aggregated from multiple users.

The meaning of a three-star can be interpreted differently

among users based on their average rating history, for

example. Based on personal experience, standards also

vary between countries and types of users (i.e., e-book

readers versus physical book readers). Readers of physical

books, for example, rate negatively when there are delivery

delays or printing issues, which doesn’t affect e-book

readers who receive a digital copy on demand. To improve

consistency, some models may need to filter user ratings by

additional criteria such as country and customer type.

 

Demonstration



In this second demonstration, we will use user-based

collaborative filtering to make a film recommendation to

User 1.

 

Dataset: Film Ratings (1-5 stars)

 

Steps

1) Compute similarity: Calculate similarity scores between

users. One common method is the Pearson correlation

coefficient, which is a number between -1 (non-identical)

and 1 (identical) indicating how closely two things are

related.

2) Predict ratings: Predict the ratings of films that the

target user hasn't watched by considering the ratings of

similar users.

3) Recommend: Films with the highest predicted ratings

are recommended to the user.

 

Example

1) Let's predict a rating for The Little Mermaid for User 1,

who is yet to watch that film.

2) We notice that both User 1 and User 2 have rated

Oppenheimer, Beauty & the Beast, and Dunkirk. Based on

this, we can compute their similarity.

3) If their similarity score is high, we can use User 2's

rating of The Little Mermaid to predict User 1's potential

rating for that film.

4) As User 2 only rated it as 1-star, it’s not worth

recommending this film to User 1.

 



The Hybrid Approach

After exploring the advantages and disadvantages of

content-based and collaborative filtering, you probably

spotted some trade-offs between these two techniques.

Content-based filtering, for example, tends to be less

diverse than collaborative filtering in terms of the items it

recommends but is, overall, more consistent than

collaborative filtering. To reduce the effect of these various

trade-offs, an alternative to collaborative and content-based

filtering has been developed, which draws on a combination

of techniques to deliver useful recommendations. This

approach is aptly named the hybrid approach and can

function either as a unified model or by separating content-

based and collaborative filtering and then combining their

predictions.

In addition to bridging the gap between content-based

and collaborative filtering, the hybrid approach plays a

crucial role in overcoming the cold-start problem, which

occurs when there is insufficient user interaction data or

item attributes needed to make accurate recommendations.

Hybrid systems offer an elegant solution by capitalizing on

the strengths of both collaborative filtering and content-

based filtering, effectively mitigating the limitations that

each technique faces individually. For new items that lack

user interaction data, the hybrid approach can prioritize

content-based filtering. By analyzing the attributes,

descriptions, or features of the item, it can generate

relevant recommendations based on the item's

characteristics. In the case of new users who haven't yet

provided interaction data, user-based collaborative filtering

can be used to analyze similar users based on attributes

such as IP location, age, and gender to overcome the cold-

start problem. As the interactions of the new user

accumulate and the model learns their individual

preferences, the hybrid model can gradually transition to an



item-based collaborative filtering or content-based filtering

approach.

Finally, the hybrid approach offers added flexibility to

combine multiple data sources and data types. Ordinal data

values such as item ratings (1-5 stars), for example, are

generally used for collaborative filtering, whereas

continuous variables such as item price and size are more

suitable for content-based filtering. Using a hybrid solution,

you can pipe both data inputs and then segment analysis

through a curated selection of filtering techniques.

 

Training Recommender Systems

Understanding how recommender systems function, even

if you aren’t a machine learning developer, is worthwhile for

creating a positive online experience or growing an

audience on popular content platforms. In this section, we

will look at how you can train recommender systems based

on your behavior.

The first step is understanding what type of recommender

system is being used to serve you recommendations.

Skillshare, for example, typically recommends items using

content-based filtering, whereas Spotify is more likely to

utilize collaborative filtering to recommend music to users.

However, the more advanced and established the platform,

the more likely it is that the platform is using a hybrid

approach. Platforms may also employ different techniques

in isolation based on different user scenarios. The YouTube

homepage, for instance, is more likely to use collaborative

filtering to enhance discovery and emphasize variety on the

platform, whereas the video page sidebar is more likely to

use content-based filtering to keep you on that page with

related content.

The next clue is how the platform labels its

recommendations. On major platforms such as Amazon,

you might see labels such as “See what other users bought”



(collaborative filtering) or “We thought you might like these”

(content-based filtering). However, in a lot of cases,

distinguishing the use of one method over the other can be

challenging due to the implementation of hybrid systems.

In practice, it’s best to assume that both techniques are in

use and to adapt your approach accordingly. This includes

careful labeling of your product or content to train content-

based filtering engines, such as the item’s metadata,

description, tags, and other labels. The more relevant

information you provide, the more likely the recommender

system is to pick up your item and showcase it to the right

audience. Having said that, it’s vital to steer clear of adding

irrelevant labels to items in a bid to deceive the system.

Established platforms such as YouTube and Amazon closely

monitor attempts to cheat the system and will penalize you

accordingly. Additionally, disappointing users with deceptive

titles or labels may impact your conversion metrics, which

also feed into the recommender system as well as the

organic search rankings.

In addition to accurate labeling of items, identifying

opportunities to associate your item with popular items

within the same category can be an effective strategy to

capture spill-over traffic. This tactic is commonly used on

platforms like YouTube, where creators know that producing

new videos inspired by popular hits can help to capture

traffic from related recommendations. As an example, if you

create a popular video featuring a tour of your minimalist

Tokyo apartment, then YouTube is likely to recommend the

same viewers to other minimalist Tokyo apartment tours

after watching your video.

Another way to train the recommender system on your

product or content is to incorporate paid advertising. In the

context of content-based filtering, you will need to focus on

bidding for specific keywords relevant to your product,

rather than opting for broad keywords with lower



conversion rates. For example, if you want Amazon to

associate your book with the keyword “machine learning”,

then you will need to target this keyword in your ad

campaigns rather than using a broad keyword such as

“computer science” or “technology”. If the bid cost for your

target keyword is too expensive, then you may need to try

using long-tail keywords that are cheaper but still contain

the desired keyword. For example, rather than paying 80

cents per click for the keyword “machine learning”, you can

target the long-tail keyword “machine learning for

dummies”, which only costs 40 cents per click and will still

associate your book with the keyword “machine learning”.

Another effective approach is driving paid traffic from an

external platform, enabling you to reach a broad audience

without disrupting the native recommender system. This

way, Amazon's recommender system won't identify the

specific keywords you are targeting when you advertise on

other platforms like Google or BookBub, for example. It

doesn’t matter what keywords you are targeting on a third-

party platform, because Amazon simply sees traffic coming

to your product page. What’s more, if the on-page

conversion rate is high, this will help to enhance your book’s

discoverability on Amazon, as conversion and sales are key

metrics for recommending books and other items on the

platform.

While paid advertising shouldn’t negatively affect the

recommender system’s ability to associate your book with

specific keywords, this method is not as effective as

targeting relevant keywords through paid advertising on the

same platform. When you use Amazon Marketing Services

to advertise, you are effectively training Amazon to

associate your product with specific words or audiences.

Likewise, when you advertise through TikTok Ads Manager,

you are helping to train your content on the powerful TikTok

content algorithm.



In the context of collaborative filtering, it’s essential to

focus on the audience and consider segmenting them

strategically to maintain relevance. This practice is often

observed on YouTube, where creators operate multiple

accounts to target specific audiences based on content

preferences. Some football vloggers, for instance, may have

one channel dedicated to their favorite team and another

broader channel focused on the football league they follow.

This approach helps to ensure highly engaged audiences for

each channel, and this makes it easier for the recommender

system to identify potential audiences.

The next important consideration is assessing what traffic

you want to send to your product or content. If you want to

promote your new romance novel to a niche audience on

Amazon, it's crucial to avoid targeting family and friends

who have no prior interest in the romance genre and who

aren’t likely to make relevant purchases in the future. By

selling your book to a mix of readers, the recommender

system will be unable to identify and profile the target

audience of your book, hindering its ability to recommend

your book to those genuinely interested in your niche.

To maximize the power of collaborative filtering, you also

want to avoid sabotaging your items with irrelevant paid

traffic. Delivering ad campaigns based on broad user

targeting and low-cost clicks might lead to a positive return

on ad investment, but the broad targeting hampers the

recommender system’s ability to profile connections

between buyers. In addition, a low conversion rate (in

terms of purchases or views) will negatively impact your

item’s visibility in the general search results on the platform

and reduce the flow of recommendations. In general, you

want to promote your item to a narrow audience with

similar interests and accumulate a high conversion rate in

order to maximize the power of collaborative filtering.



In summary, vigilance is key when handling traffic and

keywords associated with your content or products. How

you describe and advertise each item feeds into the training

data for the recommender system and impacts future

recommendations.

 

Key Takeaways

1) Content-based filtering recommends items based on

their characteristics and a user's preferences. It relies on

item descriptions and user profiling, matching similar items

to those the user has liked or browsed in the past. Content-

based filtering is effective for recommending new items but

may lack variety and struggle with recommending items to

new users.

2) Collaborative filtering recommends items based on the

preferences of similar users with shared interests. It

leverages the wisdom of the crowd and can suggest items

that users may not have discovered otherwise.

3) The hybrid approach is a combination of collaborative

and content-based filtering techniques. Hybrid

recommender systems can operate by running as a unified

model or by separating content-based and collaborative

filtering and then combining their predictions.

4) Understanding the type of recommender system used

by a platform is essential for marketers, content creators,

and general users. Properly labeling items, associating them

with popular items, and leveraging paid advertising can

train recommender systems to enhance accurate targeting

and reach relevant audiences.

 

Thought Exercises

1) It’s the first day of the new year and you want to

create a healthy lifestyle built around nutrition, fitness, and

positive energy. Now, choose a popular online platform like



TikTok, Instagram, YouTube, or Amazon, and list three

different ways you can train the model to recommend

content rated to your goals for this year. (Hint: think about

how you can use search and other interactions to leave

clues for the model, including unsubscribing to channels

that don’t support your goals or rating relevant

content/purchases)

 

2) Imagine you have a video that you want to publish on

YouTube. What actions can you take to help train a content-

based filtering system to recommend your video to more

viewers?

 

3) Imagine you have a book that you want to sell on

Amazon. What actions can you take to help train a

collaborative filtering system to recommend your book to

more relevant readers?
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Computer Vision

 

As human beings, we have an innate ability to recognize

objects, read signs, and understand our surroundings as we

move through the physical world. This effortless ability to

comprehend depth, motion, and spatial layouts is a

byproduct of our complex visual system, a system that has

evolved over hundreds of millions of years. Naturally, as

technology has advanced, humans have been determined to

impart the same perception of digital and physical spaces to

computers, which brings us to the exciting field of computer

vision.

As an important subfield of artificial intelligence, computer

vision enables machines to understand and interpret visual

information. However, unlike human vision, which is based

on our biological visual system, computer vision utilizes

digital inputs, computational models, and deep learning to

interpret and understand the content of visual inputs. This

complex process involves various sub-tasks, including

identifying objects within the image, understanding the

context in which objects exist, recognizing patterns and

anomalies, and even predicting future states based on past

data.

To learn more about how computer vision works, this

chapter will introduce and examine the following use cases:



image classification, object detection, and image

segmentation.

 

Image Classification

One of the most common computer vision use cases is

image classification, which involves categorizing an image

into one of several predefined classes. As a form of

supervised learning, the image classification model learns

from a training set of labeled images with descriptions of

what’s contained in each image. By training on many

examples, often millions of images, the model gradually

learns to recognize certain object classes such as whether

the image contains a cat or a dog. However, using

supervised learning, the model can only recognize object

classes that are included and labeled in the training data. If

the model encounters objects that weren’t part of the

training data, it will struggle to correctly classify or

categorize them.

To overcome this limitation, there are a number of other

approaches including transfer learning, data augmentation,

zero-shot learning (i.e., using knowledge of horses and

stripe patterns to classify a zebra), as well as detection and

outlier handling. In the case of transfer learning, an existing

model trained on a large dataset is fine-tuned and used on

a smaller dataset. This approach leverages the general

feature extraction capabilities learned from the large

dataset and adapts them to the new classes. While it might

not fully resolve the out-of-class problem, it can improve

the model's ability to handle unseen classes.

Instead of trying to classify everything into predefined

classes, anomaly detection and outlier handling focuses on

identifying instances that deviate significantly from learned

patterns in the training data. This can help the model detect

and flag instances that don't belong to any known class,



which may be useful for specific use cases such as fraud

detection.

A different approach is data augmentation, which involves

artificially expanding the training dataset by applying

various transformations to the existing images, such as

rotation, cropping, scaling, and flipping. This helps the

model become more robust to variations in the input data

and can improve its performance with difficult cases.

 

Object Detection

Object detection is a more complex use case than image

classification, where the goal is to classify multiple objects

and accurately determine their locations. This technique is

widely used in applications that involve detecting and

tracking objects in images and videos. This includes

autonomous vehicles, surveillance systems, face detection,

and defect detection in manufacturing, where the ability to

identify and locate objects is crucial for navigation and

decision-making. Additionally, object detection has paved

the way for advancements in human-computer interaction,

as it enables gesture recognition and tracking of body parts,

facilitating immersive experiences in virtual reality and

augmented reality applications.

Unlike image classification where the model checks if the

image contains a single object class such as a cat or dog,

object detection provides detailed information about where

each target object is located within the image. It does this

by generating bounding boxes that enclose individual

objects before predicting the class of each object. As an

example, suppose there is a photo containing a range of

objects such as cars, pedestrians, and traffic signs. Rather

than make a single classification, the model analyzes the

image by placing bounding boxes around each car,

pedestrian, and traffic sign, and then individually labels

each object.



By capturing the coordinates and dimensions of each

bounding box, object detection provides insights into the

size, orientation, and proximity of different objects. This

information is valuable in applications such as self-driving

cars, where precise localization of pedestrians, vehicles, and

obstacles is essential for making real-time navigation

decisions. Object detection also extends to scenarios where

objects might partially occlude or overlap each other.

 

Image Segmentation

In the case of image segmentation, the goal is to partition

an image into multiple segments or regions based on pixel

groupings, each of which corresponds to a different object

or part of an object. Rather than classify one or multiple

discrete objects, it segments the image into regions. This

means that instead of isolating a pedestrian by drawing a

big rectangular box around them and classifying the object

that way, image segmentation will isolate the pedestrian

pixel by pixel and assign an object label to that selected

group of pixels. This division is based on certain criteria and

different levels of granularity, such as color, texture,

intensity, or other visual properties, which are used to

differentiate different regions. For example, if there is an

image of a person, image segmentation can be used to

divide it into segments representing the person's face, hair,

clothing, and background. By assigning different labels to

each segment, we can distinguish and analyze the different

regions separately.

Image segmentation therefore aids in understanding

images in finer detail than object detection. This makes it

useful for tasks requiring meticulous image understanding,

including precise boundary determination and accurate

analysis of specific components within an image, which is

essential for tasks such as image editing or medical image

analysis to detect and track tumors.



 

How it Works

Whether it’s image classification, object detection, or

image segmentation, computer vision involves a clear

sequence of steps that center on taking digital inputs and

extracting high-dimensional data to generate numerical

information that can be used to analyze and classify

objects.

High-dimensional data refers to data with many features,

known also as dimensions. In the context of computer

vision, this refers to data containing a multitude of features

from visual inputs such as images or videos. Within an

image, each pixel can be considered a variable or

dimension. If the image has a resolution of 1000x1000

pixels, this means there are one million features or

dimensions associated with that one image. Further, each

pixel contains values representing color intensity, which

further adds to the dimensionality of the data. To decipher

the details contained in an image or video with millions of

features, computer vision involves a series of complex

tasks, which we’ll examine in this section.

The first step is image acquisition, the process by which

an image is captured through a camera sensor. Here, the

captured image is digitized and stored as a grid of pixels,

each with different color and intensity values (also referred

to as grayscale values, which represent the brightness or

luminance of a pixel in an image).

Once the image has been acquired and digitized, the next

step is image preprocessing. This involves improving the

image quality and extracting useful features. This might

include noise reduction, contrast enhancement, edge

detection, and other relevant operations.

The next step is feature extraction in which the goal is to

identify and extract important characteristics from the

processed image. Features might include edges, corners,



textures, or more complex structures such as shapes or

objects. The exact features that are extracted depend on

the specific problem being solved.

Once the features are extracted, they can be converted

into numerical representations and used to perform various

tasks. In the case of object recognition, the features can be

used to identify specific objects within the image. Typically,

this is done by comparing the extracted features to those

stored in a database. In the case of image segmentation,

the features might be used to partition the image into

different regions corresponding to different objects or parts

of objects based on pixel groupings.

The final step is decision-making, whereby the results of

the previous steps are used to make some determination

about the image. For example, in object recognition, the

system might decide which objects are present in the

image. In image segmentation, the system might decide

how to divide the image into different segments.

To put this entire process into perspective, let's imagine

that we have an image of a person's face and we want to

develop an image classification system that can

automatically identify the individual in that image. The

system would go through the following steps.

1) Acquisition: The system acquires the image of the

person's face either through a camera or by loading a pre-

existing image.

2) Preprocessing: The image is preprocessed to

enhance its quality and normalize any variations in lighting,

orientation, or scale. This step helps to improve the

accuracy of the subsequent analysis.

3) Feature extraction: The system extracts relevant and

distinctive high-dimensional data from the image by

identifying key facial features such as eyes, nose, mouth,

and facial contours.



4) Numerical representation: The extracted facial

features are converted into numerical representations, such

as vectors, based on numerical values with each

corresponding to a specific feature or characteristic of a

facial feature.

5) Training and recognition: Using a dataset

encompassing known facial images of various individuals,

the system learns to associate the extracted numerical

features with specific identities. This training facilitates the

system's ability to recognize and differentiate between

different individuals.

6) Identification: To identify an image of a person, the

system compares the numerical representation of the

unknown face with the trained representations of known

individuals. It computes the similarity or distance between

the numerical representations and determines the closest

match, thereby identifying the person in the image.

As outlined, by extracting and analyzing high-dimensional

data related to facial features, such as the arrangement of

eyes, nose, and mouth, the system can generate numerical

information that enables it to recognize and identify

individuals in images.

Next, to carry out this sequence of complex tasks,

computer vision relies heavily on machine learning and

deep learning techniques. Deep learning, and specifically

convolutional neural networks, discussed in an earlier

chapter, have proven particularly effective at handling

computer vision tasks as they can learn to recognize

complex patterns and features in images, allowing them to

achieve high accuracy on tasks such as image classification,

object detection, and image segmentation.

In terms of human input, computer vision projects

generally involve a large team with a diverse range of skills

and expertise. This includes individuals with backgrounds in

computer science, machine learning, and possibly fields



such as cognitive science and optics. General software

developers or engineers are also needed to integrate the

computer vision system into larger software systems or

applications.

For supervised learning projects, the team might need

data annotators who can label images to create training

data for the models. This process often requires a

meticulous and detail-oriented approach but can be

outsourced using services such as Amazon MTurk or another

crowdsourced service. Also, depending on the specific

application of the computer vision system, having team

members with expertise in the relevant domain can be

advantageous. For example, having a team member with

experience in healthcare or medical technology can provide

important insights for a project related to medical imaging.

Lastly, having team members who are up to date with the

latest research in the field can be beneficial as they can

guide the team in adopting the latest technology as well as

other best practices.

 

Challenges

Navigating the field of computer vision involves

addressing various challenges and potential risks. This

section will explore some of the technical and non-technical

challenges or risks associated with the development and

application of computer vision. For startups and businesses,

understanding the following challenges will be important for

mitigating potential problems and devising effective

strategies.

In terms of technical challenges, one of the biggest

challenges is data. The performance of computer vision

systems depends on the quality and diversity of the data

used for training the model. Amassing a large and diverse

dataset that reflects the wide spectrum of scenarios the

system will encounter in real-world applications can be a



daunting and costly process. This is because real-world

scenarios are filled with complexities, including variations in

lighting, viewpoint or camera angles, object orientations

(which refer to the different possible orientations or poses

that an object can take in three-dimensional space), and

objects obstructed from view, also known as occlusions.

To succeed, the model must contend with these many

different variations along with feature similarity. Feature

similarity refers to the degree of resemblance or likeness

between different features extracted from data points within

a dataset. An example of this problem arose when a

Scottish football club began using AI to broadcast their

matches in 2020, before receiving a public lesson in feature

similarity.

After the COVID pandemic prevented fans from attending

live matches in the Scottish Championship, Inverness

Caledonian Thistle FC made a strategic decision to

livestream its matches online. With external support, they

arranged an automated camera system equipped with built-

in AI technology for tracking the match ball’s movement. By

tracking the ball, the objective was to ensure that viewers

at home always had an optimal view of the game. Instead,

the AI camera repeatedly confused the linesman’s head for

the ball, whose bald head shared visual similarities to the

yellow match ball. The camera angle contributed to the

confusion, creating the perception that the linesman's head

was inside the boundaries of the football pitch.

Pixellot, the company responsible for the technology, had

to swiftly update its system after the match, as the incident

attracted widespread attention and fed into memes on

social media. While this unfortunate example presents a

more amusing demonstration of the brittleness of AI and

computer vision, the potential cost of a mistake is far more

severe when the AI is behind the wheel of a self-driving

vehicle. Tesla’s Autopilot software has been at fault for



multiple fatal crashes over the years, including one case

where the Tesla Model 3 collided with a tractor-trailer that

crossed its path, shearing off the Model 3’s roof.

These case studies underscore the challenges posed by

feature similarity and general data complexity. Building

capable models that can understand and interpret intricate

details across diverse scenarios requires extensive testing as

well as the expert knowledge of skilled human teams. In

addition, computer vision demands substantial processing

power and memory, especially in the context of deep

learning. This demand can pose significant challenges for

applications that require real-time processing or when

deploying systems on devices with limited resources. Thus,

balancing the need for sophisticated models with the

practical constraints of computational resources does

require careful planning and execution.

Alongside the considerable technical challenges, it’s

important to acknowledge the non-technical challenges as

well. These span from financial to legal risk, and

organizations must be cognizant of them when entering this

field.

First, developing computer vision technologies can be an

expensive venture. The quest for large amounts of training

data and computational resources leads to significant

upfront costs and the return on investment often takes

longer than expected due to the technical challenges

mentioned. Second, as with many emerging technologies,

computer vision raises a number of legal and ethical

dilemmas.

One of the primary dilemmas is privacy. With the ability to

analyze images and videos, computer vision applications

have the potential to infringe on individuals' privacy rights.

Applications such as facial recognition have been a subject

of controversy in recent years. In one notable case,

Clearview AI, a facial recognition software company, faced



multiple lawsuits and backlash after it was revealed that

they were scraping billions of images from social media

platforms without users' consent.

Similarly, computer recognition is at risk of infringing

intellectual property. For instance, accidentally using images

or videos protected by copyright to train computer vision

models could result in copyright infringement.

In regard to potential legal regulations, various

jurisdictions have different regulations regarding the use of

computer vision systems, particularly concerning

surveillance and data protection. The European Union's

General Data Protection Regulation (GDPR), in particular,

places strict requirements on the use of personal data,

which includes images and videos analyzed by computer

vision systems. Failure to comply with these regulations can

result in significant penalties.

In light of the various compliance requirements and

ethical challenges, it is vital for organizations working on

computer vision projects to have robust strategies in place

to manage these issues. This includes implementing strict

data privacy and ethical guidelines, engaging in regular bias

and fairness audits of their systems, and closely following

the legal regulations of the jurisdictions in which they

operate.

Despite the various challenges, computer vision remains a

vital area of AI development, revolutionizing numerous

fields from self-driving cars and automated surveillance to

medical imaging, augmented reality, and virtual reality,

making it an exciting and rapidly evolving subfield of AI.

 

Key Takeaways

1) Computer vision involves training computers to see and

understand visual information. This includes image

classification, object detection, and image segmentation.



2) Challenges in computer vision include dealing with

variations and complexity in real-world scenarios, acquiring

and processing large and diverse datasets, managing

computational requirements, and addressing legal and

ethical dilemmas.

3) Organizations engaging in computer vision must invest

heavily in data, computational resources, and human

expertise—and even then, it may not go as smoothly as

planned!
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Privacy & Ethical

Considerations
 

While artificial intelligence brings innumerable benefits

and promises of a technologically advanced future, it poses

numerous challenges too. As we’ve touched upon in

previous chapters, one of the common challenges is bias

and fairness. The concept of bias refers to an unfair and

prejudicial inclination or favor towards or against a person

or group. In the context of AI, the concern is that prediction

models, particularly those involved in decision-making

processes, inadvertently replicate and amplify biases

present in the training data or the biases of their human

creators, leading to unfair outcomes.

These biases can manifest in numerous ways, from racial

and gender bias in facial recognition software to

socioeconomic bias in credit scoring models. Bias has

substantial real-world implications as it can lead to

systematic discrimination, marginalization of certain groups,

and exacerbation of societal inequalities. This poses not

only ethical and social problems but legal ones too,

including anti-discrimination laws in many jurisdictions.

One example gaining widespread attention is the

application of facial recognition technology. Studies,

including the Gender Shades project led by Joy Buolamwini

at the MIT Media Lab in the U.S., have found that some

commercial facial-analysis systems had lower accuracy



rates for darker-skinned and female individuals compared to

white males. The reason for this discrepancy lies in the

dataset used to train these AI models. If the dataset is

predominately composed of light-skinned male faces, the

resulting AI model will be better equipped to recognize and

analyze individuals from that group, consequently

demonstrating bias.

The project thispersondoesnotexist.com, which generates

a hyper-realistic portrait of a person who never existed, has

also been criticized for failing to generate people with black

skin color, which alludes to issues with the training data

used to create the model. (It’s worth noting that the project

was spun up as an online stunt to build awareness

regarding the powerful capabilities of AI rather than as a

fully polished software product.)

A different instance of AI bias involves decision-making in

the criminal justice system. An investigative report by

ProPublica revealed that software used to predict future

criminal behavior was biased against African-American

defendants. The software, designed to aid in decisions

involving bail and sentencing, was more likely to incorrectly

label black defendants as future criminals, while white

defendants were more often mislabeled as low risk.

It's important to recognize that bias in AI can manifest in

other forms as well, such as socioeconomic background,

age, gender, and disability, making it vital to address a

broader spectrum of potential biases to create more

inclusive and fair AI systems.

To ensure fairness in AI, it's crucial to take steps in the

design, development, and deployment stages. This includes

careful selection and scrutiny of training data, implementing

fairness metrics, transparency about the limitations of the

AI system, and continuous auditing of AI models for bias.

These steps, however, are not foolproof, especially as

fairness is a complex and context-dependent concept. Like



eliminating all forms of bias from schools and businesses,

it’s not always possible to remove bias completely from AI

models.

 

Privacy and AI

The expansion of artificial intelligence into many aspects

of our lives poses significant privacy concerns. AI models,

especially those involved in computer vision and

recommender systems, are voracious consumers of

personal data, which includes sensitive and personal

information regarding individuals.

The rise of AI has created a paradox because while these

systems rely heavily on data to function effectively and

potentially improve our lives, they also infringe on our

privacy. Privacy, in this context, refers to the right of an

individual to keep their personal information and activities

secluded from or inaccessible to others, particularly those

who are unauthorized to view them.

Consider social media platforms, which employ

sophisticated models to curate and recommend

personalized content. While this personalization enhances

the overall user experience, it is often based on the

collection and analysis of vast amounts of personal data,

including our likes, dislikes, location, political affiliations, or

even our different moods. This precise targeting ability has

profound privacy implications and raises questions about

user consent and control over the collection and use of

personal data.

Another use case raising concerns is facial recognition.

While it can enhance security and streamline verification

processes, it can also be used for continuous surveillance,

leading to potential misuse. Without proper regulations and

safeguards, it can pose a serious threat to individual

privacy.



Likewise, AI’s predictive capabilities can be complicated

when it comes to user privacy. Machine learning models, for

example, can analyze large datasets and infer sensitive

information, even if that data was not explicitly provided.

Prediction models, for instance, have been found to

unintentionally expose a person's sexual orientation or

political affiliation based on their online activity. These

inferences can be disturbingly accurate, leading to potential

invasions of privacy that are hard to anticipate and control.

The risks of privacy breaches and unintended data

exposure became evident in 2009 when a woman in

America sued Netflix over the disclosure of her sexual

preferences in the 2007 Netflix Prize dataset. The lawsuit

was filed after academic research at the University of Texas

demonstrated privacy flaws in the design of the dataset

Netflix used for the public competition. Despite Netflix’s best

attempts to remove personal identifiers from the data,

including the names of individuals, the identities were

revealed by matching the competition’s dataset with film

ratings from the publicly available Internet Movie Database.

The researchers found that an anonymous user’s rating of

six obscure movies could be used to identify an individual

Netflix user with an 84% success rate. Moreover, accuracy

rose to 99% when the date of a movie review was known.

 

Legal Frameworks

In recent years, new legal frameworks have come into

effect, including the GDPR (General Data Protection

Regulation) in the European Union and the CCPA (California

Consumer Privacy Act) in the United States. Designed to

give individuals more control over their personal data, these

frameworks encompass rights such as the right to access

personal data, the right to be forgotten, and the right to

data portability. GDPR, for example, enforces added

transparency for users regarding how their data is



processed and the use of cookies on web applications, as

well as a clarified “right to be forgotten” when users no

longer wish their data to be retained (given there are no

legitimate grounds for keeping it). GDPR also requires the

encryption of users’ stored personal data and the right of

users to accept or reject the use of their personal

information for the application of online recommendations.

While such legal frameworks raise the bar for privacy and

data protection, AI poses unique challenges to these

frameworks due to its complexity and the often-opaque

nature of deep learning models. In the face of these

challenges, various practical strategies are being developed

to reconcile AI with data privacy. Techniques like differential

privacy, for example, offer a way to glean useful insights

from data while providing robust privacy guarantees.

Differential privacy adds controlled noise or randomness to

the data before performing any computations or analysis.

By introducing noise, the algorithm obscures individual

contributions and makes it difficult to determine specific

information about any individual in the dataset.

Another approach is federated learning, which makes it

possible to train models on local devices rather than using a

central server or the cloud under a centralized approach.

The latter raises privacy and security concerns as the raw

data needs to be shared with a central entity, potentially

exposing sensitive information. By using a federated

learning approach, model training is performed locally on

individual devices or servers, such as edge devices or local

servers without the need for data to leave the device and be

shared externally.

Another important consideration is the software used to

store and process data. To fulfill legal and privacy

standards, it’s imperative to evaluate different software

based on their security measures, data anonymization



features as well as data encryption tools to protect sensitive

information. Examples of data anonymization include

replacing specific values with more generalized values (e.g.,

age ranges instead of exact ages), replacing identifiers with

pseudonyms, and adding random noise to the data to make

it difficult to identify individuals while preserving statistical

integrity. Regarding data security, the software should offer

permissions based on roles to restrict data access to

authorized personnel or implement multiple forms of user

verification to safeguard access to sensitive data. Also, from

an operations perspective, data retention policies are useful

for ensuring that sensitive data is not kept longer than

necessary.

Finally, there is a need for professionals who can address

the ethical and legal implications of AI and abide by the law

and industry guidelines. Here, larger organizations should

consider the need for hiring AI ethicists and AI policy

advocates, who are responsible for conducting internal

audits, monitoring best practices, hosting internal training,

and working with the government and other companies or

industry organizations to establish industry practices.

In conclusion, the issue of privacy in the age of AI is a

complex one, requiring a multifaceted approach. It touches

not just technological solutions but also robust legal

frameworks, ethical guidelines, software controls, and

human resources. However, the overall goal should be to

create an environment in which AI technologies can evolve

without compromising the privacy rights of individuals.

 

Key Takeaways

1) AI systems can unintentionally replicate and amplify

biases present in their training data or the biases of their

human creators, leading to unfair outcomes.

2) Privacy is a major concern as AI relies on vast amounts

of personal data, raising questions about individual privacy.



Legal frameworks like GDPR and CCPA aim to protect

privacy rights, but AI's complexity also presents challenges

to upholding these regulations.

3) Legal frameworks, ethical guidelines, software design,

and human resources are essential for creating an

environment where AI technologies can evolve while

safeguarding privacy rights.

 

Thought Exercises

1) How can you better protect your data and privacy?

(i.e., using a dedicated email or user account to search and

purchase sensitive items, opting out of recommender

systems, using incognito or private browsing mode, or using

anonymous search engines to protect your privacy.)

 

2) What does Google already know about you? To find

out, go to google.com and sign in. Next, click the “Google

apps” icon in the top right corner. Select “Account > Data &

privacy > Personalized ads (My Ad Center)”.

 

Figure 6: Example of Google’s user profiling for personalized ads
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The Future of Work

 

As a transformative technology, artificial intelligence holds

the power to reshape jobs and the work environment in

profound ways. But, in a world where news and discussions

about AI bring up visions of imminent job replacement,

there are genuine concerns that AI will lead to further job

losses. The fear is heightened by the AI industry’s

preoccupation with benchmarking model performance and

efficacy with human talent. From IBM’s Deep Blue to the

Stanley autonomous car and DeepMind’s AlphaGo, AI

companies have a history of evaluating and marketing their

systems based on their ability to outperform humans in

real-world demonstrations. While this approach is highly

effective at attracting media attention, it has the dual effect

of exacerbating and reinforcing people’s fear of AI from the

viewpoint of job security.

This type of fear is not unique to AI either; from the

cotton gin (which enabled the quick separation of seeds

from cotton fibers) to the computer, anxiety has surrounded

the advent of every new transformative technology. Yet,

there is a strong consensus among economists and

technologists that AI's impact might be different, given its

potential to replace not only physical tasks but cognitive

abilities as well.

According to GPTs are GPTs: An Early Look at the Labor

Market Impact Potential of Large Language Models,



commissioned and published by OpenAI and the University

of Pennsylvania, professionals exposed to large language

models are more vulnerable to future job replacement.

Their findings revealed that approximately 80% of the U.S.

workforce could have at least 10% of their work tasks

impacted by the introduction of large language models,

while approximately 19% of workers may see at least 50%

of their tasks affected.14 This includes tax preparers,

mathematicians, writers and authors, web and digital

interface designers, court reporters, proofreaders, auditors,

accountants, journalists, and administrative assistants.

Conversely, the study predicted that tasks which rely on

critical thinking and scientific skills are less likely to be

replaced by AI. Note that physical tasks associated with

stonemasons, painters, cooks, and auto mechanics aren’t at

high risk of being replaced by large language models such

as ChatGPT but could be replaced by AI-powered robots and

further automation in the future.

 

The 7 Stages of Resistance

During periods of fast technological transition—as we are

experiencing now—it’s common for people to experience

fear or to sink into a state of denial, anger, and depression.

In fact, individuals and organizations often experience

something akin to the seven stages of grief in response to

drastic changes caused by new technology. Typically applied

to describe emotional responses to loss, the seven stages of

grief span shock, denial, anger, bargaining, depression,

testing, and acceptance.

First, both individuals and organizations are shocked or

stunned by the introduction of new technology. This shock

stems from uncertainty or confusion about how it works and

the potential implications. In the case of ChatGPT, the new

technology shocked people with its ability to mimic human

writing capabilities.



Once the initial shock wears off, most people turn

skeptical and reject the notion that the new technology will

make any significant or longstanding impact. In practice,

they may avoid learning about it or dismiss it as a trend or

fad that will quickly pass.

Third, as the realization that the new technology is not

going away sets in, people may start to experience feelings

of anger or resentment. They may feel threatened by the

changes that the new technology brings and how it might

affect their role or organization.

This is followed by the bargaining stage, where individuals

and organizations try to negotiate or find a compromise.

This could involve attempting to maintain their existing

routines and operations while incorporating some aspects of

the new technology.

Subsequently, people recognize that the old ways of doing

things are changing and are no longer celebrated. This can

cause a sense of sadness, loss, and even depression. In

addition, people may feel overwhelmed by the new skills

and knowledge required to adapt.

Eventually, more individuals and organizations begin to

experiment with the new technology as part of the testing

phase. Individuals start learning new skills or finding ways

to integrate technology into their job or organization.

Finally, everyone comes to acknowledge the benefits and

accept the new technology as a part of their lives and day-

to-day work.

For organizations, understanding these seven stages is

vital for setting realistic expectations, managing internal

resistance, and navigating the changes required in order to

stay competitive. For individuals, being cognizant of the

natural reactions to new technology can spur you into action

and help you reach the acceptance stage faster than those

around you.



It’s worth noting that not every individual or organization

will go through all seven stages or experience each stage in

the prescribed order. Early adopters, for example, are

inclined to embrace new technology overnight, while others

may linger in one stage for an extended period and never

reach the next stage. The latter can be dangerous as there

is an opportunity cost to inaction as others capitalize on the

first-mover advantage, which brings us to the missing

middle theory.

 

The Missing Middle

For those looking to thrive in the new era of work, it is

critical to understand that AI, in most cases, is designed to

enhance productivity rather than to outright replace you. In

line with this perspective, many of the jobs of the future are

predicted to be copilot roles, in which humans work

alongside AI to carry out a variety of professional tasks,

whether that’s linguists using ChatGPT to translate

documents or lawyers validating contracts drafted by AI

assistants.

In the healthcare sector, for example, AI can be used to

streamline administrative tasks, manage patient records,

and even assist in interpreting medical images, allowing

medical professionals to spend more quality time with

patients and make more informed decisions.

In marketing, AI tools can provide real-time analytics,

predictive models, and relevant ad copy, helping marketers

make informed decisions and increase the success of their

ad campaigns.

By leveraging AI's ability to handle complex calculations

and process vast amounts of data, humans across

industries can focus more on tasks requiring creativity,

emotional intelligence, and critical thinking—skills that are

uniquely human. This is the viewpoint championed in the

book Human + Machine: Reimagining Work in the Age of



AI. Termed the missing middle, the authors advocate that

the most effective and cost-efficient path forward is to

merge automated tools with the flexibility of human workers

to achieve optimum outcomes.

The principles of cybernetics, as espoused by Norbert

Wiener, reinforce the concept of the missing middle and

highlight the complementary nature of our respective

strengths. Derived from the Greek word kybernetes,

cybernetics means steersman or governor, which

emphasizes the notions of control, communication, and

feedback in systems. While broad in scope, at its core,

cybernetics looks at systems and processes that aim to

analyze and understand the principles of how to be

effective, adaptive, and self-governing. In the context of

artificial intelligence, cybernetics looks at how machines can

complement and mimic human-like behavior or decision-

making processes as part of a symbiotic feedback loop with

human operators, as popularized in Norbert Wiener’s

research.

Born in 1894, Wiener became interested in cybernetics

following his involvement in the development of computers

and automated anti-aircraft guns during World War II. This

included his realization that the process of tracking a

moving aircraft entailed making several observations to

anticipate its future trajectory. Amid the dynamics of war,

he observed that the reactions of the gunner must be

factored into predictions. This is due to the fact that pilots

alter course in response to enemy fire, prompting the

gunner to adjust, thereby creating a feedback loop where

the gunner's actions eventually shape their future actions.

Recognizing that feedback loops are all around us, Wiener

went on to explore the traits of this phenomenon to

optimize human-machine feedback loops under the lens of

cybernetics. Wiener posited that when harnessed correctly,

technology actually amplifies human capabilities and



productivity by extending our cognitive and physical

capacities, enabling us to accomplish tasks more efficiently

and effectively.

We see this today with AI-powered tools such as

Consensus, Elicit, and Semantic Scholar, which allow

researchers to find papers, extract key claims or

summaries, and even brainstorm their ideas by connecting

with a massive pool of academic research. These tools allow

researchers to streamline the research process and

concentrate on higher-level cognitive activities such as

critical thinking, hypothesis formulation, experimental

design, and interpretation of results, which can help drive

advancements in innovation and scientific understanding.

Although the idea of substituting human tasks with AI

tools is alluring, not all tasks should function independently

of humans. Instead, most tasks should operate in a

feedback loop with human copilots, with AI constantly

learning from human inputs and modifying their behavior

accordingly. These interconnected feedback systems

optimize the strengths of both parties, resulting in new

breakthroughs and an overall productivity boost.

Chess, in particular, provides a glimpse into effective

collaboration between humans and AI, particularly given

chess's longstanding relationship with AI technology. In

hybrid chess competitions, human players utilize their

creativity and deep understanding of the game to work in

tandem with AI chess engines to leverage their vast

analytical capabilities. The combination of human ingenuity

and AI's analytical prowess creates a synergy that

outperforms either side performing on its own. This

successful partnership has been demonstrated in a number

of tournaments, including freestyle chess competitions,

where teams composed of human players and AI engines

have consistently outperformed human-only and AI-only

teams.



This includes the 2005 Freestyle Chess Tournament held

by the Internet Chess Club (ICC), which permitted players

to use any combination of computer chess engine,

database, and human analysis. The winners weren’t

grandmasters or supercomputers but two amateur players

working together with multiple AI chess machines,

defeating both highly ranked human players and standalone

chess engines.

 

Job Replacement & Business

Disruption

The speed at which AI is seeping into all aspects of

modern work—from marketing to human resources—

underscores AI literacy as a key skill set for the modern

workforce. Also, just as the Internet Age triggered an

avalanche of new job titles, so too will the AI-centric era we

are now entering.

During the formative years of the Dot-com evolution,

many traditional job opportunities—including travel agent,

journalist, courier, stockbroker, and Encyclopaedia

salesperson—contracted or were phased out entirely.

However, these losses were gradually filled with the creation

of new job roles. An explosion of highly skilled jobs ensued

in web development, search engine optimization, e-

commerce, online customer service, web design, affiliate

marketing, and eventually social media and mobile web

design. While it’s probable that a proportion of these jobs

will now be phased out by AI, new job roles will again be

created or converted to copilot roles.

Moreover, it’s possible that AI may assist in creating more

inclusive workplaces. Assistive AI technologies such as AI-

driven speech recognition software can help individuals with

mobility impairments, while AI-powered predictive text and

voice synthesis can assist those with speech difficulties.



Likewise, AI technology will empower smaller companies

or companies-of-one to thrive in a more fragmented and

fast-paced world. The ability to generate a website, write

blog content, and create an explainer video using

generative AI tools will allow individuals to test their ideas,

gain market feedback, and iterate faster than ever before.

Conversely, labor-intensive organizations that rely on

human capital to carry out services such as ghostwriting,

translation, and online tutoring are earmarked to be the

first affected by AI technology. With AI offering a faster and

lower-cost alternative, these organizations may experience

a significant transformation in how they operate as well as a

negative impact in the short term. Exposing this reality,

stocks in the online tutoring company, Chegg, plummeted

after the CEO admitted the threat posed by AI. During the

company’s earnings call in mid-2023, their CEO Dan

Rosensweig explained that “In the first part of the year, we

saw no noticeable impact from ChatGPT on our new account

growth and we were meeting expectations on new sign-ups.

However, since March we saw a significant spike in student

interest in ChatGPT. We now believe it’s having an impact

on our new customer growth rate”.15

While it’s important to acknowledge that Chegg exceeded

profit expectations as a result of the explosive demand for

online education during the COVID lockdowns that took

place between 2020 and 2021, AI must be considered as a

competitive force in all industries, alongside traditional

business threats such as globalization and geopolitics.

In response to technological changes introduced by

ChatGPT, Chegg has announced that it's developing its own

AI, CheggMate, in partnership with OpenAI to assist

students with their homework. Textbroker, a content writing

service provider, has also added AI technology to its service

offering, and many other service platforms will be forced to

adapt or die as well.



Human services will remain in demand but rather than

being the staple service, they will become a premium or

concierge service added on top of a fast and more cost-

effective AI-powered service. Tax, legal, and accounting

services, for example, will be serviced by AI agents trained

on relevant data, and then verified, witnessed, and

supplemented by human experts. This creates a new

business model where customers can access self-service

offerings powered by AI, such as contract drafting or

balance sheet generation, and then have the option to

communicate or receive personalized assistance from a

human assistant as part of a human service that is more

focused, personalized, and effective than many of today’s

basic service offerings.

 

AI Adoption in Organizations

The adoption of AI presents a range of opportunities for

organizations seeking to gain a competitive edge. However,

the road to successful AI implementation is not without

obstacles. From data quality and availability, to cultural

resistance and ethical concerns, various factors can hinder

the smooth integration of AI solutions. Implementing AI

practices entails significant upfront costs as well, including

investments in hardware, software, and hiring skilled

professionals.

In many cases, organizations may be reluctant to commit

substantial resources without a clear understanding of the

return on investment and the potential long-term benefits

AI can bring. AI processes can also disrupt traditional job

roles and workflows, creating anxiety among employees

about potential job losses or changes to their

responsibilities.

Overcoming these obstacles requires a well-thought-out

strategy, including robust data management practices,

hiring, training and upskilling employees, thorough cost-



benefit analyses, stakeholder involvement, and prioritizing

ethical considerations. For small organizations, collaborating

with experienced AI vendors and consultants can help to

facilitate successful AI integration. However, for medium

and large-sized organizations, it’s important to follow a top-

down approach that can align all the necessary resources

and implement organization-wide changes. Under this

context, appointing a dedicated Chief AI Officer can play a

pivotal role. By appointing a single Chief AI Officer instead

of relying on a committee of AI consultants, companies can

ensure streamlined implementation and accelerated testing,

leading to faster adoption of AI strategies throughout the

organization.

Reporting directly to the CEO, CTO, or a board of

directors, a Chief AI Officer works as a senior executive

responsible for identifying opportunities for AI adoption,

ensuring that AI efforts align with the company's overall

business objectives. It’s important to acknowledge that the

Chief AI Officer does not personally code algorithms or lead

the data science team’s day-to-day operations. Rather, they

are responsible for monitoring market changes, determining

the right strategic direction, and identifying opportunities

for the company to utilize AI technologies effectively in

marketing, research and development, and other parts of

the organization. By staying ahead of the curve, they guide

the organization to ride the AI wave instead of being

overwhelmed by it.

In addition, the Chief AI Officer is responsible for

engaging with various teams within the organization in

order to gather feedback and determine optimal areas for

AI application. In the short term, this may involve

conducting A/B or split testing to compare human and AI-

powered resources, evaluating different AI software, and

using testing and data to find quick wins and gain internal

support for new practices. By presenting quantifiable



metrics and data that highlight the improvements achieved

through AI practices, it becomes easier to demonstrate the

value that AI brings to the organization.

The Hustle Daily Newsletter, for example, ran an A/B test

using custom AI-generated images and human-edited stock

photography.16 The AI-generated version was spun up using

Midjourney and designed based on the goal of aligning the

image with the ad copy and the value proposition they

wanted to communicate. This resulted in a 3x increase in ad

performance (measured on the cost to acquire clicks)

compared to the classic stock photography approach. On

top of this, the AI-generated ads were faster to produce.

Figure 7: The Hustle Daily ad image created using Midjourney

 

Hosting a hackathon, spanning an afternoon or a couple

of days, is another option to catalyze momentum and

explore AI-first processes. Hosting a hackathon not only

serves as a litmus test for trialing AI's applicability and

effectiveness within the organization but also helps to

generate interest and motivation across teams. A hackathon

can revolve around a specific theme or problem, where

teams collaborate to plan and develop solutions, ultimately

presenting their prototypes to key decision-makers or team

leaders at the end of the event.



While it’s valuable to run internal experiments and

consider the benefits that AI can bring, it’s important to

acknowledge that not all teams, departments, and

organizations will need to adopt AI technology. The search

engine company DuckDuckGo, for example, has resisted

industry trends such as personalized search results,

personalized ad targeting, and user data tracking to provide

a privacy-centric alternative for users concerned about data

privacy and tracking. This includes offering Duck Player

mode, which provides users with a clean viewing experience

stripped of personalized ads and prevents users’ viewing

activity from influencing their YouTube recommendations.

 

Figure 8: Duck Player mode offers a clean viewing experience without

personalized ads

 

Similarly, Basecamp has chosen not to adopt certain AI-

driven features commonly found in other project

management tools, instead prioritizing a more human-

centric approach to collaboration in its task management

software. In a different vein, Luddite Games focuses on

developing games that rely on human creativity and

decision-making under the game’s narrative of destroying

AI and saving human jobs.

This type of counterapproach strategy allows each of

these companies to differentiate themselves in the market



and cater to an audience that values privacy or human

involvement and expertise. While it may not be the fastest

or most effective path to obtain media interest and investor

funding in the early stages of an AI hype cycle, there will be

plenty of opportunities for other service providers to target

a niche audience by openly resisting AI technology and

embracing human expertise. The key is to openly resist new

AI technology and integrate this stance into the company’s

marketing strategy and value proposition rather than being

a side-effect of inaction and business model complacency.

 

Digital Craft & Offline Events

Despite the immense efficiency gains that AI offers,

consumers will continue to respect the craft and attention to

detail that humans bring to their work. Whether it's creating

a piece of artwork or crafting handmade products, we

disproportionally value things created by ourselves or other

humans. In psychology, this phenomenon is called the

“labor illusion”, which captures how people perceive a

product or service as more valuable or of higher quality

when they believe that a considerable amount of human

effort and labor was invested in its creation. We see this

with birthday and thank you cards. Despite the shareability

and convenience of e-cards, most people prefer the

thoughtfulness and effort that come with sending a physical

card and writing a handwritten message. Similarly, if you

browse the comments section on YouTube, you will see

users consistently praise video creators who take the time

to produce subtitles for their videos, add timestamps, or

who spend inordinate amounts of time and effort capturing

the perfect drone shot. Ultimately, the human touch carries

a sense of quality, uniqueness, and care that resonates with

people. In addition, there is an inherent appreciation for the



time, skill, and dedication that goes into creating something

manually—even if it is done digitally.

In the future, the ubiquity of AI-generated content may

lead to a future where creating your own podcast or video

content without AI assistance is valued as a form of digital

craft. Likewise, companies that offer human customer

service support might stand out in a world where AI avatars

are trained on millions of data points and customer support

logs.

Finally, the surge in AI-generated content may lead to

renewed interest in offline events such as meetups, political

debates, and music concerts, as a direct response to the

growing distrust of online content. In an age of deep fakes

and content manipulation, seeking face-to-face interactions

may be the only way to discern authenticity and verify what

is genuinely real in the world. Likewise, dating might veer

towards a return to more in-person encounters or an

embrace of Japanese-style singles’ parties known as

goukon17, countering the influence of AI-enhanced photos

and AI-generated conversations in the online dating space.

Alternatively, some individuals may find the efficiency of

their AI dating agent communicating with a suitor’s AI

agent and scheduling a coffee date more appealing!

 

Key Takeaways

1) The fear of job displacement isn’t new and while AI is

expected to create new roles and demand new skills, we

could see a drastic shakeup to knowledge work. This

includes humans working together with AI agents as

copilots to enhance productivity and efficiency.

2) Resistance is common in the face of technological

innovation, with individuals and organizations often going

through a series of emotional responses akin to the seven

stages of grief.



3) AI technology has the potential to empower smaller

companies and individuals to test new ideas at a lower cost.

4) AI-powered service providers can offer faster and low-

cost services, challenging traditional business models.

5) Appointing a Chief AI Officer can help organizations

navigate AI strategies, identify opportunities, and align AI

efforts with overall business objectives.

6) The proliferation and ubiquity of AI technology could

pave the way for a new form of digital trade or commerce

carried out by humans, without AI involvement.

 

Thought Exercises

1) What are your strengths and weaknesses? How can AI

be used to overcome your weaknesses and spend more

time on your strengths?

 

2) How can AI companies move beyond crude

comparisons with humans to measure and market their

products? (i.e., new jobs created by AI, lives saved by an AI

product).

 

3) In which industries or scenarios will using AI be a

potential disadvantage for the brand, sport, organization, or

other entity?




Further Resources
 

The field of artificial intelligence is vast and multifaceted,

encompassing various domains covered in this book. As a

result, acquiring knowledge in AI requires deep-diving into

an array of different subjects, each one contributing to a

more comprehensive understanding. This final chapter

provides a general guide to learning resources and an

overview of potential career paths.

 

Formal Education

The most obvious starting point for anyone interested in

AI is formal education. Universities around the world offer

courses dedicated to AI and related fields, including data

science, machine learning, and computer science. Highly

respected Master’s programs in machine learning are

offered at Stanford, Berkeley, Carnegie Mellon, Columbia,

University of Washington, and MIT. Other reputable

institutes include Edinburgh, Duke, Michigan, University of

Pennsylvania, Toronto, UCSD, Brown, UCL, Georgia Tech,

Cambridge, Oxford, and Cornell. Carnegie Mellon University,

renowned for its Robotics Institute, also provides excellent

degree courses in AI robotics. Note too that many colleges

offer online degrees and there are various other degree

options offered around the world.

After completing a Master’s degree in machine

learning/artificial intelligence/data science, there is then the

option of completing a PhD. This is an ideal route for those

wishing to delve deeper into AI topics. PhDs in many

countries are supported by government or university

funding. There is, though, a sizeable opportunity cost of

completing a four-year PhD on a basic salary/stipend over

working in industry on a full-time salary. In places like the

United States, you can expect to receive USD $20,000-



45,000 a year to complete a PhD course, compared to

earning an annual salary of USD $80,000-120,000 working

for a private company.

However, Google, Facebook, and Microsoft have been

known for raiding the ranks of academia to recruit talent in

the space of artificial intelligence and to secure a pipeline of

young talent. The prevailing logic is that hiring professors

unlocks a new network of talent and makes it easier to hire

former PhD students. The other upside of completing a PhD

is that you have greater control over the scope of your work

and research, and the academic path overall may be a more

attractive proposition for some people.

 

Non-Degree Options

Beyond traditional education pathways, there is a plethora

of non-degree options delivered online. Online learning

platforms have democratized access to knowledge, offering

a range of courses catering to various specializations. This

includes platforms like Coursera and edX which partner with

top universities and industry leaders to provide high-quality,

accessible content. For example, Coursera's AI For Everyone

course, developed by Andrew Ng, a co-founder of Coursera

and an adjunct professor at Stanford University, offers a

non-technical introduction to AI.

As my preferred non-degree option, I recommend

DataCamp as an excellent resource for learning about AI,

machine learning, data science, and related fields including

how to code. The platform's approach is hands-on, focusing

on active learning and practical application, which is quite

different from traditional lecture-based courses. Each skill-

based course is broken down into bite-sized lessons

combining short videos with immediate hands-on exercises.

 

Books



There is a wealth of books that delve into AI from

different perspectives. For those interested in the

philosophical and societal impacts of AI, books such as Nick

Bostrom's Superintelligence: Paths, Dangers, Strategies and

Max Tegmark's Life 3.0: Being Human in the Age of Artificial

Intelligence are highly recommended. If you're interested in

the technical aspects, O’Reilly Media textbooks such as

Hands-On Machine Learning with Scikit-Learn, Keras, and

TensorFlow authored by Aurélien Géron provide practical

insights for developers into AI, deep learning, and machine

learning.

 

Real-World Projects

For hands-on learning, nothing beats working on real-

world projects. As a platform for data science competitions

and public datasets, Kaggle offers a plethora of datasets

and challenges that can be used to hone your skills in

machine learning and AI.

Contributing to open-source AI projects is another way to

gain practical experience. Projects such as OpenAI's GPT

models, TensorFlow, and PyTorch all welcome community

contributions.

In regard to practical training, LeWagon offers data

science boot camps around the world, which train students

with the practical skills needed to become a data scientist

and work in a data team. LeWagon offers a lot of free online

and offline events, which you can sign up for on their

website (www.lewagon.com).

 

Blogs & Podcasts

Podcasts and blogs are valuable resources for learning

about AI. Podcasts such as The AI Alignment Podcast by the

Future of Life Institute, Data Skeptic, and AI in Business all

provide insightful discussions on various AI topics. Blogs

http://www.lewagon.com/


such as Towards Data Science and the Google AI Blog also

offer deep dives into AI trends and research. My favorite

podcast is the OC Devel Machine Learning Guide podcast.

 

Potential Career Paths in AI

Whether you're a recent graduate or a seasoned

professional considering a career switch, there is a place

and role for you in the ever-broadening world of AI. As

Stuart Russell and Peter Norvig point out in Artificial

Intelligence: A Modern Approach, AI is a broad and rapidly

evolving field that offers a plethora of opportunities for

those willing to invest the time and effort required to

master it.

As the influence and impact of AI grows, the demand for

professionals in this field will also continue to rise.

Regardless of industry or geography, organizations across

the globe are recognizing the power of AI to drive growth,

innovation, and efficiency. This section focuses on the vast

array of career paths in AI and provides a broad view of the

roles, skills, and opportunities available for those interested

in this field.

 

AI Research Scientist

The first role we’ll examine is the AI research scientist.

This position is typically based in academia or research

institutions but some private sector companies employ

research scientists too. These professionals are the thought

leaders of AI, pushing the boundaries of what’s possible. In

addition to publishing papers and attending conferences,

they are often found working on abstract and complex

problems in machine learning, deep learning, and other AI-

related fields. They possess a deep understanding of

algorithms, calculus, linear algebra, and statistics. While a

doctoral degree in a related field is often required, some



organizations hire candidates with a Masters degree and

substantial relevant experience.

 

AI Engineers

AI engineers apply the theories and concepts developed

by AI research scientists in real-world scenarios. They build,

test, and deploy AI models and manage AI systems and

infrastructure. They must be proficient in various

programming languages like Python, Java, or C++, and be

familiar with AI libraries such as TensorFlow or PyTorch. A

Bachelors or Masters degree in computer science, data

science, or a related field is usually required, along with a

strong practical understanding of machine learning.

 

Data Scientists

Data scientists work as the detectives of the AI world.

They sift through large volumes of data, using machine

learning and statistical models to extract meaningful

insights that can be used to solve business problems and

make strategic decisions. They require a firm grasp of

statistics, as well as experience with programming

languages and data management tools.

 

Machine Learning Engineers

Straddling the roles of AI engineer and data scientist,

machine learning engineers are typically tasked with

creating data models that are then implemented by AI

applications to learn and improve. To work as a machine

learning engineer, you will need to have a deep

understanding of multiple programming languages, machine

learning algorithms, and data modeling.

 

AI Ethicists

AI ethicists represent a newer but increasingly important

role in the field of AI. As AI applications proliferate,



questions about their ethical implications and the

governance required to ensure their fair use have expanded

too. AI ethicists analyze and address these issues. Their

backgrounds can vary widely, from philosophy to law to

data science, with the common denominator being a dual

understanding of AI technologies and a strong ethical

framework.

 

AI Policy Advocates

A lesser-known but growing role is the AI policy advocate.

These professionals work with governments, non-profit

organizations, and companies to influence policy and

legislation related to AI. This role requires a strong

understanding of AI, public policy, and legal frameworks.

 

The roles mentioned represent just a snapshot of the

opportunities available in the field of AI. Each of these roles

offers a unique perspective on AI and serves a critical

function in its ongoing development. However, all these

roles share a common need for continuous learning and

adaptation. Given the rapid pace of advancements in AI,

professionals in this field must be committed to staying up-

to-date with the latest developments.

Before deciding on a career path in AI, it's important to

consider your interests, strengths, and long-term career

goals too. For example, if you're passionate about

researching new theories and technologies, a career as an

AI research scientist might be a good fit for you. If you are

more interested in applying AI technologies to solving real-

world problems, roles such as AI engineer or data scientist

might be a better match.

Moreover, each of these roles offers different levels of

interaction with others. Some roles, such as AI engineer or

machine learning engineer, may work as part of a larger

team and interact closely with other departments. Other



roles such as AI research scientist may have a more solitary

focus and work primarily on individual projects.

Finally, it's crucial to consider the societal implications of

AI in choosing a potential career path. As AI becomes more

integrated into our daily lives, there is a growing need for

professionals who can address the ethical, legal, and

societal implications of AI. Roles such as AI ethicist or AI

policy advocate are expected to become increasingly

important as the field continues to evolve.
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It’s important to note that Andrew Ng's contributions to deep learning

stretch beyond his work with GPUs. His popular Coursera course on

machine learning has introduced millions of students worldwide to AI. His

tenure at Google Brain, meanwhile, led to the development of large-scale

deep neural networks, pushing the boundaries of what was thought

possible.
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A semiconductor is a material that has electrical conductivity between that

of a conductor and an insulator. GPUs, meanwhile, are made of
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such as transistors, to perform their calculations.
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number of clusters to analyze. Note that if you set k to the same number

of data points contained in the dataset, each data point automatically

becomes a standalone cluster. Conversely, if you set k to 1, then all data

points will be deemed as homogenous and fall inside one large cluster.

You, therefore, want to avoid using a k value close to 1 or close to the

maximum number of data points.



[←10]
A one-dimensional array, also known as a vector, is a data structure to

store elements in a linear sequence with the elements arranged in a single

row or column.
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Simone Baldoni, Nalini Chintalapudi, Getu

Gamo Sagaro, Graziano Pallotta, Giulio Nittari, and Francesco Amenta,
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Sage Journals, August 2020.



[←12]
Gregory Robinson, “AI-generated Family Guy is so offensive it's already

banned on Twitch”, UNILAD, June 16, 2023.



[←13]
While OpenAI previously collected its data from the web without explicit

permission from site owners, the company’s new GPTBot, a web crawler

that automatically scrapes data from the Internet, allows site owners to

restrict access by modifying their robots.txt file.



[←14]
Tyna Eloundou, Sam Manning, Pamela Mishkin, and Daniel Rock, “GPTs are

GPTs: An Early Look at the Labor Market Impact Potential of Large

Language Models”, OpenAI, OpenResearch, University of Pennsylvania,

March 2023.



[←15]
Prarthana Prakash, “Chegg’s shares tumbled nearly 50% after the edtech

company said its customers are using chatgpt instead of paying for its

study tools”, Fortune, May 3, 2023.



[←16]
Marketing Against The Grain, “How A $25B Company Uses A.I. To 300x

Their Marketing Results,” HubSpot Podcast Network, June 13, 2023.



[←17]
Goukon parties are popular in Japan as a way for adults to socialize and

expand their social circles while potentially finding romantic interests.

These parties can take various forms, such as dinners, barbecues, or

outings to various entertainment venues. The atmosphere is typically more

relaxed and informal compared to traditional matchmaking events.
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