

© 2022 IANS. All rights reserved.

Online Training

L A B G U I D E

Analyzing Microsoft 365

through PowerShell
Breakout Session Three – Modify a simple script

to check for security parameters.

Overview
This breakout session focuses on implementing a sample script to iterate through

some key control items that can be detected using the MSOL module. The script

below is meant to provide a general starting point to be filled out according to your

organizational needs. Use the reference to additional MSOL module commands to

look at specific parameters which may interest you.

© 2022 IANS Research. All rights reserved. 2

Objectives

• Run the vanilla script and get a result

• Modify the script by adding in automated logon (previous lab)

• Add additional checks based on the Commands worth reviewing section

Commands worth reviewing

The script provides a sample look at using the MSOL service to lookup users who may have an expired

password based on a 90-day policy. For this exercise, identify additional/alternative properties that are

interesting and evaluate them through the script. Some recommendations below are provided for each

module.

Module Command Parameter Equals

Azure Ad Get-AzureAdApplication PasswordCredentials $False

Msol Get-MsolUser StrongAuthenticationRequired $True

Exchange Get-AdminAuditLogConfig AdminAuditLogEnabled $True

SharePoint Get-SpoTenant ExternalUserExpirationRequired $True

Teams Get-CsTeamsMeetingPolicy AllowAnonymousUsersToJoinMeeting $False

© 2022 IANS Research. All rights reserved. 3

Script

The script takes no input and evaluates all users based on an assumed 90-day password expiration policy.

This can be modified in the main variables setting found near the top of the script. At execution, it will

prompt you for your scan user credentials. With those permissions, it grabs a list of all domain users and

then evaluates each user with the Get-ExpiredPasswordUsers function. This function in turn populates a list

of users who failed the 90-day password change. At the close of the script, the list is displayed in the

terminal.

-- MSOL Security Automation Tool -- #

Author: #

Version: #

Date: #

-- -- -- -- -- -- -- -- -- -- -- -- #

-- Imports

Import-Module MSOnline

-- Variables

$PasswordPolicyExpireDays = 90

$Script:UsersWithOldPasswords = @()

-- Functions

Function Get-ExpiredPasswordUsers() {

 Param(

 # Should be a positive integer, but will handle later

 [Parameter(Mandatory=$True)]

 [int]$Days,

 [Parameter(Mandatory=$True)]

 [array]$UserList

)

© 2022 IANS Research. All rights reserved. 4

 # Func Variables

 $TotalUsers = $UserList.Count

 $SearchedUsers = 0

 $AbsoluteDays = [Math]::Abs($Days)

 Try {

 # Get Date that is (x) number of days behind today

 $ExpirationDate = (Get-Date).AddDays(-1*$AbsoluteDays)

 # Iterate through user list

 ForEach($User in $UserList) {

 $SearchedUsers++

 Write-Progress `

 -Activity "Old password lookup." `

 -Status "Checking: $($User.DisplayName)" `

 -PercentComplete ($SearchedUsers*100/$TotalUsers)

 If ($User.LastPasswordChangeTimestamp -lt $ExpirationDate) {

 # Append to user list

 $Script:UsersWithOldPasswords += ($User)

 }

 }

 Return $True

 } Catch {

 Write-Host $_

 Return $False

 }

}

-- Logic

-- Logic -- Get Signed In

Connect-MsolService

-- Logic -- Run a command, store in a variable

$Users = Get-MsolUser -All

-- Logic -- Review Results

If(

 (Get-ExpiredPasswordUsers `

 -Days $PasswordPolicyExpireDays `

 -UserList $Users)) {

 $UsersWithOldPasswords | Select-Object `

 UserPrincipalName, LastPasswordChangeTimestamp

} Else {

 Write-Host "An error has occurred and users could not be evaluated."

 Write-Host "Check permissions and configuration."

}

