

© 2022 IANS. All rights reserved.

Online Training

L A B G U I D E

Analyzing Microsoft 365 through

PowerShell
Breakout Session Two – Setting foundation for Non-Interactive Logon

Overview
Running PowerShell scripts manually is good but running them on a scheduled task is even better. In this module, create a service principal to do

much of the heavy lifting and a limited-permissioned user account to cover gaps in Microsoft’s API/permission model.

© 2022 IANS Research. All rights reserved. 2

Procedure

1. Open PowerShell and signon to Azure Ad with

the global admin permissions:

Code:

Connect-AzureAd

2. Create a new application, called TenantScanner. This generates an application we can assign credentials to during the scan. Save the

output to a variable for use in later commands.
Code:

$App = New-AzureADApplication -DisplayName TenantScanner

3. Create a self-signed certificate on your machine to assign to the application. This provides more security than a password by requiring

access to the local certificate store rather than a string which is more easily transferred from system to system.

Code:

$Subject = “CN=TenantScanner“

$CertStore = “Cert:\CurrentUser\My”

$Cert = New-SelfSignedCertificate -Subject $Subject -CertStoreLocation $CertStore -KeyExportPolicy

Exportable -KeySpec Signature -KeyLength 2048 -KeyAlgorithm RSA -HashAlgorithm SHA256

© 2022 IANS Research. All rights reserved. 3

4. Export the certificate for use with Azure Ad.

Code:

Export-Certificate -Cert $cert -FilePath .\TenantScanner.cer

5. Associate the certificate with the Application created in step 2. This allows certificate based signon for
supported modules.
Code:

New-AzureADApplicationKeyCredential `

 -ObjectId $App.ObjectId `

 -CustomKeyIdentifier "TenantScanner" `

 -StartDate $Cert.NotBefore `

 -EndDate $Cert.NotAfter `

 -Type AsymmetricX509Cert `

 -Usage Verify `

 -Value $([System.Convert]::ToBase64String($Cert.GetRawCertData()))

© 2022 IANS Research. All rights reserved. 4

6. Save the tenant and application information to local files which will be needed for signon later.

Code:

$Tenant = Get-AzureADTenantDetail

$Tenant.ObjectId | Out-File TenantId.txt

$App.AppId | Out-File AppId.txt

$App.ObjectId | Out-File AppObjectId.txt

7.
7. In a new PowerShell session, navigate to the same directory as before.

8. Create some easy variables based on the file contents for use during signon. Then, use those credentials to signon to AzureAd.

Code:

$Cert = New-Object System.Security.Cryptography.X509Certificates.X509Certificate("$((Get-

Location).Path)\TenantScanner.cer")

$ThumbPrint = $Cert.GetCertHashString()

$TenantId = Get-Content .\TenantId.txt

$AppId = Get-Content .\AppId.txt

Connect-AzureAd -TenantId $TenantId -ApplicationId $AppId -CertificateThumbprint $Thumbprint

Take note of those commands as you’ll need them in our script later.

9. Now, we need to establish some permissions in the backend for the user account and for the service principal to access the Microsoft

services. Login to https://portal.azure.com/.

https://portal.azure.com/

© 2022 IANS Research. All rights reserved. 5

10. In the top, search for “App registrations” and select “App Registrations” from Services.

11. Select the “All Applications” tab in the content pane.

12. Search for “TenantScanner” and select it from the list of apps.

© 2022 IANS Research. All rights reserved. 6

13. Open “Manifest” on the left column navigation

14. Update the requiredResourceAccess to enable ExchangeOnline access, then press save. The updated JSON is below:

"requiredResourceAccess": [

 {

 "resourceAppId": "00000002-0000-0ff1-ce00-000000000000",

 "resourceAccess": [

 {

 "id": "dc50a0fb-09a3-484d-be87-e023b12c6440",

 "type": "Role"

 }

]

© 2022 IANS Research. All rights reserved. 7

 }

],

15. Select “API Permission” from the left navigation column.

16. Select “Grant admin consent for …” to approve the ExchangeOnline access provided in step 22.

17. Click “Yes” on the confirmation dialog. The service principal can now access ExchangeOnline.

18. In the top of the Azure Portal, search for “Azure Ad roles and administrators”, and select it from the Services list.

© 2022 IANS Research. All rights reserved. 8

19. Search for “Global reader” and select it from the list.

20. On the top of the content pane, select “Add assignments”

21. Select “No Members Selected”

22. In the Add Assignments dialog, search for TenantScanner and select the service principal.

23. Select “Add” to finish adding the assignment. The service principal now has global reader rights to the organization.

24. The next step is to set up the scan user account which has limited access to run headlessly. In the top search bar, search for and select

“Users.”

© 2022 IANS Research. All rights reserved. 9

25. Select “New User” from the content pane.

26. Create the identity for the user and set the password.

© 2022 IANS Research. All rights reserved. 10

27. Select the roles button to assign roles.

28. Add the following roles:

a. Global Reader

b. SharePoint Administrator

29. Select “Create” on the bottom of the page. If you are notified that role creation failed, try adding the role directly to the user after creation.

https://docs.microsoft.com/en-us/azure/active-directory/fundamentals/active-directory-users-assign-role-azure-portal

30. With the Service Principal and limited user account created, it’s time to get back into Powershell. Open the prompt for PowerShell and run

a logon command with the new scan user credentials

Connect-MsolService

Note: This will force you to change your password.

31. Let’s now focus on creating user credentials for re-use. Start by gathering the credentials of the user account you want to automatically

call Msol, SharePoint or Microsoft Teams endpoints.

Code:

$Credential = Get-Credential

32. Export the credentials to file for future reference. This uses a secure string representation of the password rather than the cleartext

password. We encourage looking into your organization’s best practices to align secret storage with their policies.

https://docs.microsoft.com/en-us/azure/active-directory/fundamentals/active-directory-users-assign-role-azure-portal

© 2022 IANS Research. All rights reserved. 11

Code:

$Credential.UserName | Out-File username.txt

$Secret = $Credential.Password | ConvertFrom-SecureString

$Secret | Out-File secret.txt

33. Using the stored credentials, access the MSOL command.

Code:

$Username = Get-Content .\username.txt

$Secret = Get-Content .\secret.txt | ConvertTo-SecureString

$Cred = New-Object System.Management.Automation.PSCredential -ArgumentList ($Username, $Secret)

Connect-MsolService -Credential $Cred

© 2022 IANS Research. All rights reserved. 12

34. Now both the service principal and user account are configured and available locally for automation scanning. The breakdown of when to

use each is below:

Module Login Command Identity Test Command

AzureAd Connect-AzureAd TenantScanner Get-AzureAdApplication

AzureRm Login-AzureRmAccount TenantScanner Get-AzureRmAdApplication

ExchangeOnline Connect-ExchangeOnline TenantScanner Get-OrganizationConfig

Msol Connect-MsolService ScanUser Get-MsolDomain

SharePoint Connect-SpoService -Url ScanUser Get-SpoTenant

Microsoft Teams Connect-MicrosoftTeams ScanUser Get-CsTeamsMeetingBroadcastPolicy

35. Leveraging the credentials, now create a powershell script that logs into each service listed above and validates it can call each test

command.

